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Summary

Chronic fatigue syndrome (CES) is characterized by extreme fatigue and disabling symptoms.
Women with CFS often have a high risk of gynaecological problems such as irregular menstru-
ation, endometriosis and pelvic pain and sexual dysfunction. Our previous results have shown
that, in pregnant mice, CFS significantly decreased the progestational hormone level in serum,
as well as learning and memory, and the function of the hypothalamus-pituitary—gonadal axis.
In addition, the F1 generation also suffered from congenital hypothyroidism. At present, there
has been no report about placenta formation and embryonic development in pregnant mice
with CFS. The aim of the present study was to investigate the influence of CFS on the morphol-
ogy, oxidative stress and Wnt/f-catenin signalling pathway during placenta formation. In this
study, we found that CFS decreased the number of implantation sites for blastocysts, and
increased the number of absorbed, stillborn and malformed fetuses. The morphology and struc-
ture of the placenta were abnormal in pregnant mice with CFS. Further study found that the
oxidative stress in serum, uterus and placenta was increased in pregnant mice with CFS, while
the levels of antioxidase were decreased. CFS also inhibited the Wnt/f-catenin signalling path-
way in the placenta. These results suggested that inhibition of the Wnt/B-catenin signalling
pathway and enhanced oxidative stress play an important role in abnormal placentation in
pregnant mice with CFS.

Introduction

Chronic fatigue syndrome (CFS), also called myalgic encephalomyelitis, is a complex, chronic
and serious illness, characterized by extreme fatigue affecting various body systems (Katafuchi
et al., 2003). CFS patients usually have sleep disturbance (Josev et al., 2017; Pajediene et al.,
2018), accompanied by multiple clinical symptoms such as decreased motor function, sexual
dysfunction, insufficient physical activity, loss of appetite, loss of weight, impaired immune
function and imbalance of intestinal flora (Vergauwen et al, 2015; van der Schaaf et al,
2018). In the 21st century, CFS has become a new killer affecting human physical and mental
health. Under various pressures, more and more people are suffering from CFS, and the inci-
dence of CFS is increasing year by year with the rapid pace of work and life in modern society
(Jiang et al., 2004). CFS is more common in women compared with men (Boneva et al., 2015).
Epidemiological investigation found that the incidence of CFS was much higher in 31-50-year-
old women of reproductive age with a high level of education and work pressure compared with
in men (Mclnnis et al., 2014). Female patients with CFS often have multiple gynaecological
problems, including menstrual disorders, endometriosis, pelvic pain and sexual dysfunction
(Boneva et al, 2015; Yeh et al., 2018).

Blastocyst implantation and placenta development are dependent on trophoblastic cells.
Abnormal differentiation and invasion of placenta trophoblast cells led to spontaneous abor-
tion, preeclampsia, fetal growth restriction, hydatidiform mole and other gestational diseases
(Barrientos et al., 2017). Recent studies have found that the Wnt/-catenin signalling pathway
is involved in the regulation of placenta formation processes such as decidual transformation of
uterine stromal cells, trophoblastic cell invasion, chorioallantoic fusion and reconstruction of
maternal and fetal vasculature (Zhang et al., 2017; Wang et al., 2018). The mental and physical
health of women before pregnancy is directly related to the growth and intellectual development
of the offspring. Our previous study found that CFS significantly reduced the levels of oestrogen
and progesterone in serum, as well as learning and memory. The hypothalamus-pituitary—
gonadal axis function was disturbed in female mice with chronic fatigue syndrome (CFS)
and before pregnancy. The F1 generation also suffered from congenital hypothyroidism
(CH) (Liu and Qian, 2011, Zhao et al., 2016a; 2016b). So far, there have been no reports about

https://doi.org/10.1017/5096719942000057X Published online by Cambridge University Press


https://www.cambridge.org/zyg
https://doi.org/10.1017/S096719942000057X
mailto:344947218@qq.com
https://orcid.org/0000-0003-2652-7153
https://doi.org/10.1017/S096719942000057X

Oxidative stress in abnormal placenta formation in mice

placenta formation and embryo development in CFS pregnant
mice. In this study, we aimed to establish a female mouse model
of CFS by multiple stimuli, and investigated the influence of
CEFS on placenta morphology and embryo development and the
underlying molecular mechanisms.

Materials and methods
Animal study design

ICR mice were purchased from the laboratory animal centre of
Chongqing Tengxin Biotechnology Co., Ltd (Chongqing,
China), and raised in the Institute of Laboratory Animal
Science in Guizhou University of Traditional Chinese
Medicine. After acclimation for 3 days, the female mice were
divided randomly into the control group and the CFS group.
The mice were fed with a standard pellet diet and distilled water
ad libitum. The temperature of the animal facility was 22 + 2°C,
and lighting was undera 12 h: 12 h, light : dark cycle (lights on at
8:00 h). The CFS mouse model was induced by multiple different
stimuli including confinement, repeated forced swimming, and
tail clipping (Zhao et al., 2016a; 2016b). The mice were treated
with three different stimuli every day, confinement, forced
swimming and tail clipping. For confinement, the mice were
placed individually in a centrifuge tube (50 ml) for 10 min
for the first 3 days, and 30 min on days 4-35. For repeated forced
swimming, each mouse was placed in a cylinder filled with water
(about 28°C) for 10 min for the first 3 days, and 30 min on days 4
to 35. For tail clipping, an oval forceps was used to clip the root
of the tail for 15 s for 35 days. Moreover, the mice were treated
with the following four stresses every week; 4 days were ran-
domly selected from each week. The mice were forced to swim
in cold water (about 4°C), stopped feeding for 1 day, stopped
water supply for 1 day, and subjected to a reversed cycle of
day and night for 1 day. Control mice did not receive any treat-
ment. After successful induction of CFS, the female mice were
mated with the control male mice. The mating was confirmed by
the presence of a copulatory plug the next morning following
mating (1 day post coitum). On days 7-19 post coitum, pregnant
mice were sacrificed. Serum and implanted site tissues were col-
lected. Placentas and embryos on days 12 and 14 were isolated
and weighed. The implantation sites and uterine tissues were
fixed by 4% paraformaldehyde in PBS (pH 7.2) at room temper-
ature for 24 h and embedded in paraffin for histologic examina-
tion. The serum was isolated by centrifugation using serum
separator tubes.

Haematoxylin and eosin staining

The uterine implantation sites and placenta were fixed over-
night in 4% paraformaldehyde (v/v). After washing with 70%
ethanol, the tissues were processed, embedded in paraftfin,
and sectioned. Sections of paraffin-embedded tissues (section
thickness, 5 pm) were stained with haematoxylin and eosin.
Photographs were obtained from a light microscope (BX51;
Olympus, Tokyo, Japan).

Assays of oxidative stress and antioxidase

The oxidative stress and antioxidase levels in serum, uterus and
placenta were detected using the corresponding kits. The kits for
oxidative stress assay included a reactive oxygen species assay
kit (ROS; QY-X16254; Qiaoyu, Shanghai, China), reactive
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nitrogen assay kit (RNS; QY-Y26312; Qiaoyu, Shanghai,
China), malondialdehyde assay kit (MDA; QY-Y23136;
Qiaoyu, Shanghai, China). The kits for antioxidase assay
included superoxide dismutase assay kit (SOD; QY-S13521;
Qiaoyu, Shanghai, China), total antioxidant capacity assay kit
(T-AOC; QY-Y61124; Qiaoyu, Shanghai, China), glutathione
peroxidase assay kit (GSH-Px; QY-T11542; Qiaoyu, Shanghai,
China), peroxidase assay kit (POD; QY-X35410; Qiaoyu,
Shanghai, China) and catalase assay kit (CAT; QY-Y32512;
Qiaoyu, Shanghai, China).

Quantitative real-time PCR

Total RNA was extracted from placentas on days 12 and 14 using
TRIzol regent (DP405-02, Tiangen, Beijing, China) and purified in
accordance with the manufacturer’s instructions. In total, 2 mg
RNA were reverse transcribed with a PrimeScript™ RT reagent kit
(RR047B, TaKaRa, Liaoning, China). Real-time PCR was performed
using a TaKaRa SYBR® Premix Ex Taq™ II kit (RR82LR, TaKaRa,
Liaoning, China) and on an ABI Prism 7500 Real-Time PCR system
(Applied Biosystems, Foster, CA, USA). Each sample was tested in
triplicate in a 20-pl volume for reaction with 2 pl cDNA, 10 pl 2x
Master Mix, 1 pl PrimeScript RT Enzyme Mix, 1 pl RT Primer
Mix, 4 pl 5% Prime Script Buffer 2 and 4 pl RNase free H,O. The
PCR amplification program was initiated at 95°C for 30 s, followed
by 40 thermal cycles of 5 s at 95°C and 40 s at 60°C, annealing temper-
ature for 20 s and 72°C for 20 s. The comparative Cr method was used
to analyze the obtained data. The sequences of primers were as fol-
lows: Wnt4 Forward: 5'-CATCGAGGAGTGCCAATACCA-3/,
reverse: 5'-GGAGGGAGTCCAGTGTGGAA-3’, Wnt5a forward:
5'-GGCGAGCTGTCTACCTGTGG-3', reverse: 5'-GGCGAACGG
GTGACCATAGT-3'; SFRP1 forward: 5-TGAGGCCATCATT
GAACATC-3’, reverse: 5'-TCATCCTCAGTGCAAACTCG-3';
SFRP3 forward: 5'-CAAGGGACACCGTCAATCTT-30, reverse:
5'-CATATCCCAGCGCTTGACTT-30; DKK1 forward: 5'-TCCG
AT CATCAGACTGTGCCG-3’, reverse: 5'-TGGGAGCCTTTCC
GTTTGTGC-3’; p-catenin forward: 5'-TGGAGGAGATAGTA
GAGGGTG-3/, reverse: 5'-AGACATTCGGAATAGGACAGC-3';
B-actin forward: 5'-CGTTGACATCCGTAAAGACCTC-3/, reverse:
5'-ACAGAGTACTTGCGCTCAGGAG-3’. All data were normal-
ized to P-actin and expressed as fold change relative to the con-
trol group.

Western blotting

Proteins were extracted from placentas on day 12 and day 14 with a
whole cell lysis buffer (50 mM HEPES, 150 mM NaCl, 1 mM EGTA,
10 mM sodium pyrophosphate, 1.5 mM MgCl,, 100 mM NaF, 10%
glycerol, and 1% Triton X-100) containing a cocktail of protease
inhibitor (1 mM phenylmethylsulfonylfluoride, 10 mg/ml aprotinin,
and 1 mM sodium orthovanadate). Equal amounts of denatured
protein were subjected to SDS-PAGE in accordance with standard
protocols. Separated proteins were transferred electrophoretically
onto PVDF membrane (Millipore, Burlington, MA, USA). After
being blocked with 5% skimmed milk for 1 h at room temperature,
the membrane was sequentially incubated with primary antibodies
against Wnt4 (1:1000, bs-6134R; Bioss Antibodies, Beijing, China),
Wnt5a (1:1000, bs-1948R; Bioss Antibodies), SFRP1 (1:500,
bs-1303R; Bioss Antibodies), SFRP3 (1:500, bs-1618R; Bioss
Antibodies), DKK1 (1:1000, RS-12162R; Bioss Antibodies),
B-catenin (1:500, bs-1165R; Bioss Antibodies) and f-actin
(1:1000, bs-1165R; Bioss Antibodies) overnight at 4°C, and washed
three times (10 min per wash) with TBST. Then, the membrane was
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incubated with horseradish peroxidase-linked secondary antibody
(1:5000; Beyotime, Shanghai, China) for 1 h at room temperature
in 5% skimmed milk, and washed three times (10 min per wash)
with TBST. Immunoreactive bands were detected using an
enhanced chemiluminescence kit (Pierce Chemical Co,
Rockford, IL, USA). B-Actin was used as an internal control.

8.70 £ 1.57**
6.60 + 1.43**
4.10 + 1.45**
4.00 + 2.46**

Immunohistochemistry

Sections were preincubated with 10% normal goat serum in PBS
(pH 7.5) and then incubated with anti-Wnt4 (1:500, bs-6134R;
Bioss Antibodies), anti-Wnt5a (1:500, bs-1948R; Bioss
Antibodies), anti-SFRP1 (1:400, bs-1303R; Bioss Antibodies),
anti-SFRP3 (1:400, bs-1618R; Bioss Antibodies), anti-DKK1
(1:300, RS-12162R; Bioss Antibodies), anti-p-catenin (1:300,
bs-1165R; Bioss Antibodies) in 10% normal serum in PBS (pH
7.2) overnight. On the following day, sections were washed in
PBS and incubated with a biotinylated secondary antibody
(8029 and 8003; ZSGB-BIO, Beijing, China) for 1 h at room tem-
perature. Immunoreactivity was detected using a DAB Substrate
kit (ZLI-9017, ZSGB-BIO). Immunoreactivity was visualized as
brown staining. Sections incubated with no primary antibody
were used as a negative control. Photographs were obtained from
a light microscope (BX51; Olympus, Tokyo, Japan).

0.40 + 0.52

2.10 + 0.73**
3.40 £ 1.35**
3.20 £ 1.34**

9.11 £ 1.52**
8.70 + 1.42**
7.10 £ 1.97**
6.89 £ 1.26**

Statistical analyses

Data were expressed as mean + standard deviation (SD) and were
analyzed by paired Student’s ¢-test for comparison between nor-
mal and CFS groups. Differences at P < 0.05 were considered to
be statistically significant.

11.00 + 1.83
10.70 £ 2.11
10.40 £ 1.71
10.30 £ 1.49

Results

Comparison of pregnancy status between the control and
CFS groups

In a previous study, we found that the hypothalamus-pituitary-
gonadal axis (HPG) was disordered in the CFS mouse (Liu and
Qian, 2011). Learning and memory in the F1 generation was
impaired, and this could be used as an animal model of congenital
hypoidism (congenital hypothyroidism, CH) (Liu and Qian,
2011). In this study, we also analyzed the number of implantation
sites, stillbirths, live births and others on day 7, day 11, day 15 and
day 19 in CFS pregnant mice. As shown in Tables 1 and 2, we
found that the number of implantation sites, stillbirths and the
lengths of embryos on day 15 and day 19 in CFS pregnant mice
were significantly decreased (P < 0.01) (Tables 1 and 2).

0.30 + 0.48
0.40 £ 0.52
0.40 + 0.51
0.30 £ 0.48

11.33 £ 1.58
11.10 £ 191
11.00 + 1.83
10.30 £ 1.95

Comparison of the morphology of placenta between the
control and CFS groups in pregnancy mouse

As shown in Fig. 1, we found that the placenta structure of the
CFS group began to change on day 10 in CFS pregnant mice.
The labyrinth layer of the placenta began to appear on day 10
in the control pregnant mice, while the placenta had not yet dif-
ferentiated in the CFS group (Fig. 1). As shown in Fig. 2, we found
that the area of the three-layer structure of the placenta in the CFS
group was smaller compared with that in the normal control
group on day 13. The numbers of blood cells in the labyrinth area
of the placenta were lower in the CFS group (Fig. 2).

Day 7

Day 11
Day 15
Day 19

Table 1. Number of implantation sites, stillbirths, live births on day 7, day 11, day 15 and day 19 in normal and CFS pregnant mice

*P < 0.05, **P < 0.01 vs. normal group.
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1.31 + 0.06**
1.96 + 0.12**

247.21 + 6.78**
124.24 + 10.63** 1243.49 £ 26.76**

74.35 £ 6.12**

627.55 + 14.87**
1420.80 + 64.36**

1.66 £ 0.12
2.55+0.14

299.46 + 13.93
1384.08 + 20.05

728.49 * 34.79
1706.69 + 7.89

Day 15
Day 19

Table 2. Weight and length during growth of the placenta and embryos on day 15 and day 19 in normal and CFS pregnant mice
87.34 £ 6.79
143.21 + 6.60

*P < 0.05, **P < 0.01 vs. normal group.
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Comparison of oxidative/antioxidant stress index between
control group and model group

Differences in the oxidative/antioxidant stress index in preg-
nant mice in the normal and CFS groups were assessed.
Values for the oxidative stress index (ROS, RNS, MDA;
Table 3) were significantly lower in the serum and uterus
and on day 13 placenta in the normal group compared with
CFS group by colorimetric analyses, Further experimental
research showed that values for the antioxidant stress index
(T-AOC, CAT, SOD, GSH-Px, POD) were higher in the normal
control group compared with that in the CFS group (P < 0.01)
(Table 3).

Alterations of Wnt/p-catenin signalling in placenta during
implantation

As mentioned above, these results demonstrated that the num-
bers of implantation sites and embryo length were decreased
and numbers of absorbed fetuses and stillbirths were signifi-
cantly increased. The morphological structure of the placenta
was abnormal. The Wnt pathway is closely associated with
implantation and differentiation of trophoblasts (Zhang et al.,
2017). We next investigated whether the Wnt signalling path-
way in CFS pregnant mice was involved in abnormal placenta
formation. As shown in Fig. 3, SFRPI, SFRP3 and DKKI
mRNA were highly expressed, while Wnt4, Wnt5a and f-cate-
nin were significantly downregulated in the CFS group
(P <0.01; Fig. 3A,B). Western blot analyses revealed that the
protein levels of Wnt5a and fB-catenin in the placenta were
decreased in the CFS group on day 12, while SFRP1 was signifi-
cantly highly expressed (P < 0.01) (Fig. 4A). The expression lev-
els of Wnt4, Wnt5a and p-catenin in the placenta were
significantly reduced in the CFS pregnant mice on day 14.
However, SFRP3 and DKKI1 were highly expressed in the CFS
group on day 14 (P < 0.05) (Fig. 4B). As shown in Fig. 5, on
day 12 and day 14, most placenta cells from the CFS group were
positive for Wnt4, Wnt5a, SFRP1, SFRP3, DKK1 and B-catenin.
However, nuclear p-catenin staining was present less often in
the CFS group (Fig. 5A,B). The results demonstrated that the
Wnhnt signalling pathway in the placenta may play a role in
abnormal placentation in CFS mice.

Discussion

Recent studies have found that brain function, energy metabo-
lism, acetylcholine and adrenalin signalling were disordered in
CFS patients (Mensah et al., 2018; Scheibenbogen et al., 2018;
Shan et al., 2018). Epidemiological survey results have shown
that 20-25% of the world’s population has CFS, with more
than 4 million patients in the USA. In China, 10-25% of
the urban population and in Britain 1.9% of 16 year olds suffer
from this disease (Collin et al., 2016). At present, immune
function disorder, central nervous system (CNS) abnormality
and oxidative stress are considered to be the basic pathological
mechanisms of CFS (Zinn et al., 2018; Cliff et al., 2019; Polli
et al., 2019).

The Wnt protein family contains important signalling
regulatory proteins and secreted glycoproteins. Wnt signalling
is closely related to cell proliferation and differentiation as
one of the main pathways that regulates various physiological
and biochemical processes such as cell morphology, move-
ment, adhesion, proliferation, differentiation, carcinogenesis
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Figure 1. Morphology of placenta from day 8 (D8) to day 13 (D13) in normal and CFS pregnant mice (x40 magnification). Normal, normal group; CFS, chronic fatigue syndrome
group; Dec, Decidua basalis; emb, embryo; Epc, ectoplacental cone; Lab, Labyrinth; Sp, spongiotrophoblast.
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Figure 2. Morphology of labyrinth in placenta on day 13 in normal and CFS pregnant
mice (x400 magnification). CFS, chronic fatigue syndrome group; normal, normal group.

and development (Xu et al., 2017). Multiple genes, including
Fox, Sox, Gata, Tead and Wnt, play important roles during
placental development. Among them, the Wnt signalling
pathway is involved in the regulation of the whole process
of placenta formation (Nayeem et al., 2016). Migration and
invasion of trophoblast cells are regulated by Wnt signalling
through transcription factor T-cell factor-4 (TCF-4)
(Meinhardt et al., 2014). Wnt7 is highly expressed in human
placental tissues. Wnt5a can inhibit the migration and inva-
sion of HTR-8 cells by reducing integrin p1 levels through
activating NF-AT to regulate intercellular adhesion factor-1
(ICAM-1) and vascular cell adhesion factor-1 (VCAM-1)
(Herr et al., 2014). The proliferation, differentiation and
deciduation of endometrial stromal cells is regulated by
Wnt4 (Logan et al, 2018). As inhibitory proteins of the
Wnt signalling pathway, secreted frizzled-related proteins
1, 3, 4 (SFRP1, SFRP3, SFRP4) and dickkopfl (DKKI) play
important roles in the formation of the placenta (Zmijanac
Partl et al, 2018). It has been found that SFRP1 and
SFRP3 are highly expressed in placenta with intrauterine
growth restriction (IUGR) (Partl et al., 2014). Low expression
of B-catenin protein and high expression of DKK1 and SFRP4
may be involved in the occurrence of severe eclampsia and
unexplained recurrent spontaneous abortion (Zhang et al,
2013, 2019). In addition, oxidative stress is involved in the
regulation of the Wnt/p-catenin signal pathway by upregulat-
ing C/EBP-p, and influencing the activity of matrix metallo-
proteinases (MMPs), therefore participating in the
pathogenesis of preeclampsia (Zhuang et al, 2015). As can
be seen from the above findings, oxidative stress and the
Wnt/B-catenin signalling pathway play a very important role
in the regulation of placenta formation. So far, there have
been no studies regarding placental morphology, oxidative
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stress and Wnt/B-catenin signalling pathway in the CFS pla-
centa. In this study, we established a CFS mouse model in
female mice using multiple stimuli (Zhao et al., 2016a;
2016b). This female mouse model described a significant
reduction in locomotor activity, spatial memory and learning
(Zhao et al., 2016a; 2016b). These results were consistent with
previous findings that described the CNS as involved in the
pathogenesis of CFS (Glassford, 2017; Ohba et al., 2019).
Therefore, we believe that our CFS mouse model was able
to simulate the pathology of CFS. Alterations in placenta
morphology, oxidative stress and the Wnt/p-catenin pathway
were investigated.

In this study, we found that the numbers of implantation
sites and stillbirths and the length of embryos on day 15 and
day 19 were significantly decreased in CFS pregnant mice
(Tables 1 and 2). The labyrinth layer of the placenta began to
appear on day 10 day in the normal control pregnant mice, while
the placenta was not differentiated in the CFS group (Fig. 1). We
also found that the area of the three-layer structure of the pla-
centa in the CFS group was smaller compared with that in the
normal control group on day 13. The numbers of blood cells in
the labyrinth area of the placenta were decreased in the CFS
group (Fig. 2). To further investigate the underlying mecha-
nisms of the abnormal morphology of placenta in CFS pregnant
mice, oxidative stress and the Wnt/f-catenin signalling pathway
were quantified. Our results showed that oxidative stress was
significantly increased in serum, the uterus and the placenta
in the CFS group, and might be associated with downregulation
of antioxidases in the CFS group (P < 0.01). SFRPI, SFRP3 and
DKKI1 mRNA were strongly expressed in CFS placenta, while
mRNA expression of Wnt4, Wnt5a, and p-catenin was
decreased (P < 0.01) (Fig. 3B). Protein levels of Wnt4, Wnt5a
and P-catenin were decreased on day 14 in the CFS placenta.
Furthermore, the protein levels of SFRP1 and SFRP3 were
decreased (P < 0.01) (Fig. 4B).

By using a female CFS mouse model, we found that the num-
bers of implantation sites and length of embryos were decreased.
The numbers of absorbed fetuses, stillborn fetuses and mal-
formed fetuses significantly increased over time in CFS pregnant
mice. In addition, the placenta had an abnormal morphology.
Oxidative stress in serum, uterus and placenta were increased.
Levels of antioxidase were decreased in CFS pregnant mice.
We also found that the expression levels of Wnt signalling path-
way key factor B-catenin protein was significantly decreased, and
the expression levels of inhibitory factors SFRP1, SFRP3 and
DKK1 were increased in the placenta of CFS pregnant mice.
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Table 3. Indicators of oxidative stress in serum and uterus and on day 13 placenta in normal and pregnant mice

Samples Normal group (n = 10) Chronic fatigue syndrome group (n = 10)
Oxidative stress index  Indicators Serum Uterus Placenta day 13 Serum Uterus Placenta day 13
Reactive oxygen species (ROS) 0.50 + 0.01 5.54 + 0.38 5.74 + 1.07 4.1 £0.29** 44.16 + 1.78** 43.24 + 0.42**
Reactive nitrogen species (RNS) 3.27 £ 0.06 4.26 + 0.09 5.25+0.15 5.78 £ 0.05**  49.77 + 0.54** 50.06 + 0.45**
Malondialdehyde (MDA) 3.58 £0.04 55.42+0.21 51.96 + 0.83 6.78 £ 0.24** 109.42 + 2.35** 85.62 + 0.33**
Antioxidant stress index Total antioxidant capacity (T-AOC) 18.93 + 0.35 272.77 + 16.01 275.03 + 8.94 7.83 £ 1.25**  83.40 + 0.92** 126.07 + 1.79**
Catalase (CAT) 510 +0.10 60.29 = 0.09 155.74 + 1.07 2.13 £0.25**  13.43 +0.12** 73.24 £ 0.42**
Superoxide dismutase (SOD) 435+0.03 96.13+523 125.85+2.01 0.94 +0.10**  34.31 +0.94** 55.08 + 1.06™*
Glutathione peroxidase (GSH-Px) 848 +0.22 16.57 £ 0.06 15.27 + 1.34 1.46 + 0.16** 2.43 £ 0.27** 3.14 £ 0.43*
Peroxidase (POD) 528.80 + 12.36 891.40 + 1.08  954.64 + 6.93 138.93 # 14.39** 207.08 + 3.38** 275.17 + 8.05**
*P < 0.05, **P < 0.01 vs. normal group.
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Figure 3. mRNA expression of Wnt/p-catenin associ- &
ated genes of placenta on day 12 (A) and day 14 (B) in -:3; 21 i _— i
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. . ) T T T T T
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group. *P < 0.05, **P < 0.01 vs. normal group.

Therefore, we speculated that the abnormal placental structure
in CFS pregnant mice was caused by oxidative stress though a
dysregulated Wnt/f-catenin signalling pathway, finally result-
ing in impaired growth and development in the F1 generation
in CFS patients. These results shed new light on the influence
of CFS on placenta formation. Drugs targeting oxidative stress
and the Wnt/p-catenin signalling pathway might be effective
for the treatment of CFS-induced abnormalities of the placenta.

In conclusion, multiple gynaecological problems such as
irregular menstruation, endometriosis and pelvic pain and the
incidence of sexual dysfunction are significantly increased in
female patients with CFS. The present study investigated the

https://doi.org/10.1017/5096719942000057X Published online by Cambridge University Press

influence of CFS on placenta formation. Our results showed that
CFS caused abnormal formation of the placenta, as revealed by
the decreased number of implantation sites and live births,
increased numbers of stillbirths, and decreased weights of
implantation sites, placenta, and embryos. Further studies found
that oxidative stress in serum, the uterus and the placenta were
increased in CFS pregnant mice. The levels of antioxidase were
decreased. In addition, CFS inhibited the Wnt/p-catenin signal-
ling pathway. Therefore, it can be speculated that abnormal
expression of the Wnt/f-catenin signalling pathway and oxida-
tive stress are involved in abnormal formation of the placenta in
CFS pregnant mice.
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Figure 4. Protein expression of Wnt/B-catenin associated genes of placenta on day 12 (A) and day 14 (B) in normal and CFS pregnant mice. n = 10 mice per group. CFS, chronic
fatigue syndrome group; normal, normal group. *P < 0.05, **P < 0.01 vs. normal group.
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