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Behavioural rhythms in marine species have been mostly investigated in laboratory organisms and their expression within the
animals’ natural environments remains largely unknown. Here, we studied diel (i.e. 24-hours-based) and intra-diel (i.e.
12-hours-based) rhythmic variations in the abundance of seven shallow rocky-reef fish species, namely Coris julis,
Epinephelus marginatus, Sarpa salpa, Serranus cabrilla, Serranus scriba, Sparisoma cretense and Thalassoma pavo,
along the rocky shores of Linosa Island (Mediterranean Sea). Data were visually collected by trained volunteers along
fixed transects at 3-hourly intervals throughout six consecutive 24-hours periods. Density estimates can vary greatly
between consecutive days and during 24-hours periods according not only to the major day–night changeover but also to
minor intra-diel variations at the daylight hours. In the case of T. pavo, C. julis, S. cabrilla and S. salpa waveform analyses
showed midday troughs in abundance within the 24-hours period but significant variation within the hours of daylight was
highlighted only for T. pavo. Although results were not conclusive at the intra-dial level, the employment of volunteers rep-
resented a valuable tool for chronobiology, suitable to improve our understanding of fish behaviour in natural systems.
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I N T R O D U C T I O N

All living organisms studied thus far exhibit rhythms at differ-
ent levels of their biological organization provoked by the
rotation of the Earth on its axis and the relative position of
the sun and moon (i.e. geophysical cycles: Aschoff, 1981). In
oceans, these cycles take the form of day–night light intensity
variations or currents speed variations, as the product of tidal
pulls (reviewed by Aguzzi et al., 2010). Accordingly, marine
animals vary their activity with a diel (i.e. 24-hours-based)
periodicity. That rhythmic activity may result in massive dis-
placements and migrations of organisms within substrata or
between depth zones of the water column and the continental
margin (Naylor, 2005). Rhythms can also manifest as
increases and decreases in the rate of swimming (e.g. fishes:
Reebs, 2002), locomotion (e.g. crabs and lobsters: Palmer,
2000; Chiesa et al., 2010), or crawling (e.g. polychaetes: Last
et al., 2009).

Chronobiology is the field of biology that examines cyclic
phenomena in living organisms (Reebs, 2002). To date, this
science has been seldom applied in field studies of both land
and marine species (Naylor, 2005). In fact, behavioural
rhythms are largely analysed in laboratory organisms, so that
their expression within the animals’ natural environments

remains largely unknown (Mrosovsky & Hattar, 2005).
Conversely, studies on these rhythms in the field do not
often comply with daily variability (Aguzzi & Bahamon,
2009) with some exception (e.g. Curley et al., 2002;
Gladstone, 2007). Therefore, 24-hours-based investigations
in wild populations can be of importance when estimating
the potential effects of diel variability of fish communities.

Fishes are excellent models for activity rhythm studies and
the rhythmicity of fish behaviour is well known under con-
trolled conditions (as reviewed by Helfman, 1993; Kasai
et al., 2009; Yammouni et al., 2011). However, relatively
little information exists regarding fish biorhythms in the
wild with the exception of gross day–night changes
(Thompson & Mapstone, 1997; Willis et al., 2006; Azzurro
et al., 2007). Among Mediterranean fish communities day–
night changeover has been evidenced using beach seines,
trawl surveys and hydroacoustic techniques (see Azzurro
et al., 2007 for a review) with documented changes in
feeding or habitat types occupation from day to night
(Harmelin-Vivien, 1982; Bell & Harmelin-Vivien, 1983).
Nevertheless, few studies have conducted repeated sampling
at different times of the day (Spyker & van den Berghe,
1995; Letourneur et al., 2001; Willis et al., 2006) and scant
information on 24-hours cycles is available. Although the
understanding of these rhythms is the goal of chronobiology,
poor cross-communication, if any, exists between this science
and ecology (Marques & Waterhouse, 2004; Morgan, 2004).
Indeed, laboratory-based chronobiology commonly deals
with time-series gathered at minute and hourly frequency
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over several consecutive days (Aguzzi et al., 2010) whereas
field behavioural studies are particularly difficult to perform
at such frequency.

Visual census is the method used most often to analyse lit-
toral fish communities (Harmelin-Vivien et al., 1985). This
technique has been occasionally used to study diel variation
in Mediterranean species (Azzurro et al., 2007) but some
obvious complexities have emerged that make it impossible
to demonstrate the existence of uniform patterns (Willis
et al., 2006). Large amounts of data and intensive sampling
designs are required to overcome this constraint. In this
context, we considered collaborating with scientists and vol-
unteers as an efficient means to perform extensive temporally
scheduled surveys (Greenwood, 1994; Pattengill-Semmens &
Semmens, 2003; Bonney et al., 2009). This synergy, which is
termed ‘Citizen Science’, has recently emerged as a new
environmental monitoring technique (Silvertown, 2009).
Here we carried out a novel and interdisciplinary effort
using a team of trained volunteers who collected data at mul-
tiple sampling cycles with intra-diel frequency. Our aim was to
test for the existence of rhythmic patterns in the abundances
of rocky fish species and to describe this variation.
Specifically, we wanted to: (1) test for the presence of signifi-
cant variability at the diel (i.e. 24-hours based) and intra-diel
(i.e. 12-hours based) level; (2) gain an overview on the general
character and robustness of the species rhythms; and (3) to
statistically assess their phasing.

M A T E R I A L S A N D M E T H O D S

Study area and the studied species
The study was performed along the rocky shores of Linosa
(35885′N 12885′E), a small volcanic island located in the
middle of Sicily Strait (Mediterranean Sea), 165 km from the
African coast and 167 km off the coast of Sicily (Italy).
Linosa was declared a Marine Protected Area in 2002. Two
different locations at Linosa Island (Figure 1) were surveyed
between 27 June and 2 July 2010. At that time, sunset and
sunrise were at 5:47 and at 20:30 h, respectively.

We selected 7 target species on the basis of: (1) their eco-
logical relevance; (2) their abundance in the study area; and

(3) the feasibility of their visual identification (during both
day and night). The species were: the dusky grouper
Epinephelus marginatus (Linnaeus, 1758); the ornate wrasse,
Thalassoma pavo (Linnaeus, 1758); the parrotfish, Sparisoma
cretense (Linnaeus, 1758); the rainbow-wrasse, Coris julis
(Linnaeus, 1758); the painted comber, Serranus scriba
(Linnaeus, 1758); the comber, Serranus cabrilla (Linnaeus,
1785); and the salema, Sarpa salpa (Linnaeus, 1758).
Epinephelus marginatus, T. pavo and S. cretense have recently
widened their distribution, a fact that may be linked to their
thermophilic habit (Azzurro et al., 2011). Coris julis, S.
scriba, S. cabrilla and S. salpa are common and widespread
throughout the Mediterranean, although S. salpa is now
becoming rare in many areas of the Levant Basin (Bariche
et al., 2004).

Trained volunteers and sampling procedures
Thirty zoology graduates (Bachelors in Biology and Natural
Sciences of the University of Pavia, Italy) divided into two
groups of 15, volunteered to collect the field data. Operators
were intensively trained in fish recognition for two days
before sampling. Sessions included species identification,
examinations and visual trials based on established practices
of Citizen Science (e.g. Pattengill-Semmens & Semmens,
2003). The efficiency of the volunteers in species identification
and counting was corroborated by an experienced scientist,
co-authoring the present paper, who carried out preliminary
trials, in tandem with each volunteer. After the surveys, the
collected data were verified to test for possible outliers.

In each sampling area, 6 randomly chosen transects
approximately parallel to the coast were permanently marked
with a coloured tape 50 m in length, fixed on the bottom at
3 m depth. Fish censuses were performed by swimming
along the centre line of each transect and counting all individ-
uals for each targeted species within 2.5 m on either side (i.e.
approximately 250 m2 of total area) for a maximum time of
5 minutes. Transects were surveyed every three hours by obser-
vers who were randomly chosen using the random number
generator application of Minitab 12.0 Student Edition
Software.

In each location, sampling was performed over 8 temporal
windows of 30 minutes each centred around the following
times: 5:30, 8:30, 11:30, 14:30, 17:30, 19:30, 22:30 and 2:30 h.
Nocturnal observations were carried out using a 50 W
torch, following the method of Azzurro et al. (2007).
Temporal censuses were repeated over three consecutive
days at each location. Overall, 12 permanent transects were
surveyed corresponding to a seafloor area of approximately
3000 m2. The total number of replicated trials was 288, corre-
sponding to the sum of 72,000 m2.

Statistical analyses
The data were square root transformed overall and an
adjusted Bray–Curtis measure of similarity plus an added
dummy variable (¼1) was used to calculate the resemblance
matrix as is appropriate for datasets containing many zeros.
A non-metric multidimensional scaling (nMDS) (Clarke,
1993) based on the Bray–Curtis similarity matrix was used
to visualize the ordination of samples within a three-
dimensional space.

Fig. 1. Study locations (A, B) at Linosa Island (35885′N 12885′E) within the
Central Mediterranean (Sicily Strait).
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To test for the occurrence of temporal variation in the
entire set of species at the scale of days and hours we used a
two-way permutational multivariate analysis of variance
(PERMANOVA: Anderson, 2001) considering the 3-hour
time periods (i.e. the term ‘Time’) as fixed with 8 levels. The
24-hours cycle (i.e. the term ‘Day’) was considered as
random with 3 levels. As the participation of single volunteers
was randomized with respect to the terms ‘Time’ and ‘Day’, we
assumed that data variability regarding the subjectivity of
species recognition had no effect on between-treatment
comparisons.

To gain an overview on the general character and robust-
ness of the species rhythms, visual observations for all selected
species were represented over time. Data sets were plotted as
the average number of observations of all transects for each
corresponding 3-hours period, standardized over the total
transect surface (250 m2). In the graphing, the timing of
sunset and sunrise were also considered.

Population behavioural rhythms are intrinsically noisy, due
to the variable synchronic activity of all constituting individ-
uals (e.g. Jadot et al., 2002; Aguzzi et al., 2010). To statistically
quantify the consistency (i.e. repeatability) of any putative diel
fluctuation, we used periodogram analysis. Significant period-
icities were detected using the Lomb–Scargle periodogram,
based on the least-square fitting of sine waves to the data in
the time-range from 0 to 30-hours. This method provided
consistent period estimation for time-series of short duration
(Schimmel, 2001), such as those typically obtained in the field.
In periodograms, the highest significant (P ¼ 0.05) peak rep-
resented the maximum percentage of total data variance fitted
by the corresponding periodicity. The peak value was chosen
for period attribution of the analysed time-series.

To statistically assess the phasing of biorhythms in relation
to day–night alternation we used waveform analysis, a meth-
odology currently used in laboratory chronobiology
(Fernández et al., 2009). Time-series were subdivided into
sub-sets of 24-hours duration (i.e. 8 time-interval values in
each). The data for all subsets were averaged based on corre-
sponding time periods. Averages and their standard devi-
ations were represented as a consensus plot over 24-hours
(i.e. the waveform). A daily mean was estimated by
re-averaging all waveform values. The resulting estimate was
represented on the waveform plot as a threshold line. All
waveform values above this line indicated a significant incre-
ment in population activity rhythm. The threshold line also
indicated the temporal limits of peaks allowing the activity
timings of different species to be compared with each other
(Aguzzi et al., 2009). This procedure was carried out similarly
to the Mean Estimate Statistic Of Rhythm procedure
(MESOR: Aguzzi et al., 2006). MESOR is the value midway
between the highest and the lowest values of a cosine function
best fitting rhythmic time-series.

The percentage of activity occurring during daylight in
relation to the total activity that each animal carried out
throughout the 24-hours period was calculated based on indi-
vidual waveforms and used to assess either the diurnal or
nocturnal activity distribution. Behavioural patterns were
identified as diurnal when photophase activity was greater
than 60% and as nocturnal when less than 40% (Chiesa
et al., 2010).

To explore the occurrence of intra-diel activity patterns we
used Fourier analysis because it can detect the 12-hours peak
patterns in rhythms that show certain variability over

consecutive days (Dı́ez-Noguera, 2006). Time-series were ana-
lysed with that technique by setting both a fundamental har-
monic with a period of 24-hours to study the diel variation
and setting its submultiple at 12-hours to study the intra-diel
variation. The minimum square fitting of these cosine func-
tions onto consecutive 24-hours data sections of species
time-series was estimated. For regularly sampled series, the
quadratic power of the amplitude of each cosenoidal function
(i.e. the harmonic) obtained from the Fourier decomposition
is defined as the harmonic power content (PC). This value
can be expressed as the percentage of the total variance in
the time-series explained by the least-squares fitting of each
harmonic (Dı́ez-Noguera, 2006). The PC was obtained as
the percentage of variance of the time series segment
explained by these harmonics (PC24 and PC12). A repeated-
measures analysis of variance (ANOVA) was designed to
study differences in PC values between days and species as
factors after having verified the assumptions of this test.
Two-way ANOVA was also designed to study the PC harmo-
nics and the species as factors. Multivariate analyses were per-
formed with the PRIMER 6 + PERMANOVA software
package from Plymouth Marine Laboratory, UK. The software
package STATISTICA 8.0, from StatSoft, Inc, was used for
univariate analyses.

R E S U L T S

The mean number of individuals per species at each transect
of the two sampling areas is listed in Figure 2. The most abun-
dant species were, in order of abundance, T. pavo, C. julis, S.
cabrilla, S. scriba, S. salpa, S. cretense and E. marginatus.

Multivariate analyses
The day–night changeover was well represented by the nMDS
time periods (Figure 3) which showed a clear-cut separation
among diurnal and nocturnal surveys and PERMANOVA
outputs (Table 1) showed significant differences for the
factor ‘Time’ in both locations A and B. On the other side,
12-hours based patterns were not apparent in the multivariate
ordination with no clear separation between within-night nor

Fig. 2. Square root-transformed mean abundances (number of individuals in
250 m2) of target fish species registered at locations A and B (see Figure 1).
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within-day trials. Significant between-days differences were
observed only at location A, and a significant interaction
between ‘Time’ and ‘Day’ was highlighted at both sites.

Chronobiological analyses
As expected, all the targeted fish species showed a sharp day–
night fluctuation in their counts (Figure 4). Higher abun-
dances were apparent during daylight hours, with minima
commonly recorded during the central darkness hours.
Lomb–Scargle periodogram analysis detected significant diel
periods (i.e. close to 24-hours) in three of the studied
species. Coris julis presented a peak corresponding to a
period of 24.9 hours (i.e. 24-hours, 54 minutes). Serranus cab-
rilla exhibited a peak with a period of 23.30 hours (i.e. 23
hours, 27 minutes). Thalassoma pavo showed the highest
peak of all species, with a period of 23.60 hours (i.e. 23

hours, 36 minutes). No significant peak was found in the per-
iodogram of the remaining species given the low levels in
visual counts (see Figure 4). Waveform analysis reported the
phase onset and phase offset of significant (i.e. above the
daily mean) increases in visual count for all targeted species
(Figure 5). These coincided with the sampling time intervals
that included sunset and sunrise.

A weaker bimodal phase with a drop in correspondence
with central hours of the day was apparent, although not stat-
istically significant, in waveform profiles of C. julis, S. cabrilla,
S. scriba, and finally T. pavo for which PERMANOVA showed
instead significant variation within the daylight for the term
‘Time period’ (Pseudo F ¼ 2.223, P perm , 0.05) and a sig-
nificant interaction between the terms ‘Day’ and ‘Time’
period (Pseudo F ¼ 2.5047, P perm , 0.01). The term ‘Day’
was not significant for this species (Pseudo F ¼ 1.0985,
P perm ,0.05).

Waveforms featured high activity percentages during day-
light hours in all species: C. julis, 78%; E. marginatus, 75%;
S. cabrilla, 80%; S. cretense, 82%; S. salpa, 74%; S. scriba,
73%; and T. pavo, 82%.

Fourier analysis provided the percentage of variance
explained by both 24-hours and 12-hours harmonics (i.e.
the PC) in time-series sections of one-day duration
(Figure 6). ANOVA indicated the occurrence of similar
values of PC24 and PC12 for all days in all species. In contrast,
comparisons among different species presented significant
differences (PC24-hours: P , 0.05 for the repeated measures,
P , 0.0001 for the species; PC12: P , 0.05 for the repeated
measures, P , 0.001). Significant differences were found
considering the harmonics and the species as factors in a
two-way ANOVA (for the harmonics: P , 0.0001; for the
species: P , 0.0001).

D I S C U S S I O N

Diel variability
Multivariate analysis showed an expected sharp day–night
changeover in the group of chosen species. Waveform analysis
was used to evaluate both the phase and the amplitude stab-
ility of the 24-hours activity pattern in our selected species
based on the variability of the averaged visual count bins in
relation to the daily mean (i.e. as significant increments or
decrements).

First, assuming that our result is more accurate for those
species showing higher abundances, a diurnal temporal niche
was observed with high activity percentages (i.e. greater than
70%) during daytime in all species. Waveform profiles depicted
sharp 24-hours cycles for C. julis, S. cabrilla and T. pavo, the
24-hours rhythms of which were statistically proven by period-
ogram analysis. This was also confirmed by the Fourier analy-
sis, where the 24-hours harmonic component showed better
time-series fits for these species. In some cases, these results
confirm previously published behavioural observations. For
example, C. julis leave just before dusk and return to the fora-
ging area around dawn; in aquaria, it buries itself within the
sand at night (Videler, 1986). Similarly, S. scriba, seems to
decrease in activity at night, when many individuals were
observed remaining in hiding under Posidonia oceanica leaves
(March et al., 2010). A decrease in the nocturnal abundance
of T. pavo, C. julis, S. scriba, S. cretense and many other

Table 1. Permutational multivariate analysis of variance based on the
Bray–Curtis dissimilarity measure for square root-transformed abun-
dance data in locations A and B. The test was performed using 9999
permutations under the reduced model. Values for different levels
of significance are reported as follows: ∗, P , 0.05; ∗∗, P ≤ 0.01; ∗∗∗,

P ≤ 0.001.

Source A B Pseudo-F
df MS Pseudo-F MS

Time 7 19.147 10.91∗∗∗ 20.440 20.82∗∗∗

Day 2 2.215 4.77∗∗∗ 215.1 0.39
Time × Day 14 1.755 3.78∗∗∗ 981.5 1.80∗∗∗

Residuals 120 464.1 544.8
Total 143

Fig. 3. Non-metric multi-dimensional scaling three-dimensional ordination
of the site’s centroids comparing the species recorded during the 8 periods.
The replicate symbols indicate the 3 days for each time period.
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rocky-reef fishes was observed by Azzurro et al. (2007), but
without any further observations regarding their rhythmic
activity.

Periodogram analysis of S. scriba and S. cretense failed to
show any significant diel rhythm. Regardless, a diurnal
niche is also evident based on waveform analysis for these
species. The non-significant periodogram outputs are reason-
ably explained by the interaction between the terms ‘Day’ and
‘Time’ in our design (see Table 1), whereas for E. marginatus,

lower count values are responsible for the non-significant per-
iodogram results (Schimmel, 2001).

Diel fluctuations in the counted fishes reported in this
study can be explained in terms of changes in the behaviour
of the constitutive individuals, which depend on the day–
night alternation. Even though the observed nocturnal drop
in counts is mostly related to the inactivity and sheltering of
the studied species in response to darkness (Azzurro et al.,
2007), these variations could also occur in relation to habitat

Fig. 4. Time-series of visual observations (standardized for transect total area) for all selected species for the two study locations (A and B; see Figure 1). Vertical
dashed lines delimit visual counts for the two locations. Grey vertical rectangles represent night.
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use. This includes bathymetric shifts (Spyker & van den
Berghe, 1995; Colmenero et al., 2010), which may depend
on changes in feeding behaviour (Piet & Guruge, 1997;
Letourneur et al., 2001; Carpentieri et al., 2006) and predator
avoidance (Copp & Jurajda, 1993; Arrington & Winemiller,
2003).

Intra-diel variability
While both, multivariate and univariate analyses were highly
effective in detecting day–night variation, our study provided
only a weak evidence of the existence of an intra-diel pattern
in the counts of rocky-reef fishes. This finding would confirm

Fig. 5. Waveform analysis findings for the time-series of visual observations of the selected species. The horizontal line is the daily mean, and values above that line
represent significant increases in visual counts (i.e. the phase). Upward and downward arrows indicate the first and the last activity value above the daily mean,
representing the timings of the waveform peak onset and offset, respectively.
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a general and well-known difficulty in extrapolating intra-diel
variability in fish assemblages globally (reviewed by Willis
et al., 2006). Certainly, the elevated between-transect variabil-
ity of visual counts was the basis of this constraint. Even if the
term ‘Time’ was highly replicated in our design and the
sample unit area was doubled with respect to standard strip-
transects (Harmelin-Vivien et al., 1985), the statistical power
of our tests was not sufficient to detect multivariate signals
at the intra-diel level. Other unexplored sources of variation,
including individual changes in mobility (Jadot et al., 2002),
could have masked the existence of a main effect at the intra-
day level. Nevertheless some weak but apparent signals were
detected in three of the study species. In fact, waveform analy-
sis showed midday troughs in C. julis, S. scriba and T. pavo
with a significant within-day variation for T. pavo. As a
matter of fact, midday troughs in abundances have been high-
lighted for many marine organisms because of parallel
decreases in their behavioural activity (as reviewed by
Aguzzi et al., 2010). These decreases in animal activity at
central photophase hours could be associated with crepuscular
peaks in activity rhythms, as documented for some marine
fishes (Jadot et al., 2002 and references therein). Sarpa salpa
represents another example of within-day variability.
Waveform analysis showed minimal abundance during the
first diurnal time interval (Figure 4) possibly due to a late
beginning of activity (Jadot et al., 2006) or to regular
migrations within the home range (Jadot et al., 2002). For
the remaining species, no intra-diel pattern could be
established.

Certainly, this study should be replicated on a wider spatial
scale to verify the coherence and stability of observed patterns
and eventually to investigate the causative factors. Fourier
analysis indicated an elevated value of PC24 that was not sig-
nificantly different from the PC12 in all species (see Figure 6).
In some cases, both values were similar, suggesting consistency
of the bimodal fluctuation within the overall 24-hours fluctu-
ation by peak splitting. The results of the 12-hours harmonic
fitting suggest the occurrence of crepuscular peaks in the time-
series for C. julis, which featured the highest PC12 value and a
clear 12-hours peak related to sunrise in the waveform.

Intra-diel fluctuations in visual counts could be the product
of differential swimming activity at certain times of the day,

which rendered individuals more or less visible in key
moments of the photophase (Hobson, 1965; Ebeling & Bray,
1976; Colton & Alevizon, 1981). Moreover, the disturbance
created by the observer cannot be completely disregarded.
In fact, the behavioural response of fish to the diver is expected
to vary at different times of the day, and this might contribute
to count variability (Thompson & Mapstone, 1997).

The contribution of trained volunteers
The engagement of trained volunteers was crucial to perform-
ing a high ‘Time’ level replication within treatments and to
collect substantial amounts of data in a short period of time.
The manpower provided by this group of observers served
to satisfy chronobiological sampling requirements. Although
the use of volunteers is not novel in biodiversity (Evans
et al., 2001) and ecological (Foster-Smith & Evans, 2003)
studies their employment can be considered original for
chronobiology. It allowed us to approach fish in their
natural environment.

A common concern regarding Citizen Science is the quality
of data. As a matter of fact, Citizen Scientists may vary in their
skill, compared to professional observers. This source of bias
can be reduced much after personalized training and with
the adoption of simple methods, adequate sampling efforts,
improving identification of species and confortable habitats
to sample (Dickinson et al., 2010). On the other hand, a
limited expertise of contributors and complicated tasks
should be discouraged, since it can lead to the collection of
poor quality or even misleading data (Fitzpatrick et al.,
2009). When simple and standardized protocols are used,
trained volunteers can provide data of comparable quality to
professionals (Gillett et al., 2012 and references therein). In
this respect, marine fish have received considerable attention
by Citizen Science through the use of volunteers to collect
data regarding species occurrence and distribution (reviewed
by Stallings, 2009; Ward-Paige et al., 2010, 2011). We
engaged volunteers in a specific training and conceived a
strict and easy protocol that guided them in their visual
counts. Data were pooled from multiple observers with
broadly similar levels of experience and this usually helps to
guarantee data quality (Williams et al., 2006). Certainly,

Fig. 6. Fourier analysis findings as the mean (+ SEM) power content (PC) obtained for all species by the fitting of two harmonics of submultiple periods
(i.e. 24-hours, PC24 and 12-hours, PC12) on visual count time-series segments of 24-hours duration.
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individual differences in the efficacy of observation (e.g.
Lincoln-Smith, 1988) might still have contributed to
augment the variability in counts, but the random selection
of volunteers with respect to the design factors eliminated
the possibility of bias related to this factor.

The characterization of 24-hours patterns in visual count
data for wild rocky-reef fishes is a challenging research
target. In this paper, we provide evidence that density esti-
mates can vary greatly during 24-hours periods according
not only to the major day–night changeover but also to
minor intra-diel variations observed during daylight hours.
Chronobiological analyses, although far from conclusive,
helped us to illustrate bimodal cycles within the 24-hours
period, at least for the most abundant species such as
C. julis, S. cabrilla and T. pavo. These regular fluctuations
are probably species specific and possibly related to different
activity rhythms or to a different use of space with an effect
on their abundance and visibility to divers. This must be
taken into account for performing reliable fish visual census
estimates. Nevertheless we showed that intra-diel temporal
factors can be particularly weak with respect to other
sources of variability of these species on a local scale, such
as to the between-day variability. Together, these results
show promise with regard to identifying significant intra-diel
patterns in wild littoral fishes. The presence of such regulation
deserves to be further investigated in field studies possibly for
longer durations of time (.6 days). The present study shows
that sophisticated laboratory chronobiology paradigms can be
efficiently used in the context of field studies with natural
populations. Hopefully, this methodological transfer from lab-
oratory analysis to field sampling will help us to clarify diel
patterns in littoral fishes, which remains one of the most neg-
lected sources of variability in the assessment of natural popu-
lations. The future use of trained volunteers in chronobiology
studies could contribute to improve our understanding of fish
behaviour.
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