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Abstract

Backgrounds. Cigarette smoking is strongly associated with major depressive disorder
(MDD). However, any genetic etiology of such comorbidity and causal relations is poorly
understood, especially at the genome-wide level.
Methods. In the present in silico research, we analyzed summary data from the genome-wide
association study of the Psychiatric Genetic Consortium for MDD (n = 191 005) and UK
Biobank for smoking (n = 337 030) by using various biostatistical methods including
Bayesian colocalization analysis, LD score regression, variant effect size correlation analysis,
and Mendelian randomization (MR).
Results. By adopting a gene prioritization approach, we identified 43 genes shared by MDD
and smoking, which were significantly enriched in membrane potential, gamma-aminobutyric
acid receptor activity, and retrograde endocannabinoid signaling pathways, indicating that the
comorbid mechanisms are involved in the neurotransmitter system. According to linkage
disequilibrium score regression, we found a strong positive correlation between MDD and
current smoking (rg = 0.365; p = 7.23 × 10−25) and a negative correlation between MDD and
former smoking (rg =−0.298; p = 1.59 × 10−24). MR analysis suggested that genetic liability
for depression increased smoking.
Conclusions. These findings inform the concomitant conditions of MDD and smoking and
support the use of self-medication with smoking to counteract depression.

Introduction

The simultaneous occurrence of depression and smoking is a major public health concern.
Substantial evidence supports a robust correlation between smoking and major depressive dis-
order (MDD), as well as the potential for bi-directional causal influences (Berlin & Covey,
2006; Hall & Prochaska, 2009; Liu et al., 2019; Payne, Ma, Crews, & Li, 2013; Zvolensky,
Bakhshaie, Sheffer, Perez, & Goodwin, 2015). In addition to findings from epidemiological
studies, genetic correlations between several smoking phenotypes and MDD have been
observed in genetic studies (Liu et al., 2019; Wray et al., 2018). For example, Wray and collea-
gues reported the presence of significant positive genetic correlations between MDD and ever
smoking (Wray et al., 2018). The most recent genome-wide association study (GWAS) on
tobacco smoking and alcohol use revealed a negative genetic correlation for MDD with age
at smoking initiation and positive genetic correlation between MDD and smoking initiation,
cigarettes per day, and smoking cessation (Liu et al., 2019).

Genetic correlation can occur as a result of various processes. One common explanation is
pleiotropy, which occurs when the same genes influence two or more traits or disorders. An
alternative possibility is that two traits are causally related to each other. At least three hypoth-
eses have been offered to explain the comorbidity between tobacco smoking and MDD. First,
nicotine exposure and its metabolic process may influence neurobiological systems that have
an etiologic role in MDD (Carmody, 1989). Second, MDD can lead to tobacco smoking via
a self-medication process whereby tobacco smoking provides symptom relief for depression
(Boden, Fergusson, & Horwood, 2010; Breslau, Peterson, Schultz, Chilcoat, & Andreski,
1998). Third, no causal relationship may exist, such that the observed correlation is attributable
mainly to their shared genetic and environmental vulnerabilities (Breslau, Kilbey, & Andreski,
1993; Kendler et al., 1993). Given these options, it is important to elucidate the mechanisms of
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the comorbidity and determine its implications for the prevention
and treatment of each disorder.

As is apparent from the literature, determination of the
mechanisms underlying comorbidity between cigarette smoking
and MDD has been inconsistent, in part influenced by differences
in the intensity of smoking and the methods used in each research
project (Johnson, Rhee, Chase, & Breslau, 2004; Payne et al.,
2013). Evidence from longitudinal epidemiological studies sug-
gests that both ever and current smoking contribute to depressed
mood in adolescents (Goodman & Capitman, 2000; Wu &
Anthony, 1999). On the other hand, there was no causal relation
detected between MDD and daily smoking or nicotine depend-
ence (Johnson et al., 2004; Windle & Windle, 2001). One
approach to address such a confounding issue is to conduct an
analysis with Mendelian randomization (MR), which enables
the assessment of causal effects in observational datasets by
employing genetic variants as instrument variables (Smith &
Ebrahim, 2003). A recent report using this approach showed
that lifetime smoking was a risk factor for MDD (Wootton
et al., 2019); however, such findings have not yet been replicated.

In recent years, the availability of large-scale GWAS has yielded
numerous new insights into the genetic architecture of both
tobacco use and MDD (Li, 2018; Liu et al., 2019; Wray et al.,
2018). These findings would help us to explore the shared genetic
etiology and possible causal relations between tobacco smoking and
MDD. To this end, in this study we first examined the pleiotropic
effect for MDD and current/past tobacco smoking using publicly
available GWAS summary statistics. Then we determined which
biological processes or pathways were involved in such comorbid-
ity. Finally, we used bidirectional MR methods to reveal the nature
of the causal relationship between tobacco smoking and MDD.

Materials and methods

Data sources

MDD
We downloaded a combined meta-analysis from the Psychiatric
Genetic Consortium (PGC) web site (https://www.med.unc.edu/
pgc/results-and-downloads/mdd/) with a total of 130 664 major
depression cases and 330 470 controls (online Supplementary
Table S1) (Wray et al., 2018). The original report used ‘major
depression’ to refer to cases that either meet the diagnostic criteria
or alternative assessment methods. The 23andMe data (75 607
cases and 231 747 controls) were not available for downloading.

Tobacco smoking
The tobacco smoking data were obtained from UK Biobank, which
displays self-reported smoking status. For the current study, we
included current tobacco smoking (smoking on most or all days,
smoking only occasionally, or not smoking, specified in field
1239) and past tobacco smoking (smoked on most or all days,
smoked occasionally, tried just once or twice, or never smoked,
specified in field 1249). We obtained the corresponding GWAS
summary status from the LD hub (http://ldsc.broadinstitute.org/
ldhub/), a centralized database of summary-level GWAS results
gathered from publicly available sources (online Supplementary
Table S1).

Assessment of shared association signals

To assess whether the MDD risk loci were significantly overrepre-
sented in the genomic regions associated with smoking, we

applied a custom variant set enrichment (VSE) analysis
(Ahmed et al., 2017). By using genome-wide significant single
nucleotide polymorphisms (SNPs) as tag variants for MDD, we
obtained all associated variants within an LD block where each
tag SNP is located. For each of these associated variant sets
(AVSs), we computed its enrichment in genomic loci that show
suggestive association signals ( p < 1 × 10−5) for smoking pheno-
types. We included two more datasets as negative controls: a
GWAS of human height (Lango Allen et al., 2010) and a null
GWAS dataset based on randomly distributed phenotypes. The
magnitude of enrichment was estimated by random sampling of
AVS 1000 times (denoted the matched random variant set;
MRVS), and the overlap of MRVS with smoking-related loci
was summarized. Finally, we calculated an exact p value for the
significance of the enrichment by fitting a density function to
the null distribution derived from the MRVS (Ahmed et al.,
2017).

Identification of pleiotropic loci by Bayesian colocalization
analysis

We aimed to identify genomic regions with a pleiotropic effect on
both smoking and MDD. A Bayesian colocalization model was
employed to estimate the posterior probability (PP) with the fol-
lowing hypotheses: (1) the region contains a genetic variant that
influences traits A or B; (2) the region contains a genetic variant
that influences both A and B; or (3) the region contains both a
genetic variant that influences A and a separate genetic variant
that influences B (Pickrell et al., 2016). Genomic regions were
defined according to approximately independent LD blocks
(Berisa & Pickrell, 2016). We inferred a genomic region where
the presence of pleiotropism at the threshold of a PP was >0.9
for hypotheses 2 and 3.

Prioritization of common genes and functional enrichment
analyses

The prioritization of common genes followed a three-step process.
First, RefSeq-known genes within the GWAS overlap signals of
MDD and colocalizing regions were annotated on a candidate
genes list. Second, we used the GUILDify database (Guney,
Garcia-Garcia, & Oliva, 2014) to retrieve phenotype-related
genes (which served as a trained list) via keyword selection.
Third, ToppGene software (Chen, Bardes, Aronow, & Jegga,
2009) was used to prioritize genes according to the candidate
and trained lists simultaneously. The workflow of this part of
the analysis is described in online Supplementary Fig. S1.

In the first step, we annotated 511 protein-coding genes. To
obtain our trained list, we used the following keywords: neurotrans-
mitters, serotonin, serotonergic system, serotonin-1A autoreceptors,
5-hydroxytryptamine (HT1A) receptor, serotonin transporter,
glutamatergic transmission, glutamate reuptake, dopamine, nora-
drenergic and dopaminergic systems, hypothalamic–pituitary–
adrenal axis, HPA axis, cortisol, corticosteroid receptor,
glucocorticoid receptor, corticotropin-releasing hormone signaling
system, neuroplasticity, brain-derived neurotrophic factor, nicotinic
acetylcholine receptor (nAChR), serotonin receptor, gamma-
aminobutyric acid (GABA) receptors, glutathione receptor signal,
calcium signal, cAMP-mediated signal, mitogen-activated protein
kinase (MAPK) signal, synaptic long-term potentiation, neurotro-
phin signal, tryptophan metabolism, interleukin (IL)-8 signal,
cytochrome P450, CYP1A1, glutathione S-transferase Mu 1,

Psychological Medicine 1871

https://doi.org/10.1017/S003329172000063X Published online by Cambridge University Press

https://www.med.unc.edu/pgc/results-and-downloads/mdd/
https://www.med.unc.edu/pgc/results-and-downloads/mdd/
https://www.med.unc.edu/pgc/results-and-downloads/mdd/
http://ldsc.broadinstitute.org/ldhub/
http://ldsc.broadinstitute.org/ldhub/
http://ldsc.broadinstitute.org/ldhub/
https://doi.org/10.1017/S003329172000063X


N-acetyltransferase, smoking, smoke, cigarette, tobacco use dis-
order, nicotine, nicotine dependence, addiction, long-term nicotine
exposure, major depression, MDD, unipolar depression, and
MDD. Only genes with a GUILDify score >0.1 remained on the
final trained list. ToppGene was used to perform an annotation-
based prioritization analysis by computing the semantic similarity
between the candidate gene list and the trained list. The p value was
estimated by random sampling of 5000 genes from the whole
genome.

An overrepresentation enrichment of prioritized genes was
implemented using the WebGestalt application (Zhang, Kirov,
& Snoddy, 2005). For visualization of enrichment, we plotted
log2 of the enrichment ratio and −log10 of the false discovery
rate (FDR).

Genome-wide genetic correlation analysis by
LD score regression

We used LD score regression (Bulik-Sullivan et al., 2015) to esti-
mate genetic correlation (rg) between MDD and smoking. The LD
scores computed previously by the 1000 Genomes Projects refer-
ence panel of European ancestry were used to measure pair-wise
LD r2 among SNPs. Quality control steps were adopted from LD
scores default procedures, including imputation quality >0.9 and
minor allele frequency >0.1. Moreover, all SNPs retained for ana-
lysis were merged with SNPs in the HapMap 3 reference panel.

Inferring phenotype relations by variant effect size correlation

The rationale of this approach is as follows: if two traits are con-
nected preliminarily, we would expect a correlated relation for the
effect size of variants of the two phenotypes (Pickrell et al., 2016).
Further, a simple determination of causal relations could be
inferred according to the statement ‘if a trait X causally influences
trait Y, every risk variant for trait X should also influence trait Y.’
However, the reverse is not true. Notably, when using observa-
tional data, strong statements about causality probably are
impossible.

We first performed p value-informed LD pruning to obtain the
independent GWAS SNPs ( p < 5 × 10−8) for each trait. By scan-
ning through all pairs of traits, we defined trait 1 as ascertain-
ment, and extracted corresponding effect sizes [β or log(OR)]
from trait 2. Then, the Spearman correlation was computed
using the ‘cor.test’ R function.

Mendelian randomization

To identify potential causal effects for both smoking and depres-
sion, we performed bidirectional two-sample MR analysis using
the TwoSampleMR (v. 0.4.22) R package (Hemani et al., 2018).
The genetic instruments were identified using the following strat-
egies. First, we filtered GWAS summary datasets to require genetic
variants to be available in both smoking and depression. To
obtain independent risk variants for each trait, we applied
LD-based clumping for SNPs reaching genome-wide significance
( p < 5 × 10−8) with an r2 < 0.05 by PLINK (v. 1.07) (Purcell et al.,
2007). The effect estimates and standard errors were extracted
from relevant GWAS. Then, the common SNPs were harmonized
using default parameters within the built-in ‘harmonize data’
function. After harmonization, the number of independent
instrumental genetic variables was 360 for MDD, 24 for current
smoking, and 85 for former smoking.

The inverse-variance weighted (IVW) method was proposed
originally to average the causal estimates from each of the genetic
variants (Burgess, Butterworth, & Thompson, 2013). Because of
concern about the presence of pleiotropic elements for tobacco
smoking and MDD, we employed a range of sensitivity analyses
to assess the robustness of our findings when all the genetic var-
iants are not valid instrumental variables (Bowden, Davey Smith,
& Burgess, 2015; Burgess, Bowden, Fall, Ingelsson, & Thompson,
2017).

Results

Assessing known MDD risk loci in smoking behaviors

A previous large-scale meta-analysis of seven MDD cohorts iden-
tified 44 independent loci at a genome-wide significance level
( p < 5 × 10−8) (Wray et al., 2018). We assessed the known
MDD risk loci in two smoking-related traits available via the
LD hub, which contained 832 summary-level GWAS results
(Zheng et al., 2017). Of the 44 known MDD loci, 18 were nom-
inally associated with at least one smoking phenotype (Fig. 1),
including rs4869056 in TENM2 at genome-wide significance for
both current and former smoking (Table 1).

Further, we sought to determine whether the overlap of associ-
ation signals was statistically significant. To this end, we implemen-
ted an enrichment test through the VSE R package (Ahmed et al.,
2017). We found evidence of significant overrepresentation of
MDD GWAS loci in the genomic regions that are suggestively
linked to current and former smoking (Fig. 2). The significant over-
lap of association signals between MDD and smoking status sug-
gests the presence of shared genetic etiologies in the two diseases.

Identification of pleiotropic loci that influence both tobacco
smoking and MDD

Next, we aimed to identify genomic regions that contain shared
causal variants for both tobacco smoking and MDD using a
regional Bayesian colocalization test. For the analysis of MDD
and current smoking, 12 regions were identified with a high PP,
three of which were located in regions that are significantly or sug-
gestively linked to smoking behaviors according to genome-wide
linkage studies (online Supplementary Table S2) (Yang & Li,
2016). We identified lead SNPs in these regions that had genome-
wide significance for current smoking (rs1549214, rs8033799, and
rs7807019 p < 5 × 10−8) and suggestively significant associations
with MDD ( p < 1 × 10−5) (online Supplementary Table S2).

We also identified 17 genomic regions harboring causal var-
iants common to both MDD and former smoking (online
Supplementary Table S3). Among these, six regions were found
in previously identified genome-wide linkage regions related to
smoking (Yang & Li, 2016). A common signal was identified in
CTTNBP2, which regulates postsynaptic excitatory synapse forma-
tion (Chen & Hsueh, 2012). The most strongly associated SNPs in
this region showed suggestively significant ( p < 1 × 10−5) associa-
tions with MDD (rs1548461; p = 3.09 × 10−6) and former smoking
(rs10233018; p = 1.28 × 10−7), implying that it is unnecessary for
SNPs in colocalizing regions to reach genome-wide significance
for either trait.

Prioritization of common genes and functional enrichment
analysis

We developed a functional annotation-based approach to priori-
tize common genes within colocalizing regions (online
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Supplementary Fig. S1). Briefly, a trained list containing 1162
genes associated significantly with pre-selected keywords was gen-
erated from the GUILDify database. We then performed priori-
tization analysis using ToppGene based on both the candidate
genes list and the trained list. Finally, 43 functional genes were
prioritized with FDR <0.05 (online Supplementary Table S4).
The top ranked genes were: AKT1, GABRB3, MAPK8, CXCL12,
LDLRAP1, CD2AP, MAP3K7, and FGF8.

Gene Ontology and KEGG pathway enrichment analyses were
carried out for the prioritized common genes. We assessed the
enrichment of functional terms using the Web-based tool
WebGestalt, which revealed that regulation of membrane poten-
tial, GABA receptor activity, retrograde endocannabinoid signal-
ing, GABA signaling pathway, positive regulation of ion
transport, appendage development, nicotine addiction, threonine

kinase signal, and ion channel binding were significantly overre-
presented (Fig. 3). The number of enriched GO and KEGG
terms associated with each common candidate gene was visua-
lized by a chord plot (online Supplementary Fig. 2). It is worth
noting that some prioritized genes were annotated into several
enriched terms, such as GABRB3, GABRA5, GABRG3, SOX11,
SRI, and RIMS1. These findings, taken together, show that the
enrichments of common genes indicate the involvement of neural
functions in the comorbidity of MDD and smoking.

Identification of phenotypic correlations using LDSC and
correlated effect sizes

The overall patterns of genetic correlation (rg) were estimated by
two methods. At first, we used the LDSC method, which takes

Fig. 1. Genetic susceptibility map for MDD and smoking behaviors. Outer ring defines the location of 22 human autosomes. Scatter plots in the second and fourth
rings demonstrate analogy of the Manhattan plot for association results from MDD and smoking behaviors, respectively. The altitude of each dot represents stat-
istical significance as −log10(P). SNPs that reached genome-wide significance are colored red for MDD, blue for current tobacco smoking, and green for past
tobacco smoking. Yellow bars in third ring mark 23 MDD risk loci at least nominally associated with smoking behaviors, and tag SNPs in these loci are labeled.
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Table 1. Significantly associated tag SNPs of major depression that reach nominal significances in smoking behaviors

SNP MDD p Past tob smk p Current tob smk p Gene context

rs10149470 3.1 × 10−09 0.275 0.012 BAG5,4927; APOPT1, −11340

rs11643192 3.4 × 10−08 0.013 0.003 PMFBP1, −7927; DHX3867465;

rs11663393 1.6 × 10−08 0.132 0.035 (DCC); MIR4528, −148738

rs11682175 4.7 × 10−09 0.020838 0.803 VRK2, −147192

rs12129573 4 × 10−12 4.5 × 10−05 6.7 × 10−05 LINC01360, −3486

rs12552 6.1 × 10−19 1.4 × 10−04 0.532 (OLFM4); LINC0106580099

rs1432639 4.6 × 10−15 5.6 × 10−03 0.002 NEGR1, −64941

rs159963 3.2 × 10−08 9.4 × 10−03 1.2 × 10−04 (RERE); SLC45A1100194

rs2389016 1 × 10−08 4.67 × 10−05 0.158 NULL

rs115507122 3.3 × 10−11 1.05 × 10−05 0.003 extended MHC

rs4143229 2.5 × 10−08 0.810 0.025 (ENOX1); LACC1, −125620; CCDC12282689

rs4261101 1 × 10−08 0.002 0.003 NULL

rs4869056 6.8 × 10−09 3.0 × 10−09 1.0 × 10−09 (TENM2)

rs4904738 2.6 × 10−09 0.014 0.094 (LRFN5)

rs5758265 7.6 × 10−09 0.306 1.3 × 10−06 NULL

rs61867293 7 × 10−10 0.048 0.001 (SORCS3)

rs7198928 1 × 10−08 0.097 0.011 (RBFOX1)

rs9427672 3.1 × 10−08 0.036 0.001 DENND1B, −10 118

SNP, single nucleotide polymorphism; p, p value; MDD, major depression disorder; Current tob smk, Current tobacco smoking; Past tob smk, Past tobacco smoking.
p values less than 0.05 are given in Bold and italic. Gene context, distances between the Peak SNP and the closest genes are shown. Brackets indicate that the Peak SNP was within that gene.
The closest genes upstream (taking strand into account, as a negative number indicating distance in bp between Peak SNP and the nearest gene boundary) and downstream (positive
distance in bp) are also shown, if there is a flanking gene within 200 kb.

Fig. 2. Enrichment of MDD GWAS loci in smoking-related genomic regions ( p < 1 × 10−5). Box and whisker plots show enrichment score distribution of the matched
null set. Bar inside points to median score. Significant genome regions (Bonferroni-corrected p < 0.01) are in red.
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genome-wide SNPs into account. A strong positive correlation
between MDD and current smoking (rg = 0.365; p = 7.23 × 10−25)
and a negative correlation between MDD and former smoking
(rg =−0.2985; p = 1.59 × 10−24) were observed (Fig. 4a). These sig-
nificant genetic correlations again suggest a substantial overlap of
genetic variants that predispose people/patients to both MDD
and smoking.

If two traits share the same or similar molecular mechanisms,
the effect size of a risk variant of the two phenotypes is expected
to be correlated as well. As shown in Fig. 4b, genetic variants that
increase the risk of MDD tended to increase the risk of current
smoking (ρ = 0.91; p = 6.76 × 10−142). In contrast, a negative cor-
relation between the variant effect size on MDD and former
smoking was identified (ρ = −0.093; p = 1.47 × 10−164). We
found that the directions of correlations for MDD with smoking
status were consistent for genome-wide SNPs and GWAS-risk
SNPs.

We observed asymmetry in the effect size correlations between
MDD and smoking (Fig. 4b). Genetic variants ascertained as hav-
ing effects on MDD had correlated effects on smoking pheno-
types, whereas the reverse was not true. This suggests that a
higher risk of MDD is a potential causal factor for smoking.
However, the observation of asymmetry in the effect size could
not account fully for causality given the lack of a randomized con-
trolled trial (Pickrell et al., 2016).

Inferring casual relations by Mendelian randomization

Two-sample MR analysis using the IVW method yielded evidence
that MDD increased the likelihood of current tobacco smoking
(IVW: β = 0.012; p < 0.0001); however, the causal effect of MDD
on past tobacco smoking was negative (IVW: β =−0.054;
p < 0.0001) (Table 2). There was evidence of significant hetero-
geneity (online Supplementary Table S5), but MR Egger

regression showed no evidence of directional pleiotropy (online
Supplementary Table S6). Further, we performed several sensitiv-
ity analyses to assess the robustness of causal findings (Burgess
et al., 2017). As shown in Table 2, the Egger regression method
manifested a consistent effect direction from MDD to smoking,
but the statistical significance became even weaker.

The causal effects of smoking status on the risk for MDD were
null (Table 2). As expected, significant heterogeneities were
observed, but the MR Egger intercepts indicated that the causal
estimates were unbiased as a result of directional pleiotropy
(online Supplementary Table S6).

Discussion

In this study, we first conducted a genome-wide overlap analysis
for MDD and smoking using summary statistics from two large
GWAS datasets. We revealed the genetic correlation and causal
relationships between MDD and smoking, which present a com-
prehensive evaluation of shared genetic etiology. Very recently,
Liu and colleagues published a large-scale GWAS study on several
smoking phenotypes after we completed the analyses reported
here (Liu et al., 2019). Interestingly, this newly published results
were highly consistent with the findings reported here (online
Supplementary Fig. S3).

This systematic approach helped identify genes and genetic
mechanisms that confer comorbid effects. We identified tag
SNPs significantly associated with MDD and smoking based on
the overlap analysis and colocalization test; many of these reside
in or near neurologically related genes. For example, variants in
genes that encode the transmembrane protein and its receptor
(TENM2, SORCS3) are significantly associated with MDD and
smoking status. These genes are involved in neural development.
DCC encodes the netrin 1 receptor, which directs axon growth
and organizes neuronal connectivity by controlling target

Fig. 3. Functional annotation of genes from common genomic regions. Each dot represents a GO term or a KEGG pathway. The red dashed line pinpoints the
statistical threshold.
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recognition, axon arborization, and synapse formation (Finci,
Zhang, Meijers, & Wang, 2015). Neuronal growth regulator 1
(NEGR1) belongs to the immunoglobulin superfamily, suggesting
a role in neuronal growth (Singh et al., 2018). Other examples are
NR4A2, variations in which have been associated with disorders
related to dopaminergic dysfunction; and LRFN5, which encodes
a cell adhesion molecule that is highly expressed in the brain and
promotes neurite outgrowth in hippocampal neurons.

Besides the significant findings in prioritizing common genes,
we identified biological processes related to both depression and
smoking. Regulation of both membrane potential and ion trans-
port is involved in nerve impulse transmission and further con-
trols the release and reception of neurotransmitter molecules.
The increase or decrease of available neurotransmitters can

change short-term synaptic status between enhancement and
depression. Unequivocal studies suggest that dysfunction of syn-
aptic plasticity with neuronal atrophy contributes to the patho-
physiology of depression (Duman & Aghajanian, 2012; Duman,
Aghajanian, Sanacora, & Krystal, 2016). The actions of nicotine
in the brain are mediated by nAChRs, which regulate the release
of a number of neurotransmitters, including glutamate and
GABA (Wonnacott, 1997). A previous study found that repeated
nicotine exposure decreases GABA release, which is mediated by
α6β2-containing nACh receptors located on presynaptic GABA
neurons in the ventral tegmental area (Tang et al., 2011). The
mechanism by which chronic nicotine exposure reduces
GABAergic transmission could be alterations in GABAB receptor
function or expression induced by nicotine (D’Souza & Markou,

Fig. 4. Heatmap showing patterns of genetic corre-
lations across MDD and smoking. Shown in color
are all pairs in which this test had a p value
<0.01. Darker colors indicate smaller p values,
and color corresponds to the direction of correl-
ation (red = positive; blue = negative).

Table 2. Two-sample MR analysis of the effect of major depression on smoking or vice versa

Effect Exposure Outcome Method No. SNPs β p value

MDD on smoking MDD Current tob smk IVW 360 0.012 0.0001

Weighted median 360 0.013 6.19 × 10−05

MR Egger 360 0.032 0.184

MDD Past tob smk IVW 360 −0.054 0.0001

Weighted median 360 −0.054 7.80 × 10−05

MR Egger 360 −0.208 0.045

Smoking on MDD Current tob smk MDD IVW 24 −0.563 0.122

Weighted median 24 −0.563 0.166

MR Egger 24 0.899 0.575

Past tob smk MDD IVW 85 0.097 0.147

Weighted median 85 0.097 0.114

MR Egger 85 −0.221 0.422
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2013). Further, it has been reported that N-methyl-D-aspartate
receptors in GABAergic neurons could be blockaded by
rapid-acting antidepressants (e.g. ketamine and scopolamine)
(Chen, Ma, Fan, Yang, & Li, 2018; Gerhard, Wohleb, & Duman,
2016). These findings demonstrate the role of neural circuits and
communications in the common molecular mechanisms of depres-
sion and smoking.

One of the significantly enriched KEGG pathways is retrograde
endocannabinoid (eCB) signaling. Endocannabinoids also are key
mediators of synaptic plasticity (Castillo, Younts, Chavez, &
Hashimotodani, 2012). The molecular basis of eCBs regulating
synaptic function is retrograde signaling in the central nervous
system (Kano, Ohno-Shosaku, Hashimotodani, Uchigashima, &
Watanabe, 2009). The activity of postsynaptic neurons produces
eCB, which moves backward across the synapse, binds to pre-
synaptic CB1Rs, and suppresses neurotransmitter release
(Castillo et al., 2012). Multiple lines of evidence show dysregula-
tion of the eCB system in neuropsychiatric conditions such as
depression and addiction (Hillard, Weinlander, & Stuhr, 2012).
Specifically, people with chronic stress or depression have lower
eCB concentrations, implying impairment in endocannabinoid
signaling in depressed individuals (Gorzalka & Hill, 2011).
Further, animal studies have shown that central endocannabinoid
signaling is reduced in several stress-based models of depression
(Reich, Taylor, & McCarthy, 2009). Following the rationale
above, several studies have revealed the antidepressant potential
of the endocannabinoid system (Leite, Mocelin, Petersen, Leal,
& Thiesen, 2009). According to these investigations, we hypothe-
sized that the comorbidity observed between major depression
and smoking is the treatment-related impact of nicotine, similar
to the actions of eCBs.

The overall genetic correlations between depression and smok-
ing have been observed previously (Bulik-Sullivan et al., 2015;
Wray et al., 2018). Significant positive correlations were observed
between MDD and ever/never smoking, which is consistent with
epidemiological association studies. Further, the genetic architec-
ture of major depression was negatively correlated with smoking
cessation, indicating persons who were able to quit smoking have
a lower risk of suffering from depression. The recently published
and largest GWAS study of tobacco use, examining 1.2 million
individuals, reported comprehensive genetic correlation profiles
of depression and smoking (Liu et al., 2019), including significant
positive genetic correlations of major depression with smoking ini-
tiation and smoking cessation.

For the current study, the genetic correlation between MDD
and smoking is of interest. First, a positive correlation between
major depression and current smoking indicates that genetic
risk factors for current tobacco use and depression are positively
correlated. These findings are in line with previous epidemio-
logical observations that depressive symptoms and smoking
have a high incidence of co-occurrence (Hu, Davies, & Kandel,
2006; Lasser et al., 2000). On the other hand, we found a signifi-
cant negative correlation between MDD and former smoking,
which enhanced findings by Wray et al. (2018). These findings
suggest that smokers with a negative history for MDD are more
likely to quit.

Wootton et al. (2019) demonstrated the causal relation
between lifetime smoking and depression by using a comprehen-
sive MR analysis. They found strong evidence that smoking is a
risk factor for depression and also suggested that genetic liability
for depression increases lifetime smoking likelihood. There are
slight inconsistencies between the current study and Wootton

findings because of the divergence in phenotype definition and
genetic instruments employed. When tobacco smoking was con-
sidered as exposure, Wootton and colleagues combined various
tobacco smoking measures into a lifetime smoking index, which
represents a much broader definition of tobacco smoking than
that used in this study. On the other hand, when depression
was considered as exposure, both studies yielded the same conclu-
sion, supporting the self-medication hypothesis.

The clinical implications that stem from these findings empha-
size the importance of appropriate management of depression to
facilitate successful tobacco dependence treatment. A substantial
body of research points to the negative relation between depres-
sive symptoms/disorders and successful quitting. Many factors
likely play a role, including the direct effects of the genetic overlap
examined in this study, as well of other important behavioral
change mechanisms, such as the short-term reward/antidepres-
sant effects of nicotine intake, value as a coping response, and
degree of motivation to attempt quitting (Cohen & Lichtenstein,
1990; Hitsman, Borrelli, McChargue, Spring, & Niaura, 2003;
Kopetz, MacPherson, Mitchell, Houston-Ludlam, & Wiers,
2017; Piper et al., 2017; Tulloch, Pipe, Clyde, Reid, & Els,
2016). The importance of pharmacologic choices in treating
depressed smokers comes into play, supported by research indi-
cating bupropion hydrochloride is of particular value in smokers
who present with depressive symptoms, as well as recent provoca-
tive evidence that combining varenicline with antidepressants or
nicotine replacement therapies may be useful (Ebbert, Burke,
Hays, & Hurt, 2009; Ebbert et al., 2014; Issa, Abe, Moura,
Santos, & Pereira, 2013; Koegelenberg et al., 2014). It has been
suggested that when such individuals quit smoking, if the anti-
depressant regimen is not adequate, a likelihood of worsened
depressive symptoms is observed. Finally, the fact that the metab-
olism of many psychiatric medications, including antidepressants
(TCAs, SSRIs), is enhanced by smoking (via the ingestion of
polycyclic aromatic hydrocarbons, which increase the expression
of CYP P450 1A2), suggesting the importance of adjusting medi-
cation dosing. However, this explanation is not without pro-
blems, given evidence that sole use of antidepressants other
than bupropion HCL have not been found to be effective in treat-
ing tobacco dependence (Shoaib & Buhidma, 2018). Further
research is clearly needed to understand the complexity of this
consideration.

There are a number of limitations to the current research that
should be mentioned. First, because of the concerns on sample
size, accuracy, and availability in the UK Biobank dataset, we
only analyzed smoking status in this study and did not consider
other smoking phenotypes such as the Fagerstrom test for nico-
tine dependence (FTND) and cigarettes per day (CPD). It is
important to consider those quantitative measures on smoking
such as FTND and CPD in future investigations as the relation-
ship between smoking and depression depends on the severity
of smoking (Payne et al., 2013). Second, there is a stark difference
in the sample size among smoking phenotypes, which might con-
tribute to discrepancies in statistical power. Thus, the main con-
clusions of this study were drawn on the basis of two relatively
similar datasets: current smokers and former smokers. Third,
the LD score regression analysis hinted at a minute genetic covari-
ance intercept, indicating a small sample overlap between MDD
and smoking. Although the genetic correlation estimations were
not biased by sample overlap, the summary-based MR analysis
would suffer from it. Fourth, information available on the
summary-level GWAS data limited us to divide samples into
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subgroups, which prevented us from studying the age-related
heterogeneity.

In conclusion, this was a systematic analysis of the shared eti-
ology and possible causal relations of smoking and depression
employing large-scale GWASs. We found significant genetic over-
lap and correlations between MDD and smoking at both the SNP
and gene level. Importantly, we identified potential comorbid
molecular pathways enriched in the neurotransmitter system.
The MR analysis suggests smoking behavior is a consequence of
depression rather than a cause, supporting the role of self-
medication for depressive symptoms. Overall, this study enhances
the understanding of the genetic etiology of the relationship
between depression and smoking.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003329172000063X
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