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The two-dimensional acoustic wave equation for inviscid compressible boundary layer
flows, i.e. the Pridmore-Brown equation with an exponential velocity profile for
homentropic flows, is studied for the reflection and over-reflection of acoustic waves based
on the exact solution in terms of the confluent Heun function. The reflection coefficient R,
which is the ratio of the amplitude of the reflected to that of the incoming acoustic wave,
is determined as a function of the streamwise wavenumber α, the Mach number M and the
incident angle φ of the acoustic waves. Over-reflection refers to R > 1, i.e. the reflected
wave has a larger amplitude than the incident wave. We prove that, in the supersonic
context, energy is always transferred from the base flow to the reflected wave, i.e. R < 1
does not exist. Meanwhile, this fact is intimately linked to the critical layer. We show that
the presence of the critical layer leads to an optimal energy exchange from the base flow
into the acoustic wave, i.e. the critical layer ensures R > 1. In our analysis, we observe
a special phenomenon, resonant over-reflection, which is proven to be closely related to
resonant frequencies ωr of unstable modes of the temporal stability of the base flow. At
resonant frequencies of the first unstable mode, the over-reflection coefficient exhibits an
unusual peak in an extremely narrow frequency interval. The maximum values of these
peaks are largely synchronized with the variation of the growth rate ωi of the unstable
modes. In addition, resonant over-reflection appears also at resonant frequencies of other
higher unstable modes, but their peaks of the over-reflection coefficient are always smaller
than that induced by the first unstable mode.

Key words: boundary layer stability, shear-flow instability

1. Introduction

The propagation, reflection and refraction of acoustic waves in shear flows have been of
great interest in engineering fields. Initially, investigations were triggered by an urgent
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need to understand and reduce noise that is induced by flows and machinery. To examine
the properties of acoustics in free shear flows, a simple model was that of a plane vortex
sheet (Jones & Morgan 1972; Crighton & Leppington 1974). It facilitates the solution of
the governing equations but is greatly simplified and neglects the effect of the shear layer
thickness, the critical level (layer) and turning levels on acoustic wave propagation.

Another model for mimicking free shear flows is by a linear velocity profile. As early as
1958, Pridmore-Brown (1958) employed the normal-mode ansatz to derive an equation for
acoustic waves in plane parallel shear flows based on the linearized Euler equations (LEE).
This equation is a second-order ordinary differential equation that contains a function
of the velocity profile and later known as the Pridmore-Brown equation (PBE). At that
time, Pridmore-Brown (1958) gave only asymptotic solutions to the PBE for a linear
velocity profile in the limit of small velocity gradients. It was not until more than a decade
later that the solution to this equation was given for the first time by Goldstein & Rice
(1973). The exact solution to the PBE for a linear velocity profile was given in different
forms, i.e. parabolic cylinder functions (Goldstein & Rice 1973), confluent hypergeometric
functions (Jones 1977) and a Fuchs–Frobenius series (Campos 1999), to investigate the
propagation of acoustic waves.

Meanwhile, a more realistic nonlinear velocity profile for mimicking a free shear layer,
the hyperbolic-tangent velocity profile, was investigated by Michalke (1965), Blumen,
Drazin & Billings (1975), Drazin & Reid (1979) and Michalke (1984), with the main aim to
investigate the stability of this profile. The Fuchs–Frobenius series solution to the PBE for
this profile was given by Campos & Kobayashi (2000), who studied the scattering effect
of free shear flows on acoustic waves. Both the linear and hyperbolic-tangent profiles
have been very successful in modelling the shear layers formed in different jet regions
behind modern aircraft engines. For example, in a coaxial jet exhaust of a typical turbofan
(Royce-Rolls 2015), the core region is approximated by a linear profile (Hau 2017), and the
mixing region is mimicked by a hyperbolic-tangent profile (Perrault-Joncas & Maslowe
2008; Gloor, Obrist & Kleiser 2013).

In addition to free shear flows, the propagation of acoustic waves in boundary layer
flows is of increasing interest. Initially, the boundary layer was modelled by a simple linear
profile extended by a constant velocity to meet a finite value in the free stream. However,
this approach inevitably introduces an artificial kink between the linear and constant
parts of the velocity profile, which in turn leads to non-physical reflections or refractions.
Therefore, for boundary layer flows, a nonlinear smooth profile is physically more sound
compared to linear ones. For this, an exponential velocity profile was introduced by
Campos & Serrão (1998), as it allows for a smooth transition between the boundary layer
and the free-stream flow, which is much closer to physical reality. The same model was
also suggested by Oberlack (2001) for a turbulent boundary layer flow using symmetry
methods. Using turbulent boundary layer data at a very high Reynolds number from the
experiments of Saddoughi & Veeravalli (1994), he concluded that the largest part of a
turbulent boundary layer, i.e. the deficit region, is covered by an exponential profile. The
conclusion was later validated by the experiments by Lindgren, Österlund & Johansson
(2004).

The propagation of acoustic waves within boundary layer flows was investigated by
Campos & Serrão (1998), who gave a Fuchs–Frobenius series solution to the PBE for an
exponential velocity profile. Of particular concern is the series solution near the critical
layer, which contains a logarithmic term. Nonetheless, in the analysis of leading orders,
they proved that the amplitude of the pressure perturbation near the critical layer tends to
be constant rather than an infinite value. By studying the amplitude of acoustic waves, they

945 A9-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

55
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.555


Over-reflection of acoustic waves by boundary layer flows

noticed an attenuation of the wave amplitude adjacent to the critical layer. Recently, Zhang
& Oberlack (2021) gave an exact solution to the PBE for an exponential velocity profile in
terms of the confluent Heun function (CHF) (Ronveaux & Arscott 1995). Based on this,
they investigated the temporal stability of exponential boundary layer flows and succeeded
in giving unstable acoustic modes and the mechanism of the instability.

In addition to free shear flows, the PBE is also frequently applied to the study of
acoustic stability and sound propagation in wall-bounded flows, e.g. duct flows. In a
recent study, Rienstra (2020) constructed numerical solutions for acoustic modes in two-
and three-dimensional lined ducts by the Galerkin projection-based spectral method and
gave theoretical solutions for low and high frequencies by the asymptotic and WKB
(Wentzel–Kramers–Brillouin) methods.

Links concerning shear layer instabilities and acoustic waves were first proposed in Gill
(1965). In his study of shear layers separated by a vortex sheet, he argued that incident
waves at certain resonant frequencies enhance instabilities. Based on this, Cohn (1983),
Payne & Cohn (1985) and Zaninetti (1986, 1987) gave detailed investigations of ‘reflection
modes’ and temporal instability. Subsequently, Tam & Hu (1989a,b) extended their
studies to spatial instability in finite-thickness shear layers as well as mixing layers inside
a rectangular channel, in which supersonic instability waves generated by continuous
reflections were obtained. The links between instabilities and acoustic waves in previous
work provided guidance for the current paper.

A unique phenomenon that arises in the acoustics of shear flows, and on which we will
presently focus, is the over-reflection of waves, i.e. reflected amplitudes are greater than
the amplitudes of the incoming waves. This phenomenon is validated to exist in many
different shear systems (see e.g. Lindzen 1988).

The phenomenon of over-reflection was first discovered simultaneously and
independently by Ribner (1957) and Miles (1957) in the study of plane acoustic waves that
impinge onto a moving medium, and in the study of plane acoustic waves that propagate
in two moving media separated by a vortex sheet, respectively. After this, studies on
over-reflection were mainly focused on geophysical fluid dynamics (GFD), i.e. typically
gravity waves and Rossby waves. The over-reflection of internal gravity waves in stratified
shear flows was discovered by Jones (1968), who extended the research of Booker &
Bretherton (1967) to Richardson numbers smaller than 1/4, thereby proposing that these
waves were able to extract energy and momentum from the base flow and, in turn, lead to
over-reflections.

Following this, Breeding (1971) explored numerically nonlinear effects of the critical
layer to internal gravity waves that produce over-reflections predicted from the linear
theory. Analytical work on internal gravity waves was also done by Eltayeb & McKenzie
(1975), in which they proved Jones’ inference that the over-reflection can arise because
incident waves indeed extract energy from shear flows. Analogous to the over-reflection
mechanisms of gravity waves, the over-reflection of Rossby waves exists when they
propagate across a jet flow. In Lindzen & Tung (1978) and Yamada & Okamura (1984), the
necessary and sufficient conditions for the over-reflection of Rossby waves were derived.

The link between the over-reflection and the instability of shear flows has been
extensively explored by Lindzen and coworkers, though focusing on the over-reflection of
internal gravity waves and shear instabilities of stratified flows (Lindzen & Barker 1985;
Rosenthal & Lindzen 1983a,b), over-reflection of Rossby waves and barotropic instabilities
(Lindzen & Tung 1978), over-reflection of Rossby waves and baroclinic instabilities
(Lindzen, Farrell & Tung 1980) and over-reflection of Rossby waves and instabilities of
viscous Poiseuille flows (Lindzen & Rambaldi 1986). In Lindzen (1988), the growth rate
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of unstable modes is estimated by the over-reflection coefficient, thereby successfully
linking over-reflection and unstable modes. Furthermore, he inferred a mechanism of
instability triggered by over-reflections and concluded that the instability of shear flows
is caused by a combined process of over-reflection and the ‘Orr mechanism’ (Boyd 1983),
which describes a transient growth process inducing instability. In Lindzen’s theory, the
over-reflection of waves acts like a source term, which provides a constant impetus for the
‘Orr mechanism’ and thus the transfer and transformation of energy from the base flow to
the perturbation. An exhaustive description of this mechanism can be found in Harnik &
Heifetz (2007) from the Rossby wave perspective.

Lindzen’s theory is confirmed in many areas. However, there are also researchers who do
not support his finding and have been opposed to the conclusions. Among them, Takehiro
& Hayashi (1992) suggested that the ‘Orr mechanism’ does not apply to the instability and
over-reflection of shallow-water waves. They proposed an alternative theory that is based
on momentum conservation of reflected and transmitted waves to reveal the mechanism
by which over-reflection phenomena produce instabilities. This theory well explains
the instability in linear shallow-water shear flows investigated by Satomura (1981a,b).
A theoretical study was followed by Knessl & Keller (1995) and their results were well
matched to the numerical results in Takehiro & Hayashi (1992). In Balmforth (1999), he
extended further the study in shallow-water flows to viscous and nonlinear regimes. It
should be emphasized that the shallow-water wave equation is found to be the same form
as the PBE employed in this paper. However, the analogous phenomenon of acoustic waves
in an exponential boundary layer flow has not been investigated.

This gap triggered our interest. Applying the exact solution in Zhang & Oberlack (2021)
to the PBE for an exponential velocity profile, it is straightforward to obtain an explicit
expression for the reflection coefficient of acoustic waves. Note that the approach to
establishing a link between the over-reflection and instability in the present study differs
from most previous work in GFD. Their focus was on how the over-reflection, an acoustic
behaviour, triggers instability. In contrast, from an acoustic perspective, we are concerned
about how over-reflections are influenced by unstable modes and how they behave.

Another very special over-reflection phenomenon is the so-called hyper-reflection,
which is, however, less well studied. This phenomenon describes an over-reflection that
is infinitely strong. Physically, this means that the reflected waves can exist without the
triggering incident waves, i.e. they are spontaneously emitted by a homogeneous flow.
In some publications, resonant over-reflection is also known as hyper-reflection. The
earliest description of this special over-reflection originated in the study of Helmholtz
instabilities of acoustic-gravity waves at a plane vortex sheet led by McKenzie (1972). In
the study of Helmholtz instabilities of vertical stratified flows, Lindzen (1974) observed
this phenomenon for internal gravity waves. In addition, resonant over-reflection was also
found in two classical models of GFD. Resonantly over-reflected Rossby waves were found
to exist in jets on the β-plane model (Maslowe 1991). More recently, Benilov & Lapin
(2012) found that resonant over-reflection also occurs in internal gravity waves within
rotating shallow water on the f -plane model.

A similar phenomenon has also been observed in the present study of the acoustic
over-reflection in boundary layer flows. When the frequency of an incident acoustic wave
is close to the resonant frequency, which is defined in the current work as the real part
of the eigenvalues ωr of unstable modes, it is shown that there is an unusual but finite
enhancement of the over-reflection. This phenomenon is defined by us as the resonant
over-reflection. Note that, to the authors’ knowledge, both the terminologies ‘resonant
over-reflection’ and ‘hyper-reflection’ are not well defined as well as distinguished in
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the GFD and the acoustics communities. In view of this situation, we give them clear
definitions in the context of our study; for details see § 2.4.

The paper is structured as follows. In § 2, the basic model equations and a number of
concepts in boundary layer acoustics are established. The exact solution to the PBE for
an exponential velocity profile is given in terms of the CHFs. To describe the incident
acoustic wave, the concept of incident angle φ is introduced, and a relationship between
the incident angle and frequency is established. According to the form of propagation of
acoustic waves in the free stream, two types of waves are distinguished. In addition, critical
angles of incidence for the existence of the critical layer are given. The above introduced
physical quantities specify the computational domain for the over-reflection. Based on the
exact solution to the PBE, the reflection coefficient R is derived and explicitly expressed
by the CHF. In the last part of § 2, we give a proof that, in the case of the existence of
a critical layer, |R| > 1 always holds. We further link over-reflection to a jump of a key
quantity at the critical layer and show how this jump causes over-reflection.

In § 3, we display the reflection coefficient as a function of the wavenumber α, the
Mach number M and the incident angle φ. Over-reflection of acoustic waves has been
found to exist in boundary layer flows, which is closely related to the critical layer. The
phenomenon of resonant over-reflection is observed and its close relation with unstable
modes is interpreted. Eigenfunctions of acoustic waves are then displayed, and thereby
three patterns of propagation of acoustic waves in boundary layer flows are identified. In
§ 4, we state the main conclusions of our study. Parts of the analysis and numerics in the
present paper were aided by Maple (Maplesoft 2019) and MATLAB 2019a (Mathworks
2019).

2. Boundary layer acoustics

2.1. Governing equations
We consider an inviscid compressible flow without heat conduction, modelled by the Euler
equations

Dρ

Dt
= −ρ∇ · v, (2.1a)

ρ
Dv

Dt
= −∇p, (2.1b)

Ds
Dt

= 0, (2.1c)

where ρ is density, v is the velocity vector, p is pressure and s is entropy. For linear
acoustics, we suppose the variables ρ, v and p to be composed of the base flow quantities
ρ0, v0 and p0, and small unsteady perturbations ρ′, v′ and p′, i.e.

(ρ, v, p) = (ρ0 + ρ′, v0 + v′, p0 + p′), (2.2)

where the perturbations are functions of x, y and t. Then, we substitute (2.2) into equations
(2.1a) and (2.1b), and neglect nonlinear terms.

To obtain a closed linearized equation system, we consider a homentropic
(homogeneous and isentropic) and unidirectional flow, i.e. s0 = const. and p0 = const.,
which indicates by the equation of state ρ( p0, s0) that under a perfect gas assumption the
density is a constant, i.e. ρ0 = const. (Campos 2007). A Taylor series expansion of the
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U( y)
U∞

x

y

yc

R

–Θ Θ

φ

α̃

k̃, ω̃

Figure 1. Illustration of an exponential boundary layer flow. An incident acoustic wave from the free stream
gives rise to a reflected wave with angle Θ , characterized by the reflection coefficient R. The critical layer yc is
marked by the dashed line. Further, a geometric relation of an acoustic wave with frequency ω̃ in a medium at
rest, between wavenumber vector k̃ and streamwise wavenumber α̃, is given by their angle φ (incident angle).

pressure about the reference thermodynamic state denoted by the subscript 0 (neglecting
higher-order derivatives) gives

p = p0 + p′ = p(ρ0 + ρ′, s0) ≈ p(ρ0, s0) +
[

∂p
∂ρ

(ρ, s0)

]
ρ′ = p0 + c2ρ′, (2.3)

where c = √
(∂p/∂ρ) is the speed of sound. In this way, we omit the entropy equation

(2.1c) and apply the linearized relation for the speed of sound to close the LEE system,
which reads

∂ρ′

∂t
+ v0 · ∇ρ′ + ρ0∇ · v′ + v′ · ∇ρ0 + ρ′∇ · v0 = 0, (2.4a)

ρ0

(
∂v′

∂t
+ v0 · ∇v′

)
+ ∇p′ + ρ0v

′ · ∇v0 + ρ′v0 · ∇v0 = 0, (2.4b)

p′ = c2ρ′. (2.4c)

For the proposed unidirectional two-dimensional parallel shear flow, an exponential
velocity profile is employed to mimic a boundary layer flow, i.e.

u0( y) = U∞(1 − e−y/δ), (2.5a)

v0( y) = 0, (2.5b)

where u0 and v0 stand for the mean flow velocity in the x- and y-directions, respectively,
U∞ is the free-stream velocity and δ is the shear layer thickness, which is a multiplier of
the hydrodynamic boundary layer thickness. An intuitive illustration of the base flow is
shown in figure 1. Definitions of the incident angle φ, the propagation angle Θ and the
reflection coefficient R in figure 1 are given in §§ 2.2 and 2.4.
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Inserting (2.5) into (2.4) and eliminating p′, we get a system, which, non-dimensionalized
by U∞, δ and ρ0, reads

∂ρ

∂t
+ (1 − e−y)

∂ρ

∂x
+
(

∂u
∂x

+ ∂v

∂y

)
= 0, (2.6a)

∂u
∂t

+ (1 − e−y)
∂u
∂x

+ e−yv + 1
M2

∂ρ

∂x
= 0, (2.6b)

∂v

∂t
+ (1 − e−y)

∂v

∂x
+ 1

M2
∂ρ

∂y
= 0, (2.6c)

where M = U∞/c is the global or free-stream Mach number. For the sake of simplicity,
we have dropped the primes in (2.6), but keep in mind that we analyse the perturbations,
while x, y and t have been respectively normalized by δ and δ/U∞.

It is worth noting that we have adopted a different dimensionless approach here than
the traditional approach in the field of acoustics, i.e. using the free-stream velocity U∞
rather than the speed of sound c to non-dimensionalize. The current approach agrees with
the dimensionless variables introduced for the stability analysis in Zhang & Oberlack
(2021). We kept these definitions as it makes it more convenient to establish links
between stability theory and acoustics, which is one of the key topics of the present work.
Clearly, the parameters and results obtained by different dimensionless approaches are
interchangeable.

Considering a two-dimensional perturbation, a normal-mode approach for density and
velocity perturbations is applied. Similar to the classical stability theory, which involves
Fourier decomposition in x and t, we introduce

q(x, y, t) = q̂( y)ei(αx−ωt), (2.7)

with q ∈ (u, v, ρ), where the quantities û( y), v̂( y) and ρ̂( y) represent the amplitudes of
the perturbations, α denotes the dimensionless streamwise wavenumber and ω stands for
the dimensionless frequency.

Substituting the normal-mode ansatz (2.7) into the system of partial differential
equations (2.6) results in a system of ordinary differential equations:

dv̂

dy
+ i[−(ω − α + αe−y)ρ̂ + αû] = 0, (2.8a)

e−yv̂ + i
[ α

M2 ρ̂ − (ω − α + αe−y)û
]

= 0, (2.8b)

1
M2

dρ̂

dy
− i(ω − α + αe−y)v̂ = 0. (2.8c)

We rewrite equations (2.8) into an equivalent second-order differential equation with
a single dependent variable ρ̂. For this we express v̂ by dρ̂/dy through (2.8c), substitute
the result for v̂ in (2.8b) and thereafter express û in terms of ρ̂ and dρ̂/dy. Finally, we
substitute these results for û and v̂ into (2.8a) to get the second-order ordinary differential
equation for ρ̂:

d2ρ̂

dy2 + 2αe−y

ω − α + αe−y
dρ̂

dy
+ [M2(ω − α + αe−y)2 − α2]ρ̂ = 0, (2.9)

known as the PBE (Pridmore-Brown 1958).
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If a solution ρ̂ to (2.9) is obtained, û and v̂ can be expressed in terms of ρ̂ as

û = − e−y

M2(ω − α + αe−y)2
dρ̂

dy
+ α

M2(ω − α + αe−y)
ρ̂ (2.10)

and

v̂ = 1
iM2(ω − α + αe−y)

dρ̂

dy
. (2.11)

The PBE (2.9) not only constitutes an eigenvalue problem for modes to investigate
stability problems, as was detailed in Zhang & Oberlack (2021), but also describes acoustic
wave propagation (non-resonant spectra) in boundary layer flows, which is the main topic
of the present work.

In Zhang & Oberlack (2021), an exact solution to (2.9) was derived in terms of the CHF
denoted by Hc( p∗, α∗, γ∗, δ∗, σ∗; z), where p∗, α∗, γ∗, δ∗, σ∗ stand for five parameters
and z is the independent variable (see e.g. Ronveaux & Arscott 1995). The solution reads

ρ̂( y) = C1 exp(iMαe−y +
√

θ y)Hc
(

p∗, α∗, γ∗, δ∗, σ∗; αe−y

α − ω

)
+ C2 exp(iMαe−y −

√
θ y)Hc

(
p̃∗, α̃∗, γ̃∗, δ̃∗, σ̃∗; αe−y

α − ω

)
, (2.12)

where
θ = −M2(α − ω)2 + α2 (2.13)

and the parameters are defined as follows:

p∗ = 1
2 iM(α − ω), α∗ = iM(α − ω) − 1

2 −
√

θ, γ∗ = 1 − 2
√

θ,

δ∗ = −2, σ∗ = iM(α − ω) − 2M2(α − ω)2 − 2
√

θ [iM(α − ω) + 1],

}
(2.14)

p̃∗ = 1
2 iM(α − ω), α̃∗ = iM(α − ω) − 1

2 +
√

θ, γ̃∗ = 1 + 2
√

θ,

δ̃∗ = −2, σ̃∗ = iM(α − ω) − 2M2(α − ω)2 + 2
√

θ [iM(α − ω) + 1].

}
(2.15)

In the following pages, for the sake of brevity, we omit the parameters of the Hc function
and express the Hc function simply as Hc(; z) and H̃c(; z) with their respective parameters
as in (2.14) and (2.15), and z = αe−y/(α − ω). As, in this paper, we investigate boundary
layer acoustics, only α ∈ R and ω ∈ R will be considered. Note that in stability problems
one has ω ∈ C for temporal instability or α ∈ C for spatial instability.

2.2. Zone of silence
Assume that the incoming acoustic wave has unit amplitude and propagates at a constant
speed of sound c from the free stream, which is characterized by the dimensional quantities
of frequency ω̃ and horizontal wavenumber α̃. The incident angle φ, being a ‘secondary’
parameter, is defined as φ ∈ [0◦, 90◦], which is the angle between the incident wave and
the x-direction shown in figure 1. Here, first, we intend to establish a relationship between
the incident angle φ and the frequency ω̃ in order to facilitate φ as the main parameter to
visually describe the incident acoustic wave. Using φ instead of ω̃ reduces one parameter
in analysing the critical cases shown in figure 2.

945 A9-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

55
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.555


Over-reflection of acoustic waves by boundary layer flows

90
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Zone of silence

Propagation zone

Presence of critical layer

Over-reflection occurs

φs
0
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1

φs
2

φc

φ

M
Figure 2. Borders of the zone of silence φs0 (thick blue solid line), φs1 (thick red solid line), φs2 (thick black
solid line) in (2.24) and the critical value for the presence of the critical layer φc (black dashed line) in (2.26) as
functions of the Mach number M. The grey region indicates the zone of silence. The vertically striped region
is the propagation zone and the horizontally striped region represents the presence of the critical layer.

The horizontal wavenumber of an acoustic wave in a medium at rest is given by

α̃ = |k̃| cos(φ) = ω̃

c
cos(φ). (2.16)

In dimensionless form it gives

ω = α

M cos(φ)
, (2.17)

where a dimensionless wavenumber α = α̃δ has been used; or alternatively the wavelength
λ̃ may be employed, α̃ = 2π/λ̃, so that we have

α = 2πδ

λ̃
, (2.18)

which implies a ratio between the shear layer thickness and the wavelength of the
perturbation. This ratio indicates the range of α taken in § 3 from 0.1 to 10, implying that
the thickness of the boundary layer varies from small to large relative to the wavelength
scale.

Note that the incident angle φ in (2.17), which is an angle between the wavenumber
vector k̃ and the streamwise direction, is strictly speaking for a medium at rest, i.e. U∞ =
0, and hence φ is only an ‘auxiliary’ parameter used as a replacement to implicitly express
the frequency. It is not the true propagation angle of the acoustic wave in the free stream.
The ‘true’ angle of the incident wave propagating towards the boundary layer in the free
stream, due to the velocity of the free stream U∞, is determined by the wavenumber of the
acoustic wave in the y-direction. This wavenumber is given by the solution to the PBE in
the free stream.

In the free stream ( y → ∞), where any shear is absent, the PBE (2.9) simplifies to

d2ρ̂

dy2 + [M2(ω − α)2 − α2]ρ̂ = 0, (2.19)

which has oscillatory (waveform) solutions when the term in (2.19) in square brackets is
greater than zero, i.e. θ = −M2(α − ω)2 + α2 < 0. The same result can also be derived
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directly by setting y → ∞ in the exact solution (2.12), where Hc(; 0) = 1 and H̃c(; 0) = 1,
and the solution reads

ρ̂( y) = C1e
√

θy + C2e−√
θy, (2.20)

where the principal value of
√

θ is taken and the branch cut is along the negative real axis.
For θ < 0, the wavenumber in the y-direction in the free stream reads

β = √−θ, (2.21)

where the principal value of the square root is taken. It follows that the two solutions in
(2.20) stand for an outgoing wave (C1eiβy) and an incoming wave (C2e−iβy), respectively,
for θ < 0 and θ ∈ R. This can be intuitively observed by the shifts of the peaks and troughs
of the waves in time by adding the time dependence in the normal mode (2.7).

It is important to note that this work is restricted to purely acoustic free-stream behavior,
which means real wavenumbers β ∈ R and real values θ < 0. The case where θ ∈ C or
θ > 0 was treated by Zhang & Oberlack (2021) and is not considered in the present work.
For θ > 0, there is an exponential behavior of the solution (2.20) in the free stream. Hence
a non-wave type of behavior is observed, which is explicitly excluded here. The angle of
propagation with respect to the x-axis of an acoustic wave in the free stream is therefore
defined as

Θ = arctan
(

β

α

)
, (2.22)

as shown in figure 1.
Next, two kinds of acoustic waves in boundary layer flows are distinguished as

propagating waves and evanescent waves, for waves that can propagate in a vertical
direction and waves that cannot. These two cases correspond to θ < 0 and θ > 0 in (2.13),
respectively. Considering the relation (2.17) gives the critical case, i.e.

− θ = α2

[(
1

cos(φ)
− M

)2

− 1

]
= 0, (2.23)

which gives two solutions φs corresponding to ‘zones of silence’ given by

φs ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

0, arccos
(

1
M + 1

)]
, M ≤ 2,[

arccos
(

1
M − 1

)
, arccos

(
1

M + 1

)]
, M > 2.

(2.24)

In (2.24), the lower border for M ≤ 2 is denoted as φs0 , the upper border for both cases as
φs1 and the lower border for M > 2 as φs2 . An intuitive illustration is shown in figure 2,
where the zone of silence is marked in grey. No acoustic waves exist for the areas defined
in (2.24) or figure 2.

The introduction of φ instead of ω gives the critical case (2.24), which has only one
independent variable M. It is possible to avoid the introduction of φ, which, however,
would imply that the critical case for ω involves two variables instead of one, i.e. α and M.

Equation (2.24) indicates that acoustic perturbations with φs as the incident angle do
not exist in a waveform in the free stream, i.e. their amplitudes decay exponentially and
tend to zero. Therefore, they are called evanescent waves. Whereas outside the φs region,
acoustic perturbations in the free stream exist as oscillatory waves, i.e. they can propagate
in the y-direction and therefore denote propagating waves. We define the region outside
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Over-reflection of acoustic waves by boundary layer flows

of φs as the ‘propagation zone’, which is represented by vertical stripes in figure 2. The
introduction of the concept of the incident angle instead of the frequency physically defines
the range of parameter φ for the existence of incident and outgoing waves at different Mach
numbers.

2.3. Critical layer
As per its definition, the critical layer is a wall-parallel plane, where the phase velocity of
the acoustic wave ω/α is equal to the local base flow velocity u0( y), i.e. ω/α = 1 − e−y.
Considering an incident acoustic wave in (2.17), the location of the critical layer is given
by

yc = −ln
(

1 − 1
M cos(φ)

)
, (2.25)

as shown in figure 1. It follows from (2.25) that, in order to ensure the existence of a critical
layer, the argument of the logarithm has to be greater than zero and smaller than one, and,
with this, the incident angle has to be less than a critical value given by

φc = arccos
(

1
M

)
, (2.26)

as displayed in figure 2. When the incident angle is greater than φc, i.e. φ > φc, there is
no critical layer in the shear flow. For the case φ = φc, the critical layer moves to infinity.

Figure 2 shows limiting curves of the zone of silence φs as well as the corresponding
critical incident angle of the critical layer φc as a function of the Mach number. The thick
red and thick black solid lines in figure 2 represent the borders φs1 and φs2 of the zone
of silence according to (2.24). The grey region between them is the zone of silence. The
critical incident angle for the presence of the critical layer is represented by the black
dashed line. These critical angles, φs1 , φs2 and φc, provide a reference for the computation
domain in § 3.

In § 3, we focus only on the propagation zone (θ < 0) where the critical layer is present
(φ < φc) because these conditions ensure the presence of incident and reflected waves
in the free stream and the occurrence of over-reflection. To satisfy these two conditions
simultaneously, the chequered region shown in figure 2 is concerned. Considering the
transformation of φ corresponding to the chequered region to ω, it is equivalent to ω/α ∈
[1/M, 1 − 1/M]. A detailed study of the critical layer leading to over-reflection is given
in § 2.5.

2.4. Reflection coefficient
In this section, we derive the reflection coefficient R, which is the amplitude ratio of the
reflected to the incident wave. This will be based on the exact solution (2.12) to the PBE
(2.9) and the boundary conditions. We consider first the boundary condition at the wall,
i.e. y = 0. There, the condition is obtained through the impermeability condition, wherein,
in the present paper, we adopt the simplest case, i.e. a rigid (inelastic) wall. Thus, the
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normal component of the velocity perturbation at the wall vanishes, i.e.

v̂(0) = 0. (2.27)

Using the boundary condition (2.27) together with (2.11) and (2.12), where the derivative
of the density perturbation reads

dρ̂

dy
= C1

[
(−iMαe−y +

√
θ)Hc

(
; αe−y

α − ω

)
− αe−y

α − ω
Hc′

(
; αe−y

α − ω

)]
× exp(iMαe−y +

√
θy)

+ C2

[
(−iMαe−y −

√
θ)H̃c

(
; αe−y

α − ω

)
− αe−y

α − ω
H̃c′

(
; αe−y

α − ω

)]
× exp(iMαe−y −

√
θy), (2.28)

we obtain

v(0) = −ieiMα

M2ω

{
C1

[
(−iMα +

√
θ)Hc

(
; α

α − ω

)
− α

α − ω
Hc′

(
; α

α − ω

)]
+ C2

[
(−iMα −

√
θ)H̃c

(
; α

α − ω

)
− α

α − ω
H̃c′

(
; α

α − ω

)]}
= 0. (2.29)

From (2.29), a relation between C1 and C2 is induced and reads

C1 = −C2

(−iMα − √
θ)H̃c

(
; α

α − ω

)
− α

α − ω
H̃c′

(
; α

α − ω

)
(−iMα + √

θ)Hc
(

; α

α − ω

)
− α

α − ω
Hc′

(
; α

α − ω

) . (2.30)

We assume that the amplitude of the incoming wave at y → ∞, which is the second
term of (2.12), is unity and thus, combining (2.12) with (2.30), the amplitude of the density
perturbation reads

ρ̂( y) = R exp(iMαe−y +
√

θy)Hc
(

; αe−y

α − ω

)
+ exp(iMαe−y −

√
θy)H̃c

(
; αe−y

α − ω

)
, (2.31)

where R is the reflection coefficient defined by

R = −
(−iMα − √

θ)H̃c
(

; α

α − ω

)
− α

α − ω
H̃c′

(
; α

α − ω

)
(−iMα + √

θ)Hc
(

; α

α − ω

)
− α

α − ω
Hc′

(
; α

α − ω

) . (2.32)

In (2.32), there are three parameters, i.e. the wavenumber α, the Mach number M and the
frequency ω, where ω can be replaced by the incident angle φ according to (2.17).
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Over-reflection of acoustic waves by boundary layer flows

In Campos & Kobayashi (2013), a similar reflection coefficient is obtained for the PBE
with a hyperbolic-tangent profile, which is used to mimic a boundary layer flow. Not
only is an over-reflection of acoustic waves observed but the reflection coefficient has an
unusual high peak at a certain frequency (see the case M = 4.5 in figure 6(a) in Campos
& Kobayashi (2013) and note that there is a mistake in that figure, i.e. figure 6(a) should
be for |R| and not for |T|). For this, no further explanation was given, but the values lie
close to the eigenvalues we obtained for instability.

In the remaining part of the paper, we will analyse the reflection coefficient R and we
will observe various effects such as over-reflection or resonant over-reflection. Further, in
§ 2.5 we give a detailed analysis that for boundary layer flows the presence of a critical
layer is intimately linked to the occurrence of over-reflection.

The explicit form of the reflection coefficient (2.32) points to a variety of physical
phenomena. We recall that the temporal stability problems in Zhang & Oberlack (2021)
emerged from the eigenvalue equation derived therein, and which was obtained from the
exact solution (2.12), in combination with boundary conditions of vanishing disturbances
at infinity and zero wall-normal velocity. The former condition leads to C1 = 0 in (2.12),
and the latter condition gives dρ̂/dy(0) = 0 in (2.28). An eigenvalue equation is therefore
obtained. It is interesting to note that the same eigenvalue equation coincides with the
current acoustic case, in which the numerator of R is equal to zero. Acoustically, this
indicates that no reflected waves are allowed to exist. But for unstable modes (ωi > 0)
in the temporal stability problem, setting C1 = 0 implies the opposite scenario, i.e. that
there are only outgoing waves and no incoming waves because the ‘outgoing wave’
must be redefined. Since the unstable modes show dispersive waves with amplitude
decreasing to zero as y tends to infinity, the group velocity (direction) is considered to
be the true propagation velocity (direction) of the waves. In Zhang & Oberlack (2021),
it is demonstrated that the unstable wave with decreasing amplitude has a positive group
velocity with a negative phase velocity. This leads to C1 in the current context having
an opposite physical meaning to that in the stability problem. This might give a physical
insight: perturbations that acquire energy from the shear flow are not allowed to emit in the
form of over-reflections, thereby manifesting themselves as the onset of a temporal–spatial
instability, i.e. in a certain parameter range we obtain unstable eigenvalues ω ∈ C for
temporal instability or α ∈ C for spatial instability.

To distinguish resonant over-reflection and hyper-reflection very clearly within the
present work, let us consider the following setting. From an acoustic point of view, in
the free stream, the first term of (2.31) represents the outgoing wave, while the second
term represents the incoming wave. Taking the principal value of

√
θ , setting C2 = 0

means that a phenomenon occurs in which the incident wave is zero at an infinite
distance from the wall while the reflected wave persists with a constant amplitude for
y → ∞. Considering the boundary condition at the wall, an eigenvalue problem is
formulated, in which the eigenvalue equation is equivalent to setting the denominator
in (2.32) to zero. Thus, in this case, the sought eigenvalues lead to an infinite R. To
distinguish this case from the over-reflection induced by resonant frequencies in this paper,
we define the above phenomenon of the reflection coefficient R tending to infinity as
‘hyper-reflection’.

The focus of the present paper is to investigate over-reflection, and specifically
over-reflection induced by the resonant frequencies in an instability context which
we will presently name ‘resonant over-reflection’. Infinitely strong over-reflection,
i.e. hyper-reflection as defined above, is not considered.
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2.5. Analysis of the critical layer
In this section, we show how the critical layer is intimately linked to over-reflection. We
further present an analytical relation between the amplitude of the density perturbation at
the critical layer and the reflection coefficient R of the boundary layer flow.

For this, a transformation of the independent variable y is introduced in order to
eliminate the first-order derivative in the PBE (2.9) and bring it to its normal form by
introducing

ỹ =
∫

exp
(

−
∫

2α(du0( y)/dy)
ω − αu0( y)

dy
)

dy

(see Olver et al. 2010).
In concrete terms and using u0( y), given by its dimensionless form u0( y) = 1 − e−y,

we obtain

ỹ = 2α(α − ω)e−y − 1
2α2e−2y + y(α − ω)2. (2.33)

With (2.33), the transformed PBE (2.9) takes the form

d2ρ̂

dỹ2 + [M2(ω − αu0)
2 − α2]

(ω − αu0)4 ρ̂ = 0. (2.34)

Next, (2.34) is multiplied by the conjugate solution ρ̂
∗ and integrated between the

boundaries defined by ỹ1 and ỹ2. We limit ourselves to the imaginary part, which we refer
to by Im. This is motivated by a certain invariant of the transformed PBE, which will be
explained in more detail below at (2.41). With the above we obtain

Im
(

dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ2

ỹ1

=
∫ ỹ2

ỹ1

Im
(

α2

(ω − αu0)4 − M2

(ω − αu0)2

)
|ρ̂|2 dỹ. (2.35)

We will discuss both sides of (2.35) thoroughly in three parts in the following. First,
the left-hand side of (2.35) is analysed with respect to its relation with the reflection
coefficient R. Second, the left-hand side of (2.35) is proven to be associated with a jump
of the above-mentioned invariant at the critical layer. In the presence of a critical layer,
this invariant jumps directly at the critical layer, i.e. is constant above and below the
critical layer. The step-like variation of this invariant is further related to the logarithmic
singularity at the critical layer. These two facts indicate that the reflection coefficient
is always larger than one in the presence of a critical layer. Third, we will discuss the
right-hand side of (2.35) and evaluate the integrals in order to obtain an analytical relation
between the reflection coefficient and the perturbed quantities at the critical layer.

To begin with the evaluation of the left-hand side of (2.35), it reveals a close link to
the reflection coefficient R. For this, we recall the principal asymptotics of the acoustic
solution in the limit y → ∞, which is taken from (2.20). An incident wave with unit
amplitude and a reflected wave with complex amplitude R at y → ∞ are assumed, which
refers to ỹ2. At ỹ1, corresponding to the wall, i.e. y = 0, the rigid-wall boundary condition
(2.27) leads with (2.11) to a vanishing y derivative of the density. To sum up, the boundary
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conditions read
ρ̂( y → ∞) ∼ Reiβy + e−iβy, (2.36a)

and
dρ̂

dỹ

∣∣∣∣
ỹ1

= dy
dỹ

dρ̂

dy

∣∣∣∣
y=0

= 0. (2.36b)

Inserting (2.36a) and (2.36b) into the left-hand side of (2.35), it can be reshaped to

Im
(

dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ2

ỹ1

= Im
(

dρ̂

dy
dy
dỹ

ρ̂
∗
)∣∣∣∣ỹ2

ỹ1

= β

(α − ω)2 (|R|2 − 1). (2.37)

We further rewrite the left-hand side of (2.37) below to obtain a relationship between
the reflection coefficient, namely the right-hand side of (2.37), and the physical properties
at the critical layer. Considering the y derivative of the left-hand side of (2.37), we show
that it vanishes outside the critical layer, i.e.

d
dy

(
Im
(

dρ̂

dỹ
ρ̂

∗
))

= Im

(
d2ρ̂

dỹ2 ρ̂∗ +
∣∣∣∣dρ̂

dỹ

∣∣∣∣2
)

= Im
(

d2ρ̂

dỹ2 ρ̂
∗
)

, (2.38)

which is, using (2.34), rewritten as

d
dy

(
Im
(

dρ̂

dỹ
ρ̂

∗
))

= Im
(

− [M2(ω − αu0)
2 − α2]

(ω − αu0)4 |ρ̂|2
)

= 0
∣∣∣
y /= yc

(2.39)

The above derivation only holds outside the critical layer, since at the critical layer the
coefficient function in (2.34) is singular. From this, it follows that

I = Im
(

dρ̂

dỹ
ρ̂

∗
)

, (2.40)

is a constant, which undergoes a jump at the critical layer. Therefore, we call I a
quasi-invariant, since it is invariant only in limited domains. Thus, the boundaries between
which the left-hand side of (2.37) is evaluated can also be chosen just above and below the
critical layer ỹc, which yields

I
∣∣∣ỹ2

ỹ1
= Im

(
dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ2

ỹ1

= Im
(

dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ+

c

ỹ−
c

= β

(α − ω)2 (|R|2 − 1). (2.41)

Subsequently Appendix A will be used to evaluate the jump of the quasi-invariant at the
critical layer. Transforming the left-hand side of (2.41) to the coordinate ξ = ω/α − u0( y),
which is used to derive the Frobenius solution (A6) at the critical layer in Appendix A,
yields

I
∣∣∣ỹ2

ỹ1
= Im

(
dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ+

c

ỹ−
c

= Im
(

dy
dỹ

dξ

dy
dρ̂

dξ
ρ̂∗
)∣∣∣∣0−

0+
= −u′

0( yc) Im
(

1
ξ2

dρ̂

dξ
ρ̂∗
)∣∣∣∣0−

0+
. (2.42)

Taking the Fuchs–Frobenius solution (A6) into (2.42) leads to

I
∣∣∣ỹ2

ỹ1
= Im

(
dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ+

c

ỹ−
c

= −3cu′
0( yc)|B|2 Im(ln(ξ))

∣∣∣0−

0+

= −3cu′
0( yc)|B|2 ln(0−) = −3πcu′

0( yc)|B|2, (2.43)
where B is a constant in the Fuchs–Frobenius series and c is a rational function in α and
ω as defined in (A7). The causal choice of the logarithmic branch cut as explained in
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Appendix B is important since it leads to Im(ln(0−)) = π. Note that an non-causal choice
of the branch cut would lead to the opposite sign.

Taking into account that c is always negative in the presence of a critical layer, as shown
in Appendix A by analysing (A8), we find that the right-hand side of (2.43) is always
positive. Thus it can be concluded that the jump of I = ρ̂∗ dρ̂/dỹ over the critical layer
is also always positive and thus, in considering (2.41), the reflection coefficient in the
presence of a critical layer is always greater than one, i.e. R > 1, since we obtain

β

(α − ω)2 (|R|2 − 1) = −3πc u′
0( yc)|B|2. (2.44)

In the absence of a critical layer, the right-hand side of (2.35) vanishes since the
coefficients are real and the integral contains no singularity that would lead to an
imaginary part, following the theory of generalized functions and distributions given in
Galapon (2016). Likewise, considering (2.37) with the knowledge that I = ρ̂∗ dρ̂/dỹ is
invariant over the entire physical domain in the absence of a critical layer, we conclude
that R = 1 must hold without a critical layer. This means that without a critical layer there
is no mechanism of damping or amplification of the reflected wave.

Thus, energy can only be transferred from the base flow to the acoustic wave, and the
acoustic wave cannot be damped, since R = 1 in the absence of a critical layer and R > 1
in the presence of a critical layer.

In the last part of this section, we focus on the evaluation of the right-hand side of (2.35).
For this, we evaluate both parts of (2.35) separately using the theory of distributions, which
leads to ∫ ỹ2

ỹ1

Im
(

α2

(ω − αu0)4 − M2

(ω − αu0)2

)
|ρ̂|2 dỹ

= π

[(
M2

α

d
dξ

− α

6
d3

dξ3

) |ρ̂|2
du0/dỹ

]∣∣∣∣
ξ=0

, (2.45)

where we have further introduced a coordinate based on the location of the critical layer,
i.e.

ξ = ω − αu0( y), (2.46)

and therefore ξ = 0 is the location of the critical layer. A detailed derivation of (2.45) is
given in Appendix C.

In a final step, we use (2.35), where the left-hand side was replaced by (2.37) and the
right-hand side by (2.45). Transforming this back to the initial variable y leads to a relation
between the amplitude of the reflected wave and the amplitude of density perturbation and
its derivations at the critical layer, which reads

β

(α − ω)2 (|R|2 − 1) = πα2(α − ω)5
[

d
dy

( |ρ̂|2
du0/dy

)
− 2

|ρ̂|2
du0/dy

]∣∣∣∣
y=yc

. (2.47)

There is only information on the amount of the reflection coefficient here; the phase shift
of the reflected wave compared to the incident one does not result from (2.47). (Since R is
complex, the phase shift of the reflected wave is included in the argument of R.)

Equation (2.47) is similar to the ‘unitarity condition’, introduced by Lapin (2011) in the
context of waves interacting with a jet; thus we call it the‘extended unitarity condition’ in
terms of the current context of acoustics.
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Over-reflection of acoustic waves by boundary layer flows

With the key results (2.44) and (2.47), we show that the over-reflection is directly
caused by the critical layer. The critical layer causes a jump of the quasi-invariant I,
which leads to the amplitude of the reflected wave being larger than that of the incident
wave. An analytical relation between the reflection coefficient and the amplitude of density
perturbation is given by the extended unitarity condition.

3. Over-reflection analysis depending on α, M and φ

In this section, we present detailed results of the reflection coefficient R given by (2.32),
which depends on three dimensionless parameters, i.e. wavenumber α, Mach number M
and frequency ω. Subsequently, the frequency ω is always rewritten as a function of the
incident angle φ according to (2.17). Here we are only concerned with the reflection
coefficients within the range of parameters in which propagating waves and the critical
layer exist simultaneously, i.e. the chequered region in figure 2. In this parameter range,
incident acoustic waves are always over-reflected, i.e. R > 1, due to the jump of the
quasi-invariant demonstrated in § 2.5. Therefore, in the following, we refer to the reflection
coefficient directly as the over-reflection coefficient.

The key results of the over-reflection coefficient R are presented in five groups. First,
results of the over-reflection coefficient are shown as a function of Mach numbers and
incident angles for a small representative set of wavenumbers below one, i.e. α < 1.
In this range, the over-reflection coefficient is not influenced by resonant frequencies,
i.e. the unstable eigenvalues ω emerging due to acoustic instabilities of the exponential
boundary layer profile (see Zhang & Oberlack 2021). We refer to those over-reflections
that are not affected by resonant frequencies as non-resonant over-reflections. Second,
we display the reflection coefficient in the wavenumber range 1 < α < 2, in which the
resonant frequencies begin to appear in the propagation region and trigger the resonant
over-reflection. In the third group, in order to disclose the connection between the resonant
over-reflection and unstable modes, results of the reflection coefficient are displayed as a
function of wavenumbers and incident angles. The close connection is revealed by the
synchronization of peaks of the over-reflection coefficient and growth rate of unstable
modes in the α–φ plane. In the fourth group, a set of larger wavenumbers is chosen up to
α = 10 to show the results of the over-reflection coefficient as a function of Mach number
and incident angle, while revealing a result that higher unstable modes in addition to the
first unstable mode can also lead to resonant over-reflections. In the last group, we exhibit
a series of eigenfunctions and identify three patterns of acoustic waves propagating in
boundary layer flows.

All numerical evaluations of the CHF were computed with Maple (Maplesoft 2019)
and verified by the open-source code by Motygin (2018) based on MATLAB (Mathworks
2019).

3.1. Non-resonant over-reflection
Figure 3 displays the numerical results for the over-reflection coefficient as a function of
Mach number M and incident angle φ, where the wavenumber α is chosen in the range
between 0.1 and 1. Therein we have also included contour lines, where the thick solid line
corresponds to the border φs2 between the propagation zone and the zone of silence, which
is shown in figure 2. The reflection coefficient in the latter region is either equal to one or
has no real physical significance due to exponential non-oscillatory decay of the amplitude
into the free stream.
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Figure 3. Over-reflection coefficient R defined by (2.32) as a function of M and φ, for a range of α from 0.1
to 1: (a) α = 0.1, (b) α = 0.2, (c) α = 0.3, (d) α = 0.6, (e) α = 0.8 and ( f ) α = 1. The thick black solid line
defines the over-reflection border φs2 according to figure 2.

Observing figure 3(a–f ), we note first that the over-reflection coefficient decreases with
increasing wavenumbers. For small wavenumbers, as in figure 3(a–c), there are rather
large values of the over-reflection coefficient. In particular, for α = 0.1, the maximum
value even reaches approximately R = 3, while the values of the over-reflection coefficient
shown in figure 3(d–f ) are relatively small. This result means that, for small wavenumbers,
relatively strong over-reflections occur.

In addition, the large values of the over-reflection coefficient gather around the line of
silence φs2 and go along with large gradients nearby. Particularly visible is that, at α = 0.1,
a large gradient of variation in the over-reflection coefficient near the over-reflection border
φs2 can be detected by observing the contours from R = 1.9 to R = 2.7, which become
progressively narrower. And as the wavenumber α increases, in figure 3(b,c), the peak
gradually moves away from the line of silence φs2 . Meanwhile, the contours become
sparse, which indicates that the drastic variation becomes flatter as α increases as in
figure 3(d–f ). This result suggests that over-reflections generated by small wavenumbers
are more sensitive to variations in the Mach number than over-reflections generated by
moderate wavenumbers.

3.2. Coincidence of resonantly over-reflected waves and unstable acoustic modes
In this section, we focus on the resonant over-reflection and its connection to unstable
acoustic modes. We first depict a phenomenon in which an unusual peak of the
over-reflection coefficient appears with increasing wavenumbers in figure 4. Subsequently,
through figure 5 and figure 6, we establish links between the resonant frequencies and the
peaks, i.e. links between unstable modes and resonant over-reflection.
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Figure 4. Over-reflection coefficient R defined by (2.32) as a function of M and φ, for a range of α from 1.1
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(b) M = 4.5 and (c) M = 5. In this parameter domain, only the first unstable mode induced resonant
over-reflections, and their peaks are shown and marked by thick solid lines.

Figure 4 depicts the variation of the over-reflection coefficient in a range of
wavenumbers between α = 1.1 and α = 1.9, where the range of Mach numbers is still
chosen to be between M = 2 and M = 5. Note that in figure 4 we have now swapped
the coordinates M and φ to better observe the key effect in this subsection, i.e. that at a
wavenumber α = 1.1, an unusual local peak appears near the incident angle φ ≈ 75 and
Mach number M ≈ 4.5. This local peak grows as the wavenumber increases and becomes a
global peak finally at α ≈ 1.3. Thereafter, the peak continues to increase with wavenumber
until α ≈ 2 in figure 7(a) and then starts decreasing again. These peaks occur within a
very small range of the parameter φ. The variation of the over-reflection coefficient in the
remaining part is not affected by the peak and remains largely smooth. As the wavenumber
increases, the remaining part slowly decreases.
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Figure 7. Over-reflection coefficient R defined by (2.32) as a function of M and φ, for a range of α from 2 to 10:
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In the following, the goal is to unravel the connection between resonant over-reflections
and unstable modes. To achieve this, in figure 5(a–c) we show the results of the
over-reflection coefficient as a function of the wavenumber α and the incident angle φ,
where the wavenumber ranges from 1 to 10 and the Mach numbers are fixed to M = 4,
M = 4.5 and M = 5. From figure 5, we note that the resonant over-reflection peaks appear
as the wavenumber increases. To explain the peaks, we next establish the relationship
between the resonant frequencies and the resonant over-reflections.
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Over-reflection of acoustic waves by boundary layer flows

In Zhang & Oberlack (2021), they deduce an eigenvalue problem for the temporal
stability of the exponential boundary layer profile, and this is essentially based on solution
(2.12). The imaginary part of the eigenvalue derived there, i.e. the growth rate ωi, is
a function of the Mach number M, and the wavenumber α is of key importance here.
In figure 6(a), we apply this result and show the curves of the growth rate ωi and the
resonant frequency ωr, i.e. the imaginary and real parts of the eigenvalue of temporal
unstable modes, of the first temporal unstable modes as functions of the wavenumber α

for fixed Mach numbers M = 4, M = 4.5 and M = 5. In order to relate the unstable modes,
i.e. the resonant frequencies ωr and the growth rate ωi, to the corresponding over-reflection
coefficient, we convert ωr to the incident angle φ according to (2.17) in figure 6(b). At
the same time, we extract the projection to the α–φ plane of the maximum curve of the
resonant peak, the thick black line, from figure 5 and place it in figure 6(c). Also, the
dashed lines in figure 6(b) are projections of the main curves onto the α–φ plane. By
comparing figure 6(b) with figure 6(c), we find that the corresponding dashed lines highly
coincide and the trends of the peaks are largely synchronized. We therefore conclude
that the resonant frequency of unstable modes triggers the peak of the over-reflection
coefficient. This suggests that an unusual over-reflection enhancement occurs when the
frequency of the incident wave is close to the resonant frequency.

This conclusion is first verified by the results in figure 4 and explains well the appearance
of the local and global peaks. If converted to frequency, then the incident angles
corresponding to peaks are approximately equal to the real part of the resonant frequencies
in the first unstable modes. Here we have to further indicate that the local/global maximum
value of the over-reflection coefficient, i.e. the red solid line, and the over-reflection
coefficient corresponding to the resonant frequency, i.e. the red dashed line, do not exactly
coincide; however, they differ by at most two decimal digits of accuracy. This minor
difference reaches its maximum around α ≈ 1.7 and then continuously decreases with
increasing α. As α ≥ 2, the difference becomes almost unrecognizable and therefore is
not shown in figure 7.

Next, we apply our conclusion to higher unstable modes. In the stability analysis
presented in Zhang & Oberlack (2021), the higher modes gradually appear as the
wavenumber increases. However, the first mode always remains the most unstable mode,
i.e. the largest ωi. This feature is also observed in resonant over-reflections induced by
unstable modes. Figure 7 illustrates the variation of the over-reflection coefficient for
wavenumbers in a range from α = 2 to α = 10 and Mach number from M = 2 to M = 5.
We find that, at α = 3, the second mode appears and induces a new local peak. At α = 7,
the third mode appears. Although the third unstable mode is rather weak, it still induces a
local peak. At the same time, the first mode always maintains its maximum peak.

With increasing wavenumber α, i.e. figure 7(d,e), the effect of resonant frequencies
on over-reflections causes a steep increase of (R − 1) of tens of times compared to
the surrounding (R − 1) of non-resonant over-reflections. In regions where non-resonant
over-reflections occur, the over-reflection coefficient is very close to one. Once the
resonance frequency intervenes, extremely steep peaks appear. Another character that
can be obtained by observing figure 7 is that the maximum value of the non-resonant
over-reflection continues to move away from the φs2 line relative to the over-reflection of
small and moderate wavenumbers. In figure 7(b–e), the over-reflection coefficient even
forms a monotonic rise with Mach numbers. Meanwhile, R in non-resonant over-reflection
regions is very insensitive to variations in Mach numbers.

More specific data about resonant frequencies of higher unstable modes are given in
Appendix D.
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Figure 8. Eigenfunctions of the incident (a,d,g) and reflected (b,e,h) acoustic waves and equation (2.31)
(c, f,i) for Mach number M = 4 and wavenumber α = 2: (a–c) for frequency ω = 2.88 (φ ≈ 80◦) and R = 1;
(d–f ) for frequency ω = 0.58 (φ ≈ 30◦) and R = 1.08; and (g–i) for frequency ω = 1.35 (φ ≈ 68◦) and
R = 1.04. The black dashed line stands for the location of the critical layer yc. The angle of propagation in
the free stream Θ according to (2.22) is shown for incident waves.

3.3. Eigenfunction
In this section, we will present and discuss the eigenfunction (2.31), which is intuitively
separated into the first and second terms. The first term represents the eigenfunction for
reflected waves and the second term stands for the eigenfunction for unitary incident waves
from the free stream.

Figure 8 illustrates three representative patterns. Of these, figure 8(a–c) corresponds to
the case where there is no critical layer and hence no over-reflection occurs (R = 1). It can
be observed that the amplitudes of the incident wave in figure 8(a) and the reflected wave in
figure 8(b) are equal. Meanwhile, we observe from these panels the effect of shear layers
on the direction of acoustic wave propagation. This effect is caused by the significant
velocity gradient close to the wall. In addition, a slight increase in the amplitude of the
acoustic wave near the wall is detected.

Figure 8(d–f ) and figure 8(g–i) correspond to the case of over-reflections.
Figure 8(g–i) coincides with the occurrence of the resonant over-reflection, but the
over-reflection coefficient only produces local peaks in R. Thus, the over-reflection
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coefficient for figure 8(g–i) is less than the non-resonant over-reflection coefficient for
figure 8(d–f ). Observing the second and third rows, different patterns of over-reflection
are detected. In the second row, particularly visible in figure 8( f ), the amplitude of the
acoustic wave near the wall is less than the amplitude of the acoustic wave in the free
stream. In contrast, in the third row, i.e. figure 8(g–i), the amplitude of the acoustic wave
near the wall is much greater than the amplitude of the acoustic wave in the free stream.

In addition, from figures 8( f ) and 8(i), we find that the amplitude of acoustic waves is
relatively small near the critical layer. This suggests that the critical layer has an attenuating
effect on acoustic waves, in agreement with the conclusion proposed in Campos & Serrão
(1998). It is important to point out that the transformation between the second and
third rows occurs continuously and smoothly with variations of ω, i.e. their difference
is not due to the resonant over-reflection. In the vicinity of ω = 1.35, i.e. the region
where non-resonant over-reflections occur, e.g. ω = 1.32, the pattern of the eigenfunction
remains similar to the third row. Conversely, the pattern of the eigenfunction of the
resonant over-reflection always resembles that in the third row, i.e. the amplitude near
the wall is much greater than that in the free stream. This suggests, from another point of
view, that resonant over-reflection (instability) is a special case of over-reflections.

In figure 8(g–i), we note a pattern of the eigenfunction similar to that of the unstable
modes in Zhang & Oberlack (2021). Through figure 8(g–i) we clearly observe the acoustic
waves trapped between the first relative sonic line and the wall, similar to the surface wave
(mode) (see e.g. Rienstra & Hirschberg 2020). (For a detailed definition of the relative
sonic line, see e.g. Knisely (2018). Here it means that the relative Mach number equals
minus one.) This indicates that complex reflections and refractions occur near the wall. In
contrast to the non-resonant over-reflection in figure 8(d–f ), on the one hand, the distance
between the first sonic line and the wall is not sufficient to generate strong complex
reflections and refractions, and, on the other hand, the attenuating effect of the critical
layer covers this distance. Thus, as read from the pattern in the second row of figure 8, no
related instability may exist. As the critical layer moves away from the wall, the surface
wave (mode) becomes apparent, where complex reflections and refractions occur near the
wall, which is an infallible sign of a related unstable mode at a particular frequency.

The above inference is confirmed by figure 9. Similar to the setting in figure 8,
figure 9 shows the eigenfunction of acoustic waves but at the Mach number M = 5,
where figure 9(a–c) for α = 2.2 corresponds to the maximum value of the peak in
figure 5(c). The enhancement of the reflected waves can be clearly observed by the colour
gradient. Meanwhile, the amplitudes near the wall are much greater than in the remaining
domain, where complex reflection and refraction occurs. This region is necessary to induce
instability as was shown in Zhang & Oberlack (2021). From figure 9(d–f ) for α = 0.1,
we observe similar acoustic wave propagation to the second pattern in figure 8. Small
wavenumbers α do not allow for complex reflections and refractions that increase the
amplitude near the wall. Therefore, despite the large over-reflection coefficient R = 2.42,
no resonant over-reflections could occur with the near-wall pattern in figure 9(d–f ), i.e. no
unstable modes exist related to these parameters.

4. Conclusion and outlook

We investigate the over-reflection of acoustic waves in boundary layer flows based on the
exact solution to the PBE for an exponential velocity profile. The over-reflection coefficient
is shown in detail as a function of problem parameters, i.e. Mach number M, wavenumber
α and incident angle φ. Over-reflection exhibits very different patterns depending on
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Figure 9. Eigenfunctions of the incident (a,d) and reflected (b,e) acoustic waves and equation (2.31) (c, f )
for Mach number M = 5: (a–c) for wavenumber α = 2.33, frequency ω = 1.34 (φ ≈ 70◦) and R = 1.46
corresponding to the global maximum value in figure 5(c); and (d–f ) for wavenumber α = 0.1, frequency
ω = 0.078 (φ ≈ 75◦) and R = 2.42. The black dashed line stands for the location of the critical layer yc. The
angle of propagation in the free stream Θ according to (2.22) is shown for incident waves.

small, moderate and large wavenumbers α. In comparison with small α, moderate α

lead to smaller over-reflection coefficients, while at the same time a reduced sensitivity
to the Mach number is observed. However, an increase in α leads to the occurrence of
resonant over-reflections. The resonant over-reflection coefficient initially induces a local
peak, which increases with α and becomes a global maximum value around α = 1.3.
Thereafter, the peak continues to increase, reaches a maximum value around α = 2 before
it gradually decreases. Although the resonant over-reflection attenuates as α > 2, the
resonant over-reflection is more noticeable relative to the non-resonant over-reflection. In
other words, for large α, over-reflection is hard to detect. At specific resonant frequencies,
however, resonant over-reflections may be observed.

Both over-reflection and temporal–spatial instability reflect the extraction of energy of
acoustic waves/modes from shear flows. The phenomenon of over-reflection is obtained
from a purely acoustic point of view. The inviscid instability, in contrast, is obtained from
a stability point of view. For acoustic wave disturbances that gain energy from shear flows,
this will manifest itself in the form of an over-reflection. Stability analysis, from the point
of view of boundary conditions, is based on two strict boundary conditions, resulting in
an eigenvalue problem. For acoustics, in contrast, only a rigid-wall boundary condition is
inferred and the relatively weak boundary condition of the presence of acoustic waves at
infinity is brought in. Thus, instability can also be seen as a special form of over-reflection.
This is evident from the fact that the eigenvalue equation of the temporal–spatial stability
problem coincides with the special case in (2.32).

In this paper, the investigation is carried out mainly from an acoustic point of view.
From the results, we confirm that the resonant frequencies generated by unstable modes
are not just the first unstable mode, but also higher unstable modes lead to an enhancement
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of the over-reflection, i.e. the resonant over-reflection. This is demonstrated by comparing
the eigenvalues of the unstable modes with the unusually high over-reflection coefficients.
The eigenvalues obtained in the stability analysis represent the resonant frequencies, which
are properties of the boundary layer flow. Around these frequencies, acoustic waves or
disturbances can absorb more energy from the base flow. By comparing the eigenfunctions
of acoustic waves, we identify the mechanism by which resonant over-reflection occurs.
The acoustic waves gain energy from the base flow at the critical layer, accumulate energy
in the area close to the wall and form an area with complex reflections and refractions,
and subsequently induce the resonant over-reflection. The relevant mechanism can also be
observed in the study on stability in Zhang & Oberlack (2021).

In the present analysis, we show that the critical layer plays an important role in the
energy exchange between waves and shear flows. The critical layer is the most effective
location for energy exchange to occur. This is due to the phase velocity of the disturbance
or wave being equal to the velocity of the base flow there. Thus the critical layer is the most
likely location to have interaction. We further prove that, in supersonic boundary layer
flows with a critical layer over a rigid wall, the jump of the quasi-invariant at the critical
layer always causes an amplification of the reflected waves, i.e. reflected waves extract
energy from the base flow. The presence or absence of a critical layer, therefore, determines
whether an over-reflection or instability occurs, which is validated by our results.

We further establish an extended unitarity condition between the over-reflection
coefficient and the jump of the quasi-invariant at the critical layer. This condition shows
that the over-reflection coefficient is closely linked to the acoustic perturbation at the
critical layer.

The three patterns in figure 8 give insight into practical noise control. Avoiding noise
from boundary layer flows requires countermeasures that are based on the physical
properties pointed out above. Specifically, measures of the noise reduction are based on
the actual location where the noise reduction is required, e.g. civil aviation cabin noise
reduction or emission noise reduction. Considering the emission noise reduction, i.e. to
the free stream out of the boundary layer, then over-reflection should be avoided. If only
the near-wall noise reduction is considered, e.g. noise into the cabin, the second pattern
in figure 8 has advantages due to a weakened amplitude (loudness) of acoustic waves
near the wall. In some specific parametric intervals, however, the third pattern in figure 8
would occur. This pattern should be avoided in noise control, as the amplitude (loudness)
of acoustic waves is amplified both near the wall and in the free stream, and may induce
instability.

To achieve this, one possible way is to control the wavenumber in terms of the results in
§§ 3.1 and 3.2 and keep the frequency smaller than certain thresholds according to (2.17)
and figure 2. This could be achieved by a wave filter, which changes the wavelength and
the frequency. A device that exactly achieves these effects has been applied in the inlet and
outlet of a jet engine (Henderson 2010).

Another feasible way to control the noise is to change the wall condition, i.e. the
acoustic wall impedance. The investigation of the propagation of acoustic waves in
boundary layer flows with acoustic impedance conditions is a popular topic in recent
years, which stems from an interest in noise regulation by using acoustic liners in aircraft
engines. Representative work includes Rienstra & Darau (2011) and Brambley (2011),
who proposed modified Myers conditions with a finite boundary layer thickness, thus
avoiding the ill-posed problem in the time domain. Based on these, Gabard (2013) gave
the reflection coefficient of acoustic waves in half-space flows in terms of the Myers
(1980) condition and the modified Myers conditions and investigated the effect of acoustic
impedance and boundary layer thickness on it. In addition, he gave a comparison of the
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effect of sound absorption between results using the Myers condition and other impedance
conditions, one of which is derived based on the exact solution to the PBE for a special
case, i.e. a linear velocity profile. In our context, applying the acoustic impedance to
replace the current rigid-wall boundary condition will result in a different equation for
the reflection coefficient. In this way, the reflection coefficient can be regulated by varying
the acoustic impedance to find the optimal acoustic impedance to suppress or even hinder
over-reflection. A similar approach has already been applied to civil aviation. In Oppeneer
(2014), porous materials are applied to the liner wall of the auxiliary power unit of an
aircraft, which attenuates the noise.

In future work, we plan to investigate the relationship between unstable modes and
over-reflections by direct numerical simulations. By using different boundary conditions,
we can artificially separate the stability problem from acoustic over-reflection. Physically,
however, the two mechanisms should coexist and interact with each other. Therefore, we
argue that acoustic over-reflection in boundary layer flow is able to induce instability,
which is to be validated.
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Appendix A. Critical layer

As already shown, the PBE reaches a singularity if the phase velocity in the x-direction
coincides with the base flow velocity, which means ω = αu0( yc). This horizontal layer
is called the critical layer. We will first examine the behaviour of the solution at the
critical layer by using an asymptotic method, the Fuchs–Frobenius method. For this, we
first employ a change of the independent variable to ξ , defined by

ξ = ω

α
− u0( y) = ω

α
− (1 − e−y), (A1)

such that yc refers to ξ = 0, which converts the PBE (2.9) to

d2ρ̂

dξ2 − (ξ + 2)α − 2ω

ξ [(ξ + 1)α − ω]
dρ̂

dξ
+ (M2ξ2 − 1)α4

[(ξ + 1)α − ω]2 ρ̂ = 0. (A2)

A solution of (A2) in the vicinity of ξ = 0 can be derived as a power series using the
Fuchs–Frobenius method. Inserting the power series approach, given by

ρ̂(ξ) = ξ r
∞∑

k=0

akξ
k, (A3)

into the differential equation (A2) and sorting by powers of ξ yields the indicial equation
for r. It has two roots, which read r1 = 3 and r2 = 0, and indicate that their difference
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r1 − r2 = 3 is a positive integer. Following Olver et al. (2010), a regular implementation
of the method of Frobenius in this case fails to yield two independent solutions. Hence, a
second independent solution contains a logarithmic term and can be constructed by

ρ̂2(ξ) = cρ̂1(ξ) ln(ξ) + ξ r2

∞∑
k=0

bkξ
k, (A4)

where the constant c can be derived by re-inserting into (A2), starting with b0 = a0 = 1.
The first independent solution is given by

ρ̂1(ξ) = ξ r1

∞∑
k=0

akξ
k. (A5)

Near the critical layer, i.e. ξ → 0, the solution given by a linear combination of (A4)
and (A5) is considered to the leading order, and we obtain

ρ̂(ξ) = A(ξ3 + O(ξ4)) + B[c(ξ3 + O(ξ4)) ln(ξ) + 1 + O(ξ1)], (A6)

where A and B are two constants.
Re-inserting (A6) into (A2) yields, after some algebra,

c = −
4α(α − ω) + 3α5

α − ω

3(α − ω)2 . (A7)

From (A6) it can be concluded that the solution tends to be a constant near the critical
layer. Furthermore, c can be rewritten as

c = −
4α2

(
1 − ω

α

)
+ 3α4

1 − ω/α

3(α − ω)2 . (A8)

This shows that the constant c is, in the presence of a critical layer, always negative, since
the necessary condition for the occurrence of a critical layer is that ω/α ∈ [0, 1]. We will
use this knowledge in § 2.5 to show that R > 1 in this case.

Appendix B. Causality and the choice of branch cuts

As recognized by Brambley, Darau & Rienstra (2012), the choice of branch cuts is crucial
for the investigation of the critical layer. Thus, the question arises: Which criterion allows
us to choose the correct branch cut? We assume a causal signal. Following Dethe, Gill &
Green (2019): ‘causality states that the cause precedes the effects’. This means nothing
other than that an effect can only be affected by the temporally previous effects, and not by
the future. The causality condition can be formulated by regarding the response function
in Fourier space. As shown by Dethe et al. (2019), a causal solution mapped by a Fourier
transformation to ρ̂(ω) requires analyticity of the Fourier response function in the upper
complex ω half-plane. Since ξ = ω/α − u0, we require analyticity of the solution in the
upper complex ξ half-plane. (For simplicity, we restrict the consideration to positive values
of α. For negative α, the consideration would be reversed, but the outcome |R| > 1 stays
the same since the right-hand side of (2.37) would then also change its sign.)
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Im(ξ)

Re(ξ)

ξ2 ξ1

Figure 10. Regularized path of integration and choice of the branch cut.

As shown in Appendix A, the solution ρ̂ contains a logarithmic term; thus we have to
define the branch cut of the complex logarithm in the complex ξ plane.

The logarithm of a complex number ξ is defined by ln(ξ) = |ln(ξ)| + i arg(ξ). Since
arg(ξ) is 2π-periodic, we have to introduce a branch cut that ensures that, for every point
ξ in the complex plane, there is only one solution for ln(ξ). The branch cut is chosen to be
a straight line starting from the branch point ξ = 0, which is a singularity of ln(ξ).

If we choose the branch cut to be a straight line in the upper complex ξ half-plane,
there would be a discontinuity of ln(ξ), since arg(ξ) undergoes a jump at the branch
cut. However, this would contradict the causality condition, i.e. analyticity in the upper
complex ω half-plane. Therefore, the only possible choice for the branch cut of ln(ξ) is the
red straight line in the lower complex half-plane shown in figure 10.

Appendix C. Derivation of the extended unitarity condition

In this section, an extended unitarity condition given by (2.47) is derived. It gives a relation
between the amplitude of density perturbation, its derivatives at the critical layer and the
reflection coefficient R. For this purpose, we first multiply (2.34) by ρ̂∗, the complex
conjugate of ρ̂, take the imaginary part of the equation (which allows us to identify the
reflection coefficient on the left-hand side), integrate it and split up the resulting integrals,
which yields

Im
(

dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ2

ỹ1

= −
∫ ỹ2

ỹ1

Im
(

M2

(ω − αu0)2

)
|ρ̂|2 dỹ +

∫ ỹ2

ỹ1

Im
(

α2

(ω − αu0)4

)
|ρ̂|2 dỹ.

(C1)
In order to deal with the integrals that occur in (C1), which have a singularity at the critical
layer yc, transformation of the independent variable to ξ , as given by (A1), is used again
and yields

Im
(

dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ2

ỹ1

= Im
(∫ ξ2

ξ1

1
ξ2

α2M2|ρ̂|2
du0/dỹ

dξ

)
− Im

(∫ ξ2

ξ1

1
ξ4

α6|ρ̂|2
du0/dỹ

dξ

)
. (C2)

Both integrals in (C2) have a singularity at ξ = 0, which corresponds to the localization
of the critical layer. Provided that the parameter set induces a critical layer, the value of the
imaginary part of these integrals is non-zero due to the singularity, even if the integrals
contain only real values. For the treatment of integrals containing singular functions, we
would like to refer to the theory of distributions in the context of generalized functions.
For further literature, please see Galapon (2016). The main outcome can be summarized
in the Sokhotski–Plemelj–Fox theorem, given by formula (C4). Since we have to treat the
singularity occurring in (C2) in a distributional context, even an integral containing only
real quantities must be split up into real and imaginary parts due to the regularization
process. If there is no critical layer, then there is no singularity in the integrands, the
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integrals are real, and the imaginary parts of these integrals vanish. Further information
can be found for example in the book of Lighthill (1958).

In order to evaluate the singular integrals, i.e. regularize the singularity, a small
imaginary frequency iε is added to the singularity, i.e. ω → ω + iε . Thus, weak temporal
growth of the solution is allowed, consistent with the causality theory. The regularization
and the chosen branch cut for the logarithmic term in the solution is shown in figure 10. It
can be easily seen that a regularization of the path of integration (blue) by ω − iε would
intersect with the branch cut and would thus cause another discontinuity in the integral.
Therefore, the given choice ω + iε is the one that is consistent with the causality theory.

In the next step, the limit ε → 0 is taken, which represents the purely acoustic case, i.e.

Im
(

dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ2

ỹ1

= lim
ε→0

(
Im
∫ ξ2

ξ1

1
(ξ + iε)2

α2M2|ρ̂|2
du0/dỹ

dξ

− Im
∫ ξ2

ξ1

1
(ξ + iε)4

α6|ρ̂|2
du0/dỹ

dξ

)
. (C3)

In order to deal with the higher-order singular integrals, the Sokhotski–Plemelj–Fox
theorem described in Galapon (2016) is applied, which includes the idea of separating the
finite part from the divergent integral. The theorem reads as follows:

lim
ε→0

∫ b

a

f (x)
(x + iε)n+1 dx = PV

∫ b

a

f (x)
xn+1 dx − iπ

f (n)(0)

n!
, (C4)

if a < 0 < b holds. Therein, PV refers to Cauchy’s principal value.
To fulfil this condition in (C3), the behaviour in ξ is investigated. The limits of

integration, i.e. y = 0 and y → ∞, change using (A1) to ξ1 = ω and ξ2 = ω − α. Since
the following derivation is intended to consider specifically the case of a critical layer
at position ξ = 0 lying within the physical area, it has to be assumed in the following
that ω < α, which is the condition for the existence of a critical layer. To apply the
Sokhotski–Plemelj–Fox theorem (C4), the limits of integration in (C3) are swapped, which
leads to

Im
(

dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ2

ỹ1

= − lim
ε→0

(
Im
∫ ξ1

ξ2

1
(ξ + iε)2

α2M2|ρ̂|2
du0/dỹ

dξ

− Im
∫ ξ1

ξ2

1
(ξ + iε)4

α6|ρ̂|2
du0/dỹ

dξ

)
, (C5)

where ξ2 < 0 < ξ1.
Since the Cauchy principal value in (C4) represents the finite part of the integral, it is,

if f (x) is a real function, a real value. Since we limit to the imaginary parts of the integrals
in (C5), the principal value vanishes in the application of (C4) on the right-hand side of
(C5), which yields

Im
(

dρ̂

dỹ
ρ̂

∗
)∣∣∣∣ỹ2

ỹ1

= π

[(
M2α2 d

dξ
− α6

6
d3

dξ3

) |ρ̂|2
du0/dỹ

]∣∣∣∣
ξ=0

. (C6)

With this, the derivation of (2.45) is complete and it has been used in (2.37) to obtain
(2.47). Transforming (C6) back to the initial independent variable y and simplifying yields
(2.47).
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ωr / φ / R α = 4 α = 7 α = 10

M = 4 — / — / — 4.35 / 66.3 / 1.00011 5.52 / 63.1 / 1.00005
M = 4.5 2.84 / 71.8 / 1.00116 4.07 / 67.5 / 1.00233 5.14 / 64.4 / 1.00084
M = 5 2.69 / 72.7 / 1.01477 3.83 / 68.6 / 1.01282 4.82 / 65.5 / 1.00491

Table 1. Values of the resonant frequency ωr, incident angle φ and over-reflection coefficient R at which the
second unstable modes occur for different α and M.

ωr / φ / R α = 7 α = 10

M = 4 5.21 / 70.4 / 1.00000000000283 6.60 / 67.8 / 1.00000006739935
M = 4.5 4.89 / 71.5 / 1.00001182456871 6.17 / 68.9 / 1.00002458761766
M = 5 4.62 / 72.4 / 1.00064208260075 5.81 / 69.9 / 1.00049307847717

Table 2. Values of the resonant frequency ωr , incident angle φ and over-reflection coefficient R at which
THE third unstable modes occur for different α and M.

Appendix D. Data for higher unstable modes

In this section, data on the resonant frequencies for higher unstable modes are shown in
the form of tables. Tables 1 and 2 show the data regarding the second and third unstable
modes. Specific wavenumbers and Mach numbers are selected in order to correspond to
the cases in figure 7. With these parameters, the resonant frequency ωr, the incident angle
φ and the over-reflection coefficient R are given.
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