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Vortex-induced vibrations of a cylinder with
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(Received 20 December 1999 and in revised form 1 June 2001)

Thin wires are attached on the outer surface and parallel to the axis of a smooth
circular cylinder in a steady cross-stream, modelling the effect of protrusions and
attachments. The impact of the wires on wake properties, and vortex-induced loads
and vibration are studied at Reynolds numbers up to 4.6 × 104, with 3.0 × 104 as
a focus point. For a stationary cylinder, wires cause significant reductions in drag
and lift coefficients, as well as an increase in the Strouhal number to a value around
0.25–0.27. For a cylinder forced to oscillate harmonically, the main observed wire
effects are: (a) an earlier onset of frequency lock-in, when compared with the smooth
cylinder case; (b) at moderate amplitude/cylinder diameter (A/D) ratios (0.2 and 0.5),
changes in the phase of wake velocity and of lift with respect to motion are translated
to higher forcing frequencies, and (c) at A/D = 1.0, no excitation region exists; the
lift force is always dissipative.

The flow-induced response of a flexibly mounted cylinder with attached wires is
significantly altered as well, even far away from lock-in. Parameterizing the response
using nominal reduced velocity Vrn = U/fnD, we found that frequency lock-in occurs
and lift phase angles change through 180◦ at Vrn ≈ 4.9; anemometry in the wake
confirms that a mode transition accompanies this premature lock-in. A plateau
of constant response is established in the range Vrn = 5.1–6.0, reducing the peak
amplitude moderately, and then vibrations are drastically reduced or eliminated
above Vrn = 6.0. The vortex-induced vibration response of the cylinder with wires is
extremely sensitive to angular bias near the critical value of Vrn = 6.0, and moderately
so in the regime of suppressed vibration.

1. Introduction
Protrusions, structural imperfections, and attachments on the surfaces of bluff cylin-

ders are known to have a considerable effect on the vortex formation process, and
hence on the loads and resulting oscillations of flexibly mounted cylinders. In most
applications involving bluff cylinders, such as marine cables and risers, towed tethers,
chimney stacks, and bundles of conducting pipes, the surfaces contain imperfections.
Furthermore, structural supports, auxiliary pipes in marine risers, attachments, con-
nectors, and surface ridges or grooves created by helically wound cables or ropes,
invariably introduce surface imperfections that disturb the nominally smooth flow.
While the complexities of the imperfections play a role in the changes of the flow
structure, the basic impact of the imperfection is in tripping the boundary layer,
causing potentially substantial changes in the separation point, especially at higher
Reynolds numbers.
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Fage & Warsap (1929) first studied the effect of small protrusions on non-oscillating
cylinders, and showed that certain configurations of thin wires, stretched parallel to
the cylinder axis, or rough paper, reduce the drag coefficient and alter the pressure
distribution. These effects are pronounced even when the wire diameters and roughness
scales are smaller than the laminar boundary layer thickness, and they are enhanced at
higher Reynolds numbers. Fage & Warsap further noted the qualitative and sometimes
quantitative similarities between the changes caused by the protrusions, and changes
brought about by natural flow transition at a critical Reynolds number near 2.5×105.
Others have studied stationary, or slightly moving, cylinders in supercritical flow,
including Fung (1960), Roshko (1961), Jones, Cincotta & Walker (1968), Bearman
(1969), Schewe (1983), and Shih et al. (1993). The principal characteristic of the flow
as the Reynolds number reaches the critical value is a dramatic reduction in drag
coefficient from 1.2 to about 0.3, and then a recovery to a value of about 0.5–0.7 in
the transcritical regime above Re ' 3.5× 106. These variations are correlated with a
wake width that varies with Reynolds number.

The effect of wires on the flow over a subcritical cylinder has been studied more
recently by James & Truong (1972) and Igarashi (1986), who considered a number
of different wires and placement angles with respect to the stagnation point. Igarashi
further classified the results into three distinct patterns, and flow visualization showed
that the various drag and pressure trends relate directly to distinct flow separation
conditions. The flow may either (a) relaminarize beyond the wire, (b) immediately
form a turbulent boundary layer, or (c) separate at the wire. Results in the second
case resemble the naturally occurring critical flow at a much higher Reynolds number,
whereas the flow in the first case resembles that of a smooth cylinder, and in the third
case an abnormally early separation occurs. Igarashi found that turbulent boundary
layers are created near the same angles employed by Fage & Warsap (1929), i.e. near
±65◦. The strong local flow disturbance and early transition to turbulence in the
boundary layer caused by the wires thus provides an explanation for the phenomena
observed, and for the similarity with the characteristics of high Reynolds number
flows. The use of thin wires on an otherwise smooth cylinder has also received
attention in the area of tube bundles: recent work by Romberg & Popp (1998), for
example, parameterizes the stability properties of a single flexible tube embedded in
a heat exchanger bundle, with and without tripping wires.

It is tempting to model the flow around cylinders at critical and supercritical
Reynolds numbers through the appropriate use of wires at lower Reynolds number
values. Building on the results of Fage & Warsap (1929), however, Pearcey, Cash &
Salter (1982) showed that while some of the drag and mean pressure characteristics
of subcritical cylinders with wires match those of true supercritical flow, there are
serious difficulties encountered at the lower Reynolds numbers, where the wires must
be quite large to achieve the desired effect. In addition, no systematic data exist
for cylinders oscillating at high amplitude in the supercritical regime, and until they
become available, the hypothesis that the effect of trip wires can accurately model
the natural transition cannot be tested.

Because trip wires alter subcritical flows nonetheless, they are also suggested as a
possible means for controlling the flow around cylinders. One idea proposes using
the effect of wires or protrusions for the reduction of drag and potentially of vortex-
induced vibrations (VIV), at a high but subcritical Reynolds number. The use of wires
on cylinders undergoing VIV, however, has not been studied extensively, even at low
Reynolds numbers; an exception is the work of Price (1956), who found that for free
vibrations at Re = 4.6×103, trip wires had very little influence on the large-scale VIV
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motions. This Reynolds number, though, is well below the threshold values found
in the earlier study as necessary for altering drag substantially. Zdravkovich (1981)
rejects wires as a strategy for attenuating VIV based on Price’s tests, but also because
of the possible inherent sensitivity to flow direction relative to the wires.

In this paper, we identify several significant effects of the wires with respect to VIV,
both on the measured forces and on vortex-induced motions of a circular cylinder.
The three sets of data presented are summarized as follows: (a) drag tests with no
cylinder vibration: Re = 1.5–4.6 × 104, (b) forced vibrations at Re = 3.0 × 104, and
(c) free vibrations at Re = 3.0 × 104. The stationary cylinder tests were performed
mainly as a check of the equipment and as a context for the other experiments.

All of the tests have been performed both with and without wires, under otherwise
identical conditions, so that the effects of the wires are made clear. A review of the
known properties of smooth cylinders in VIV is thus appropriate. Forced-vibration
results for smooth cylinders in subcritical flow can be characterized by a lock-in
region of frequency and amplitude, within which the wake frequency is captured by
the frequency of the imposed oscillation (e.g. Bishop & Hassan 1964; Karniadakis &
Triantafyllou 1989). Additionally, there are at least two stable wake patterns which
may form, depending on the amplitude and frequency of oscillation: one with two
single vortices shed per cycle, denoted as a ‘2S’ mode, and another with two pairs
of vortices per cycle, denoted as a ‘2P’ mode by Williamson & Roshko (1988). The
appearance of these two modes in free vibrations has been demonstrated by Brika &
Laneville (1993), who studied air flow past a flexible circular beam and also found
two major branches of response which accounted for the hysteresis noted by previous
researchers. The upper branch is primarily a ‘2S’ mode whose loci fall in the ‘2P’ region
defined by Williamson & Roshko; the lower branch is a ‘2P’ mode that traverses this
same region. The transitions between these branches are marked by sharp changes
in amplitude, changes in the phasing between lift force and displacement from near
zero to near 180◦, and the appearance of a free-vibration lock-in phenomenon, i.e. the
linking of the observed frequency of vortex formation to the structural mode instead
of to the natural Strouhal frequency (Feng 1968).

A case of low structural damping (damping ratio ζ ' 1 × 10−4) is described by
Khalak & Williamson (1997), for a rigid cylinder in water. Observations are made of
the same hysteretic branches noted above, and additionally of a rapid switching of
modes at the onset of lock-in, indicated by a varying phase angle between transverse
force and displacement. Additionally, at even lower mass and damping, a third branch
appears (Govardhan & Williamson 2000). Hover, Techet & Triantafyllou (1998) show,
by measuring the forces at both ends of the test cylinder, that in the region where
transition is expected, the lift forces become uncorrelated. This loss of correlation,
in a region where substantial vibrations occur, is attributed to the formation of
mixed (hybrid) modes, consisting partially of a lower branch mode, and transitioning
through a vortex split to an upper branch mode at some point along the span of
the cylinder. Flow visualization in Techet, Hover & Triantafyllou (1998) shows the
detailed structure of a ‘2S/2P’ hybrid mode.

2. Experimental setup
2.1. Physical description

Tests were conducted at the MIT Testing Tank facility, a 30 m × 2.5 m × 1.2 m still-
water towing tank; the physical arrangement has been described in Hover et al. (1998).
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Figure 1. Wire locations on the rigid circular cylinder, at ±70◦ from the stagnation point.

We used a rigid aluminium cylinder with diameter D = 7.62 cm and span L = 200 cm,
moving at constant speed horizontally while oscillating transversely to the flow (in the
vertical direction). The blockage ratio in the tank is approximately 4%. At each end
of the cylinder there is a 0.2 cm gap to a 31 cm diameter end-plate, and it is supported
by a pair of three-axis Kistler piezo-electric load cells, which are in turn attached
to a heaving structure that also supports the end-plates. This assembly is positioned
using an ALM lead screw with 30 cm travel, driven by a Parker-Hannafin brushless
servomotor. The motor is controlled from a personal computer equipped with an
MEI motion control card and a C++ programming environment. A TSI conical
constant-temperature anemometer (CTA) was employed for many of the runs, at a
fixed location two diameters downstream, and one diameter lateral to the cylinder’s
mean centreline position. The system described so far sits on a mobile carriage, whose
velocity through the water is controlled independently by a separate computer.

A 7-channel data bus connects the carriage with a third (stationary) personal
computer, which logs the following analog data: absolute vertical position of the
cylinder assembly (Shaevitz LVDT), motor shaft position converted to volts, drag
and lift at each end of the cylinder (4 channels, analog filtered at 33 Hz), and the
anemometer signal. We use DasyLab data acquisition software to collect data in
IEEE 32-bit format, and then post-process in a Matlab environment.

Steel wires, parallel to the cylinder axis, were attached to miniature turnbuckles,
and stretched over small notches cut into the cylinder ends. We applied a tensile
load of approximately 50 N, which was sufficient to keep the wire tight against the
cylinder wall; no glue or other method was used to hold the wire against the cylinder.
We employed wires of diameter d = 0.23 mm, located at β = ±70◦ with respect to
the stagnation point; see figure 1. This leads to a wire to cylinder diameter ratio of
d/D = 0.0030, and the range of values d/δ = 0.39–0.77, where δ is the boundary layer
thickness at the location of the wire, after Pohlhausen (Schlichting 1979). Note that
this wire location does not necessarily correlate with the greatest drag reduction, as
Igarashi (1986) reports mean Cd values as low as 0.39 for large wires at β = ±50◦.
We chose a larger separation angle so that the properties induced by the wires might
be more robust against oscillation, which rotates the incident velocity vector, and also
against misalignment. Table 1 gives wire sizing and placement parameters for several
comparable studies.

The non-oscillating tests involved variations in towing speed only. The forced
vibration tests were conducted at constant speed, while varying both the amplitude
of motion and the frequency. Free vibration tests were also performed at constant
speed, while nominal reduced velocity, defined below, was varied.
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d/D d/δ β (deg.)

Fage & Warsap (1929) 0.0002–0.0033 0.0270–1.17 ±65
Pearcey et al. (1982) 0.0039–0.039 0.48–32.6 ±40, ±50
Igarashi (1986) 0.0080–0.0294 0.65–8.22 ±50, ±60
Present tests 0.0030 0.39–0.77 ±70

Table 1. Parameters of comparable studies.

2.2. Control system and damping

In the case of sinusoidally oscillating tests, the servomotor executes commands of the
form y(t) = A cosωt, and the seven data channels can be recorded directly. For free
vibrations, we employed a robotic force-feedback loop that is a hybrid simulation–
experiment, as described in Hover et al. (1998) and Hover & Triantafyllou (1999).
In this case, the lift force measurements are fed into the computer on the carriage,
a real-time simulation of a compliant structure is executed, and the output is used
to drive the servomotor trajectory. The force–control system update interval is 2 ms,
while the servomotor loop runs at about 0.3 ms.

In the present experiments the modelled system consists of a mass–dashpot–spring
system. The simulation mass M, damping B, and stiffness K can all be specified by
the user, thus allowing the variation of nominal reduced velocity Vrn = 2πU/ωnD at

constant towing speed and Reynolds number; ωn =
√
K/M is the undamped natural

frequency of the virtual structure. Intrinsic in the feedback loop is a correction for
that component of measured force that is due to the inertia in the material test
cylinder; this mass is effectively replaced with M by adding to the measurement the
term mcylinderÿ. The data in the current work were obtained with the non-dimensional
mass ratio m∗ = 4M/ρπD2L = 3.0, and a nominal damping ratio of zero.

The compensator takes specific account of phase losses due to the servomotor,
analog filtering, and also of a lightly damped resonant mode in the carriage structure
at about 138 rad s−1. However, this mode, along with other effects such as backlash
in the lead screw assembly, cannot be eliminated with notch filters alone, and some
additional limitations on closed-loop bandwidth are required to keep the cylinder
motion smooth. These constraints induce a small, unavoidable amount of damping.
Under sinusoidal force excitation, the target system for the present free-vibration tests
has the specific magnitude and phase characteristics shown in figure 2, wherein we
also indicate the ideal properties of a pure mass–spring system (no damping), and
those of a second-order system with a damping ratio of ζ = 0.032. The target natural
frequency and damping ratio (with Vrn = 5.5) are 7.50 rad s−1 and 0.026, respectively;
this damping is the lowest that can be achieved in the design. Experimental tests
in air confirmed values of 7.51 ± 0.01 rad s−1, and 0.032 ± 0.005, demonstrating that
the performance of the implemented closed-loop system is quite good. Nonetheless,
it is apparent that our target system itself does not faithfully replicate the phase
characteristics of the damped second-order case, and that some additional description
of the system is required.

The second-order linear transfer function has the form y(s)/F(s) = 1/(Ms2+Bs+K),
where y denotes displacement, F the applied force, and {M,B,K} are the mass,
dashpot, and spring; s is the Laplace variable. The phase angle of the force with
respect to the displacement is therefore φ = arctan(Bω/(Mω2 − K)), and for small
ζ a good approximation is φ ' 2ζ(1 + σ)/σ(2 + σ), where σ = (ω − ωn)/ωn, the
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Figure 2. (a) Magnitude and phase plots of an ideal undamped mass–spring system (· · ·), the
target system in the feedback loop (—), the results of pluck experiments in air ( e), and a
mass–spring–dashpot system with 3.2% damping (−−). The phase discrepancy between the target
and the damped second-order system leads to a frequency-dependent net damping ratio whose
lowest value is targeted at lock-in (b).

non-dimensional perturbation from the natural frequency. Hence, the phase angle
is linear in ζ and we may describe an effective, or total, damping ratio that is a
function of frequency. For the conditions of this discussion, the total damping ratio is
shown in figure 2(b). Prior to lock-in, where the frequency of vibration is substantially
below the structure’s natural frequency, ζ may be as high as 0.12, at a value of
ω/ωn ' 0.5, where vibrations first start to occur. Lock-in occurs near ωn, and at this
point damping is at its minimum value, and close to the value we have observed
in air. At higher frequencies of motion, again the damping ratio increases, although
probably not above 0.10, based on frequency data presented in what follows.

To summarize, the closed-loop feedback system imposes bandwidth constraints
which lead to a phase loss that can be modelled as a damping ratio that varies with
frequency. Away from the resonant point, the damping observed in VIV experiments
is as high as 0.12, which leads to significant phase angles in the results. At the resonant
frequency, a damping ratio of 0.032 has been observed, and thus m∗ζ = 0.096. In
general, the amplitude of motion we observe at lock-in, A/D ≈ 0.94, is on the low
side of the data compiled by Khalak & Williamson (1999).

2.3. Data processing

We measured the motion and the lift and drag forces at both ends of the cylinder,
and the wake in-line velocity. All calibrated time series were detrended (zeroth- and
first-order components removed from a polynomial fit), and then low-pass filtered
with zero phase, using a fourth-order Butterworth design of bandwidth 30 rad s−1.
The data acquisition sampling interval was 10 ms. Data were processed after each
run, and the following quantities were calculated:

for free vibrations, the average 1/10th-highest amplitude/diameter ratio A/D1/10;
total lift coefficient Cl = 2F/ρDLU2, constructed from the magnitude F of the total

lift force;
phase angle φF between the oscillating lift force and the imposed motion, and

corresponding phase angle φA between the anemometer trace and the motion;
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Figure 3. Mean drag coefficient, Strouhal number, and lift coefficient magnitude properties of a
non-oscillating cylinder, with (O) and without ( e) trip wires. The plot shows Strouhal numbers
based on both the lift force and the anemometer signals.

peak spectral frequencies of the motion (ω), the lift force on the cylinder (ωF ), and
the anemometer (ωA);

correlation coefficient Fc of the two end lift force signals;
mean drag coefficient, mean(Cd);
standard deviation of the drag coefficient, std(Cd);
lift coefficient in phase with acceleration, Cla = −Cl cosφF ;
added mass coefficient, Cm = −2U2Cla/πω

2D2(A/D);
lift coefficient in phase with velocity, Clv = Cl sinφF .

Lift forces are corrected for the inertial effect of the solid (sealed) cylinder, through
the equation

Flift = Fmeasured + mcylinderÿ(t).

For the parametric data presented, we show the average of force coefficients computed
for each end of the cylinder. Lift and drag coefficients are not corrected for blockage
effects. φF is shown as a sum of the end values, weighted with the lift forces. In the
figures where we present measured time traces, force data are given for both ends of
the cylinder.

Many of the signals are broadband by nature, most notably that of the anemometer.
This led to some scatter in selection of the peak frequencies. Additionally, phase angles
were computed using an inner product, over many data bins containing one motion
period. The statistics of this iterative approach are shown in the phase figures that
follow, as error bands of plus and minus one standard deviation from the mean values.
We applied an arbitrary constant offset to φA, in order to align it with φF in the figures.

3. Results
3.1. Stationary cylinder

The addition of wires to a non-oscillating smooth cylinder causes several immediate
changes in the flow characteristics, especially in the upper speed range considered.
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As seen in figure 3, the mean drag coefficient of a cylinder with wires undergoes
a gradual reduction with increasing Reynolds number, from the subcritical smooth-
cylinder value of around 1.2, to a minimum value of 0.6 occurring above Re = 3.5×104.
As noted in the Introduction, this curve does not indicate the lowest drag values that
can be obtained with wires; nonetheless, this drag transition agrees well with the
references of table 1. Drag reduction here results from the generation of turbulence
by the wires in the boundary layer, which causes separation at a higher angle along
the cylinder circumference, reducing the wake width (Igarashi 1986). This effect
is qualitatively similar to the natural transition, for which turbulence develops at
increasingly advanced locations (that is, toward the stagnation point) on the cylinder
as the velocity increases (Roshko 1961).

The lift coefficient amplitudes obtained with wires reach a minimum of about
0.15 (commensurate with oscillating drag, not shown), while, in contrast, the smooth
cylinder has scattered values around 0.5. These lift properties are in good agreement
with Jones et al. (1968), for a supercritical smooth cylinder at Re = 3 × 106, with
Ribeiro (1991), for rough cylinders, and with Gopalkrishnan (1992) for a subcritical
smooth cylinder. The Strouhal number associated with the wires takes values in the
range of 0.25–0.27, for the conditions of reduced drag, i.e. Re > 3.5 × 104. As with
the drag coefficient, variation from the smooth-cylinder value of 0.19 is generally
continuous with Reynolds number. Both Igarashi (1986) and Pearcey et al. (1982)
report values closer to 0.30 for a cylinder with wires.

The forced and free vibrations described next were studied at Re = 3 × 106, in
a ‘critical’ regime for the cylinder with wires, where the flow is still undergoing
a fundamental transformation. Therefore, one important limitation of the current
experiments is that the VIV response is likely to vary strongly with Re. On the
subcritical side, we should expect that with reduced Re, say for Re < 2 × 104, the
response is close to that of the smooth cylinder. At higher Re, say Re > 4 × 104,
the sensitivity to Re could be reduced, but still the lack of data on supercritical VIV
prohibits any rational prediction of the behaviour. As we show below, the response
at Re = 3× 104 with wires is dissimilar from that of the subcritical smooth cylinder;
the great majority of controlled studies on VIV are for the subcritical regime.

3.2. Forced vibrations: drag and lift

We conducted forced vibration tests at Re = 3.0 × 104 for a range of reduced
frequencies, and for four A/D ratios (0.1, 0.2, 0.5, 1.0). This value of Re is toward the
upper end of, and still within, the drag transition zone, and hence the results below
are dependent on Reynolds number.

The force, frequency, and phase results are plotted in figures 4–6. At the lowest
amplitude, the drag coefficient associated with wires has a minimum value near 0.80,
which grows with reduced frequency fr = ωD/2πU but remains uniformly lower
than without wires, where the value is around 1.2. The fact that drag is reduced
for small-amplitude vibrations when wires are used can be attributed again to the
tripping of the boundary layer and hence reduction of the wake width, as found in
non-oscillating cylinders. For this small amplitude, the variation of the incident flow
direction is only about ±7◦. At A/D = 0.2 and upwards, mean drag on the smooth
cylinder increases sharply near the lock-in frequency value of about 0.17 (Bishop &
Hassan 1964; Sarpkaya 1977). The cylinder with wires shows a similar trend, but
with a peak drag coefficient near fr = 0.20, for A/D = 0.2 and 0.5. As the amplitude
increases further, peak drag values become comparable to the smooth cylinder values.
The wires thus provide mean drag reduction relative to a smooth cylinder for the
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Figure 4. (a) Mean drag coefficient, (b) lift in phase with velocity, and (c) added mass coefficient,
during forced oscillation tests. Smooth cylinder (—); wires (−−).

smaller amplitudes of motion, especially if the frequency of oscillation is less than the
peak value for the cylinder with wires. Above this frequency, the drag values of the
smooth cylinder and the cylinder with wires are expected to coincide as the effects of
the wires are lost. This coincidence is likely to be reinforced further as the amplitude
increases, since the incidence angle variation grows with both fr and A/D.

With respect to lift forces, at A/D = 0.1 the wires have little effect, and the two
curves for Clv and Cm are very close. The smooth cylinder Clv data here are similar to
those reported elsewhere: there exists an excitation region (positive Clv) in the range
fr = 0.12–0.17, with maximum Clv values of around 0.5 at fr ' 0.16. As the amplitude
of motion increases, especially beyond A/D = 0.5, the excitation region shrinks to a
small range near fr = 0.17; this point of vanishing excitation region is regarded as a
good prediction of the peak motions during VIV. It should be noted that in general,
however, the VIV response depends on both the magnitude and slope of the lift curve
with fr , as well as the phase, so that we are discussing here a simplified case.

The addition of wires at larger A/D first moves the excitation region to higher
frequencies, say fr = 0.16–0.24 for A/D = 0.2, and also increases the Clv magnitude
to about 0.8, for A/D 6 0.5. Based on these results for low A/D alone, it could be
expected that the wires are likely to exacerbate VIV. At the highest amplitude we
tested, A/D = 1.0, however, a dramatic change in Clv occurs. There is no excitation
region visible, as the maximum value attained is −0.22, at very low frequencies. Indeed,
the entire shape of the curve, which for lower A/D looks like an extension of the
excitation range, is altered. A fundamental modification of the flow, probably related
to the angular deflection of the incident flow, which for A/D = 1.0 and fr = 0.20 is
approximately ±51◦, makes free vibrations at this large amplitude unlikely. A more
continuous change is evident in Cm. Here, the transition from negative to positive
values moves to higher fr as the amplitude of motion increases. For the smooth
cylinder, this point seems to be stationary at fr ≈ 0.16. At very high frequencies,
added mass dominates for both cylinders, forcing Cm to around 1.0–1.5.
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Figure 5. Non-dimensional peak frequency of the anemometer signal ( e, 4) and the lift force (·)
during forced vibrations; (a) smooth, (b) wires.

Phase changes in lift force provide a rough indicator of mode changes in the wake,
but since these measurements by nature include an uncertain added mass component,
they cannot be used directly to ascertain the wake type. The anemometer signal is
more appropriate in this regard. For the lower amplitudes, comparison of the lift and
wake phases is good for both cylinders, and a mode change is clearly concomitant
with the phase changes observed; see figure 6. With regard to the map of Williamson
& Roshko (1988) these phase changes are typical of the division between ‘2S’ (lower
frequency) and ‘2P’ (higher frequency) modes. The phase changes are more gradual
for the cylinders with wires, and we note that the error statistics are best precisely in
the transition zone.

At A/D = 1.0, φF and φA are in clear disagreement for the smooth cylinder,
indicative of the increased role of added mass in the signal during these large
motions. Phase angles with the wires attached are also not in good agreement at
A/D = 1.0, and especially for fr > 0.15, where a gap widens from about 30◦ to 130◦
at fr = 0.24. At fr = 0.25, both the lift and wake phase angles change dramatically,
however, directly to the smooth cylinder values. Cla and Cm realign at this point also,
suggesting that the effects of the wires are suddenly lost entirely.

3.3. Forced vibrations: lock-in

In the context of forced vibrations, lock-in has typically been defined as the locking
of the primary wake frequency to the frequency of motion. Concurrent force mea-
surements allow for a related lock-in measure, which involves the primary frequency
of the lift force signal. Below we discuss both properties; the first we call wake lock-in,
and the second lift lock-in. Within either definition, we further note that conventional
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Figure 6. Phase angles during forced vibrations. Heavy solid lines show the mean value of φF
plus or minus one standard deviation from windowed calculations. The hatched region denotes the
identical spread for φA. (a) Smooth, (b) wires.

lock-in is said to exist when there are no traces of the natural shedding frequency ωS
in the wake or lift spectra. Conversely, if there is a significant component of ωS in
the spectra, we say that a non-lock-in condition exists.

For the present analysis, we made lock-in calculations using the peak frequencies
of the wake velocity and lift forces. This was necessitated by some broadband signals,
for which the role of ωS cannot always be clearly discerned. We plot in figure 5 these
(non-dimensionalized) frequencies. There are points for which the wake and lift values
are in disagreement, and this is generally due to competing peaks; furthermore, the
lift force contains added mass, and so has a propensity to follow the oscillation more
closely at higher forcing frequencies.

The smooth-cylinder data show that wake and lift lock-in to the oscillation fre-
quency occur fully at fr ' 0.18, 0.17 and 0.14, for the three lowest amplitudes
A/D = 0.1, 0.2 and 0.5, respectively. At A/D = 1.0, lock-in is suggested throughout
the range of fr tested, with the lowest frequency tests exciting a second harmonic of
the motion in the wake, and close to the natural shedding frequency. Smooth-cylinder
tests by Gopalkrishnan (1992) confirm a lower boundary for lock-in at fr = 0.16, for
amplitudes comparable to the ones considered here, and Re = 1× 104. On the other
hand, Stansby (1976) conducted tests in air near the same Reynolds number, and
found a significantly wider lock-in region, whose lower boundary is close to what we
observe with the wires attached (below). Öngoren & Rockwell (1988) show similarly,
for cylinders in air and for somewhat lower values of Re, an even wider range, with
lock-in occurring down to fr/S = 0.6, for A/D = 0.13.

In the present experiments, coincident wake and lift lock-in for the smooth cylinder
then persists to fr = 0.19 for A/D = {0.1, 0.2}, and then all the way to fr = 0.28 for
A/D = {0.5, 1.0}. Some variation again exists with the three references above, because
of differing conditions.

With wires attached, the lowest amplitude motion results in wake and lift lock-in
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Figure 7. Time-domain traces of motion and forces during forced vibrations with (a) the smooth
and (b) wired cylinders; A/D = 0.20, fr = 0.10.

near fr = 0.16, but during larger motions, lift and wake lock-in are evident at much
lower frequencies than for the smooth cylinder. Specifically, the lock-in exists at and
above fr = 0.12 for A/D = 0.2 and 0.5; this represents 0.6 of the shedding rate,
and thus a continuum of lock-in could be expected down to one-half of the natural
shedding rate (Öngoren & Rockwell 1988). As with the smooth cylinder, the case
A/D = 1.0 reveals a second harmonic near the natural shedding rate. Perhaps more
significantly, for the upper limits of lock-in, at all but the lowest amplitude, lock-in
persists up to at least fr = 0.28.

The wires thus give the cylinder unusual control over the total flow field, enabling
this type of (peak) lock-in at very low and very high frequencies, and even at low
amplitudes. The differences between the smooth and wired cylinders’ lock-in during
forced vibrations are most pronounced at A/D = 0.2, where the lock-in range is
significantly expanded upwards and downwards in frequency. This expansion of the
lock-in range is clear for the present apparatus and experiments, wherein smooth-
cylinder data were obtained directly after the wire data, by simply removing the wires
in situ. As noted above, however, Stansby (1976) and Öngoren & Rockwell (1988) have
observed smooth-cylinder lock-in ranges similar to what we achieved with the wires.

Several time signals are plotted in figure 7, for the smooth cylinder and for the
wired cylinder, respectively, for A/D = 0.20 and fr = 0.10. In the case of the smooth
cylinder, some force modulation is apparent because of the proximity of the forcing
frequency to the shedding rate’s second harmonic; the two lift forces are frequently
out of alignment, and may have different magnitude. Overall, this is not a lock-in
condition. When wires are added, the primary lift force component is clearly at the
same frequency as the cylinder motion, although the synchronization is not complete.
In addition, the lift forces at the cylinder ends are in good agreement with each
other, indicating a stable vortex formation process that spans the entire cylinder.
Both of the anemometer traces in figure 7, showing velocity v′, illustrate the difficulty
of computing dominant frequency or phase in the wake.

Several additional points are noted. For the tests at low fr and A/D = 0.1,
the cylinder with wires does not show a frequency increase commensurate with the
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Figure 8. VIV response of cylinders with and without wires. The plot gives non-dimensional ampli-
tude A/D1/10 (a) and non-dimensional peak frequencies (b). Anemometer and lift force frequencies
are shown, along with the lines 0.20Vrn and 0.25Vrn. Below lock-in, the motion frequency (not
shown) tracks the others; beyond the onset of lock-in, it persists near 1.13ωn.

increase in Strouhal number. This observation is true for both the lift and anemometer
frequencies. In a set of experiments not shown here, with Re = 3.8 × 104, we did
recover a non-dimensional frequency close to ωS for the wires, which is the expected
result for small A/D. From figure 3, it can be seen that the present tests are in a
transition range, where the Strouhal number has not yet taken its terminal value near
St = 0.25–0.27. It has not, however, remained at the the smooth cylinder value either
for Re = 3.0 × 104. This suggests that even small oscillations away from the lock-in
range are sufficient to obviate the wire effects in this artificial transition regime. At
higher Re, where the wire properties are stationary, one could expect some increase
in non-lock-in frequency.

Figure 6 shows that the frequency range over which lock-in occurs is substantially
altered by the wires. In addition, the close relation typically observed between the
onset of lock-in and sharp changes in the phase and magnitude of the lift force is
absent when wires are introduced. On the smooth cylinder at A/D = 0.2 for example,
the advent of lock-in on the frequency axis (near 0.17) closely corresponds with a
substantial change in phase angle. For the cylinder with wires, lock-in occurs at a
frequency well below that of the smooth cylinder (0.12), and yet the sharp changes
in φF and φA move to higher frequencies, approximately 0.19. Hence, with wires the
advent of lock-in is not correlated with the usual changes in lift phase and magnitude,
and in fact these may be unrelated phenomena. Compared to Stansby (1976) and
Öngoren & Rockwell (1988), once again the effect of the wires is not as dramatic.

3.4. Free vibrations

VIV experiments were performed for the condition Re = 3.0 × 104, achieving an
effective damping ratio of 3.2%, as described in § 2.2.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

59
85

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005985


188 F. S. Hover, H. Tvedt and M. S. Triantafyllou

1

0.5

0
2

1

0
1

0

–1

2

0

–2

4 6 8 10

smooth
wires

(a)

(b)

Vrn

3 5 7 9

0

1

2

3

(c)

(d)

(e)

Cm

Fc

Cl

st
d

(C
d)

m
ea

n
(C

d)

Figure 9. As figure 8, but for (a) mean drag coefficient mean(Cd), (b) oscillating drag coefficient
std(Cd), (c) total lift coefficient Cl , (d) correlation of end lift forces Fc, and (e) added mass
coefficient Cm.

The aggregate results are plotted in figures 8 and 9, showing results against the
nominal reduced velocity, Vrn = 2πU/ωnD. The response for the smooth cylinder
consists of first a gradual increase in amplitude as Vrn increases, with φF ≈ 0◦,
then a transition in φF from near 0◦ to near 180◦, concurrent with a decline from
the maximum amplitude beginning at Vrn = 6.0, then a plateau in amplitude, and
finally, a gradual decrease. The wires fundamentally change the response for reduced
velocities above Vrn = 5.0. Namely, the peak amplitudes reached by the smooth
cylinder are never attained, but instead a plateau with A/D1/10 ≈ 0.69 is observed. At
Vrn = 6.0 a sharp reduction in amplitude occurs, followed closely by extremely low
values, with A/D1/10 < 0.1, for Vrn > 7.5. Overall, about one half of the area under
the vortex-resonance amplitude curve is eliminated by the wires.

Before we discuss the wire effects in more detail, some results for the smooth
cylinder deserve explanation. The gradual phase transitions here differ with wind-
tunnel and water-tunnel experimental results, in which there are two hysteretic paths,
depending on whether the reduced velocity is increasing or decreasing. The difference
can be explained in large part by the episodic nature of our tests, in which continuous
variations in speed are not possible. In any event, the shift in φF occurs simultaneously
with lock-in, defined for free vibrations as the condition ω ' ωn, and also with a
momentary drop in force correlation from near unity values to near zero, at Vrn ≈ 6.5.
The loss of force correlation indicates a potential role of three-dimensional flow; the
high correlation is recovered above the phase transition.

The lift phase angles (figure 10) exhibit a similar transition from near zero to near
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Figure 10. Phase angles during free vibrations. Heavy solid lines show the mean value of φF plus or
minus one standard deviation. The hatched region denotes the identical spread for φA. (a) Smooth,
(b) wires.

180◦ as the reduced velocity increases, for the cylinder with wires. The transition is
shifted to lower Vrn with wires, however, and this event is notable in figure 8 as
the point where A/D1/10 diverges from the smooth cylinder curve, and also where
ω/ωn reaches unity. The increased frequency which allows the wired cylinder to
lock in earlier is qualitatively in agreement with the slightly higher Strouhal number
exhibited during stationary-cylinder tests. The slope of the frequency with Vrn is,
however, almost identical to that of the smooth cylinder. The occurrence of ω/ωn = 1
at low Vrn is due to a steady offset, which has the value ω/ωn = 0.21 and persists for
3.0 6 Vrn 6 5.2.

For both cylinders, the frequency ratio continues to rise from the value of 1 to
the true ‘locked-in’ frequency ratio value of about 1.13, which is typical for tests in
water and m∗ = 3.0. By comparison, the formula given by Govardhan & Williamson
(2000) predicts a value of 1.27, but that is with significantly lower damping. Figure 8
shows both anemometer and lift force frequencies, which are aligned at low Vrn. In
the smooth-cylinder results, the anemometer leaves lock-in conditions near Vrn = 8.3,
while the lift force follows only gradually at Vrn ≈ 10. The wires introduce a different
behaviour: both the wake and lift abruptly cease locked-in response at Vrn = 7.4,
where a slight discontinuity in amplitude can also be seen. The motion frequency, not
shown explicitly, is identical to ωA and ωF at low Vrn for both cylinders, but remains
on the line ω/ωn ≈ 1.13 above lock-in for all of the Vrn considered.

Measurements of anemometer phase are difficult to interpret since both the motion
and the anemometer signals possess multiple frequency components. Insofar as these
calculations can be made, φA undergoes a change of nearly 180◦ at the same Vrn
as does φF , for both cylinders. In the smooth case, the mean value of φA precedes
that of φF , about Vrn = 5.9 versus 6.2. On either side of this transition, steady values
of φA and φF indicate stable wakes. For the cylinder with wires, φF changes quite
sharply at Vrn ≈ 4.9. Anemometer phase φA changes much more gradually with wires,
however, and the error statistics are quite good throughout; this suggests a poorly
defined mode transition in the wake, which may encompass not only topological
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changes, e.g. in the number of vortices per cycle, but also scaling changes, e.g. in the
distance between cores. The notch in Fc, shown in figure 9, while moved to lower Vrn
by the wires, is no wider than for the smooth cylinder. On the other hand, total lift
coefficient Cl shows a pronounced minimum in the middle of the phase transition;
for the smooth cylinder, phase changes coincide with the change of Cl from high to
low values, which never really grow thereafter. Another indicator of a fundamental
difference is the fluctuating drag std(Cd), which shows that φ changes during a decline
for the smooth cylinder, but during an increase for the cylinder with wires. Overall,
while the net transition of phase appears to be identical for both cylinders, the nature
of the transition is modified by wires.

The lift phase change can occur at a different Vrn than the vortex phase change,
for very low mass damping (Govardhan & Williamson 2000). For higher m∗ζ, this
distinction is generally not observed, and this is indeed the case for our apparatus:
the two phase changes coincide, whether or not wires are used.

The various coefficients possess some additional interesting properties. There is a
slightly higher maximum value of mean drag for the smooth cylinder, and a somewhat
lower value for the cylinder with wires at high Vrn, since the amplitude of response
is much smaller. Additionally, mean drag is reduced at low Vrn by the wires. The
unsteady drag coefficient, in contrast, can be much larger for the cylinder with wires,
over the range Vrn = 4.0–6.0. The cylinder with wires shows a sharp decline at Vrn ≈ 6
and the oscillating drag thereafter remains lower than that of the smooth cylinder.
The added mass coefficient Cm further reflects the shift in Vrn of the principle features
as indicated in figure 8. At a given value of Vrn, the difference in Cm due to the wires
can be as high as 2.0, for the range Vrn = 4.0–6.0. In terms of lift in phase with
acceleration (not shown), the cylinder with wires reaches large positive values that
are nowhere encountered by the smooth cylinder.

We show several time series in figure 11, to illustrate the salient characteristics of
the responses with wires. The first two show the effects of the wires near the maximum
amplitude of motion, Vrn = 5.8, and just before the phase transition for the smooth
cylinder, but well after it has occurred in the cylinder with wires. In this condition, the
smooth cylinder shows a very slight modulation in displacement, with a correlating
modulation in the drag force. The oscillating component of drag is significant and
regular, with two cycles for each cycle of transverse motion. The lift forces at the
ends of the cylinder are well-correlated although of varying magnitude, and are in
phase with the displacement. When wires are added, the response frequency increases,
while its amplitude is reduced by about 20%. The phase transition is complete for
this reduced velocity, and the frequency of motion is in fact locked to the faster
structural mode. The mean value of drag is largely unaffected by the wires, although
the oscillating component has grown by about 50%. The two end lift forces are nearly
identical, with about the same magnitude as in the case of the smooth cylinder. In
general, the motion and force signals are quite regular.

At Vrn = 8.5, both cylinders oscillate above the major phase change. The smooth
cylinder here vibrates with a phase angle of 180◦, just before Fc begins to decay. The
value of A/D is about 0.55, and we observe that both mean and oscillating drag are
much reduced from the pre-transition case. Again, two periods of drag forcing occupy
one period of motion. The lift force is quite small, with the two end forces still in
good agreement. The addition of wires at Vrn = 8.5 leads to vibrations of exceedingly
low amplitude. The motion is irregular, but more notably, the lift and drag forces are
uncorrelated and of very high frequency. The lift force amplitudes, as well as mean
and fluctuating drag are also small, in fact as low as the values observed for the
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Figure 11. Time series for free vibrations with smooth cylinder (a, b), wired cylinder (c, d), and
Vrn = 5.8 (a, c), Vrn = 8.5 (b, d).

stationary cylinder (figure 3). The high-frequency nature of the force signals suggests
a significant disruption of any regular, large-scale vortex formation, and a lack of any
synchronization. The anemometer and lift peak frequencies here lie on a line given
by ω/ωn = 0.25Vrn, signalling the end of wake lock-in for the cylinder with wires.

3.5. Free vibrations: sensitivity to bias

Nominal flow conditions were used in the experiments reported above, with the two
wires symmetrically placed with respect to the oncoming flow. It is of importance to
consider then the effect of flow perturbations causing differences in the angle of attack
with respect to the wires. The effect of the wires derives from the disturbance they
cause to the laminar boundary layer of the cylinder, and hence it can be expected that
these effects are strongly influenced by variations in the mean direction of incident
velocity. To assess this sensitivity, we performed tests with constant angular bias on
the cylinder alignment, at Vrn = 6.0 and Vrn = 8.0; see figure 12. We estimate the
repeatability of the rotational bias to be better than 3◦.
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Figure 12. Effects of rotation angle on A/D1/10. Horizontal lines show the levels achieved with
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At Vrn = 6.0 and below, the effect of the unbiased wires was found above to
be a reduction in the amplitude of vibration by a moderate amount, up to 30%.
When a bias angle is introduced, the dependence of peak A/D on the angle bias
is non-symmetric but repeatable, with a very low value, of A/D ' 0.2, possible at
around +5◦, rotated up with respect to the oncoming flow. We initially attributed
the fact that the minimum response value is obtained at non-zero bias angle to small
construction misalignments of the wires used. This experiment has been repeated
three times, however, with different cylinders; the same characteristic dip persists.

There are many possible causes for this sharp asymmetry. First, the proximity of
the point Vrn = 6.0 to the end of the high-A/D plateau makes the response fragile
to perturbations; the asymmetry may not exist for Vrn = 5.5, for example. At the
same time, one would expect symmetry. The cylinder could be non-uniformly smooth,
although a near mirror finish is reasonably easy to verify. The cylinder could be not
perfectly round, not unlikely for stock aluminium, although again large deformities
would be easy to identify. There is also the possibility of asymmetric wire placement
on the cylinder, which is unlikely given the good symmetry of the bias response away
from the dip, and also at Vrn = 8.0 (see below). The end-plates are circular and quite
large, and we frequently checked the small gap at each end of the cylinder. Since the
wires are not glued to the surface, but rather tensioned, there exists the possibility
of an uneven tension due to jamming in the notches. Again, this effect would not be
expected to be repeatable, and neither have we observed any vibration or loosening
of wires during tests. A final asymmetry lies in the the free surface above the cylinder
and the tank floor below the cylinder; the cylinder has a centred mean position,
about eight diameters from either surface. Furthermore, the blockage ratio of our
experiment is fairly high at 4%, and the passage of the cylinder can cause small
surface waves.

Other than this significant but isolated dip, the symmetry of A/D with bias angle
is as expected. Values corresponding to the zero-bias condition are maintained up to
a bias of about 20◦. Thereafter, the response grows to a maximum value of about 1,
at a bias of 45◦, after which a slight reduction seems to appear. The bias angles of
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±45◦ locate one wire 25◦ from the mean stagnation point, and the other at 115◦, well
beyond the normal area of separation for a smooth stationary cylinder. However, the
effects of both wires can be argued from the fact that the separation points, as well as
the stagnation point, move during vibrations, and this evidently leads to the elevated
amplitude. The bias at which the response is identical to the smooth cylinder case is
35◦, putting the wires at 35◦ and 105◦.

The second reduced velocity considered, Vrn = 8.0, has a zero-bias response that is
significantly depressed from the smooth-cylinder value. The dependence of A/D on
bias is much more regular for this case, with good symmetry to about ±30◦. There
exists a small bias offset of several degrees, which is within the placement error. A
more significant discrepancy exists for biases greater than 30◦: rotating the cylinder
up toward the free surface (positive bias) extends the upward trend of the response to
40◦ bias, after which point the response drops to about A/D = 0.55, consistent with
the smooth-cylinder result.

This brief sensitivity study confirms the significant effect of misalignment, as ex-
pressed through a flow bias angle. Response on the main plateau near A/D ≈ 0.70 is
not deteriorated until the bias exceeds 20◦, and a dramatic localized reduction may be
possible with a slight bias angle, and closely controlled flow conditions. Suppressed
response on the lower plateau, at higher Vrn, is not as robust to bias with respect to
a smooth cylinder, maintaining a useful reduction to bias angles of about ±15◦.

4. Summary
For a stationary circular cylinder in crossflow, small trip wires at ±70◦ from

the mean stagnation point can significantly reduce drag and lift characteristics for
Re > 2×104, and steady conditions of reduced drag are reached in this experiment at
Re ≈ 3.5×104. Forced-oscillation tests show that for a given amplitude of motion, the
lift amplitude and phase curves as functions of reduced frequency do retain some of
the main features observed in smooth cylinders, but these features are generally shifted
to higher frequencies. At A/D = 1.0, the lift response is fundamentally changed: no
excitation region exists at all. The wires further enable wake lock-in to the cylinder
motion at unusually low frequencies, especially for low amplitudes. Phase changes
which occur shortly above the lock-in boundary in a smooth cylinder, occur at an
elevated frequency with wires, significantly beyond the lock-in boundary.

In free vibrations, the wires introduce a number of significant changes, as functions
of the reduced velocity Vrn. An earlier mode transition, evidenced by the phasing
of both lift force and wake velocity, occurs at lower Vrn, and corresponds to an
early lock-in to the structural mode. For the lower reduced velocities, even below
lock-in, the cylinder with wires has significantly reduced added mass compared to a
smooth cylinder; the difference in Cm is about 2.0. Other properties are altered as
well. The maximum response is moderately reduced for the cylinder with wires, and
flat as a function of Vrn. At higher reduced velocities, above Vrn ≈ 6.0, the response
is largely eliminated by the wires, and only extremely low fluctuating lift and drag
forces remain.

The amplitude response of the flexibly mounted cylinder with wires is sensitive
to bias in the angle of the oncoming stream, but still robust enough for certain
applications where the inflow conditions can be controlled to some extent. On the
other hand, the application of this technique to VIV-suppression should be examined
for arrangements with more wires, for example, five wires spaced at 72◦ or six wires
at 60◦.
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