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Inside rod induced horizontal capillary emptying
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The removal of a liquid blockage from a tube is of importance in many processes. If the
Bond number (which measures the relative size of the gravitational force by comparison
with the surface tension force on the blockage plug) is large enough, then the tube will
become non-occluding automatically. If not, then other measures are required to remove
the blockage and the insertion of a rod is one such measure. We investigate this situation
in a horizontal capillary in a downward gravity field. Theoretical results are obtained
and compared with experiments. We observe that a rod insertion can cause a change
from liquid plug to non-occlusion in a horizontal capillary. For uniform inner and outer
contact angles, compared with the case without an inside rod, the maximum of the critical
emptying line decreases significantly, but the minimum decreases a little only for a large
enough value of the ratio of inner radius to outer radius (χ ). We find that changing
the contact angles of the inserted tube can significantly affect the non-occluding of the
tube. The minimum of critical emptying line can be lowered clearly, and the minimum
for a large enough value of χ is much lower than that reached for a circular tube. The
insertion of a hydrophobic (hydrophilic) rod with a large enough radius can make the
liquid emptying easier in a horizontal hydrophilic (hydrophobic) capillary. This provides
an effective method of triggering drainage of a fluid from a capillary in applications such
as optofluidics and microfluidics.

Key words: capillary flows

1. Introduction

Liquid or gas plugs may exist in small multiphase fluid containers, ranging from equipment
in microgravity (Chen & Collicott 2006), devices in a gravity field (Zhang, Yang &
Wang 2006) to cardiovascular vessels (Lee, Wu & Li 2020). Capillary plugs may degrade

† Email address for correspondence: xpzhou08@hust.edu.cn

© The Author(s), 2021. Published by Cambridge University Press 924 A23-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:xpzhou08@hust.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.634&domain=pdf
https://doi.org/10.1017/jfm.2021.634


X. Zhou, G. Zhang, C. Zhu, D. Tan and C. Fu

the performance and, accordingly, it is essential to prevent fluid blockage in containers
by capillary emptying (which is capillary non-occluding and does not mean the tube
would completely empty here). A great deal of work has been done on determining
the equilibrium shapes of liquid volumes in a tube of gas in microgravity, and the
geometric parameters and wetting conditions have been studied to enhance the multiphase
fluid performance (Concus & Finn 1969; Finn 1986; Smedley 1990; Chen & Collicott
2006; Pour & Thiessen 2019). In many situations, gravity has a significant effect on
multiphase fluid interface deformation, which precedes the emptying of the capillary. The
phenomenology of a capillary in a transverse gravity field is distinctively richer than that
in micro gravity.

The primary parameter determining the presence or absence of a plug in a capillary is
the Bond number Bo = (δ/lca)

2 where δ is the characteristic length of the capillary tube
and lca = √

σ/ρg is the capillary length, with the surface tension σ between liquid and
gas, the density difference ρ between liquid and gas and the gravitational acceleration g.
If the Bond number exceeds a critical value Boc then a plug will not arise. Other factors
that affect the critical Bond number are the solid/liquid contact angle and the capillary
geometry. Critical characteristic lengths of capillaries corresponding to the critical Bond
numbers mainly range from millimetre sizes to micron sizes (see Parry et al. 2012),
and are reduced to lower values at lower critical Bond numbers. Based on theoretical
research, different cylinder cross-sections and contact angles have been proposed to help
in preventing the existence of liquid plugs in a horizontal capillary in a downward gravity.
A flattened ice-cream cone cylinder was designed by Manning, Collicott & Finn (2011), in
which liquid non-occlusion will occur. Manning & Collicott (2015) concluded that, for a
rectangular tube, a large enough width-to-height ratio of the cross-section can lead to the
reduction of Boc. Other shapes (ellipse and triangle) and different orientations were found
to be able to change Boc (Rascón, Parry & Aarts 2016).

In the recent work of our group (Zhu, Zhou & Zhang 2020), a strategy of setting the
four linked wall surfaces of a horizontal rectangular capillary to have differing contact
angles was proposed to reduce Boc as much as possible. It was found that Boc of a
horizontal rectangular tube can be effectively decreased by decreasing the bottom and
one side contact angles and increasing the top and the other side contact angles. Recently,
Verma et al. (2020) performed several case experiments studying the emptying criteria for
a finite-length rectangular tube (filled with water and a gas) with an open end and a closed
end in a gravity field by considering the effect of the contact line pinning at the sharp edge,
and it was shown that a different bottom contact angle from the top contact angle can lead
to the change of Boc. This can validate the conclusions of Zhu et al. (2020) to some extent.

The three-dimensional (3-D) problem of (gas–liquid) two-phase fluids in a horizontal
capillary in a downward gravity is complex to compute and study. Generally, researchers
always tried to develop an analytic solution to the complex problem. Some special cases
can be considered to be two-dimensional (2-D) and are easier to compute. Gas–liquid
two-phase fluids confined in a horizontal wide capillary slit made of two parallel walls
of length L � H and width W � H where H is the distance between the two walls,
have essentially a 2-D gas–liquid interface. The distance between the two walls H and
the height of rectangular cross-section are used as the characteristic lengths to calculate
the Bond numbers in the plane case and in the rectangular case, respectively. A theoretical
expression of the critical Bond number in the plane case was determined by Parry et al.
(2012) as

Boc = 4
(

sin
γb

2
+ cos

γt

2

)2
, (1.1)
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where γb and γt are the contact angles of the bottom and top walls, respectively. When the
bottom and top walls have a uniform contact angle, that is, γb = γt = γ , the theoretical
expression of Boc in the plane case can be reduced to

Boc = 4(1 + sin γ ). (1.2)

Parry et al. (2012) experimentally studied the interfacial profiles of three samples in
confinement between two parallel walls (L = 15 mm and W = 0.5 mm) with the distance
between them H = 0.062 ± 0.001 mm to demonstrate that an increase of Bond number
allows for crossing the emptying phase boundary. Using numerical optimization scheme
of Zhu et al. (2020) found that this analytic result works for rectangular capillary of a large
width-to-height ratio providing the gas–liquid interface for the liquid non-occlusion state
meets the two vertical walls so that the problem remains two-dimensional. If, however, the
interface(s) for the non-occlusion state has two (four) contact points in one (two separated)
corner region(s) then a modification is required; for more details see Zhu et al. (2020).

All the above findings for infinitely long 3-D capillaries (Manning et al. 2011; Manning
& Collicott 2015; Rascón et al. 2016; Zhu et al. 2020) are based on theoretical research and
little experimental work has been carried out. Evidently, a change in the cross-sectional
shape will affect the emptying of a tube and the simplest possible shape change will result
if a rod is inserted into the circular tube, effectively creating an annular tube. This is the
situation we will investigate. Annular tubes are used in other fluid systems (for example,
Smedley 1990; Pour & Thiessen 2019; Kang & Mutabazi 2021; Stokes 2021). It is noted
that the use of eccentricity can avoid occlusion even at zero Bond number for ranges of
radius ratio and eccentricity (Smedley 1990; Pour & Thiessen 2019). Although annular
tubes are not more common than non-annular tubes, they can have higher performance
in some applications under certain conditions. An annular structure created by inserting
a rod into a tube maybe be a better choice in terms of capillary emptying. What happens
when a rod is inserted into a horizontal capillary where a long liquid droplet plugs? At first
thought, the plugging liquid droplet will become longer due to the pushing by the inserted
rod, but that may not be the case because the equilibrium shape of liquid is reached at
energy minimization. This is an interesting question but it has not been answered to date.

In this paper we investigate the effect of insertion of a rod on critical emptying
conditions in a horizontal circular capillary and examine the effects of the inner-to-outer
radius ratio and the uniformity and non-uniformity of the outer and inner contact angles
on the critical emptying line. We organize this paper as follows. Section 2 describes the
problem formation and the equations governing the equilibrium of the gas–liquid interface
in a horizontal capillary. Experimental validation of the mathematical model is conducted
in § 3. Results and discussion by considering the effect of the inner-to-outer radius ratio
and contact angles are given in § 4. Finally, the conclusions are presented in § 5.

2. Problem formation and mathematical methods

Consider a horizontal rod inside a horizontal circular capillary of outer tube radius Ro
and rod radius Ri partially filled with a liquid and a gas in a downward gravity field (see
figure 1). The concentric annular tube is infinitely long and has a constant cross-section
with its radius ratio being defined as χ = Ri/Ro. The centroid of the concentric annulus
lies on the x axis. The outer tube radius Ro is used as the characteristic length to define the
Bond number of the system.

The macroscopic free energy of a liquid drop in a capillary includes the free surface
energy, the wetting energy, the gravitational energy and a liquid internal energy term that
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Figure 1. (a) Schematic of rod insertion into a horizontal circular capillary leading to change of a long
liquid droplet from a plug to non-occlusion in a downward gravity field; (b) a cross-section of the horizontal
concentric annular tube of inner and outer radii Ri and Ro with gas–liquid interface Γ , total and liquid interiors
Ω and Ω∗, total and wetting inner perimeters Σi and Σ∗

i , total and wetting outer perimeters Σo and Σ∗
o and

inner and outer contact angles γ i and γ o.

imposes a volumetric constraint on the problem. Under equilibrium conditions, the shape
of the droplet is such that the total free energy is minimized.

In an infinitely long capillary, there are only two equilibrium states, that is, liquid plug
and liquid non-occlusion. The effect of contact angle on the critical Bond number is
normally presented in the form of a plot of critical Bond number as a function of contact
angle and this plot is referred to as ‘the critical emptying line’. The liquid tongue for
the state of the liquid plug is finitely long and that for the state of liquid non-occlusion
is infinitely long. The tongue gets longer with larger Bond number and becomes very
long when the Bond number approaches the critical Bond number, as demonstrated by
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Figure 2. Schematic of evolution of the 3-D interface (an oblique view) as the Bond number gradually
increases and approaches the critical Bond number. The 3-D interfaces computed by Surface Evolver (Brakke
1992) are integrated in a horizontal concentric annular tube.

the 3-D interfaces (see figure 2) directly computed via Surface Evolver (Brakke 1992);
when the critical Bond number is attained, the tongue can be seen to be infinitely long and
the cross-section intersected with the tongue can be seen to be translationally invariant.
The total free energy of a 3-D droplet is finite. The total free energy per unit length of the
tongue corresponding to the critical emptying line should be equal to 0. In this case, the
3-D problem can be reduced to an associated 2-D problem. The total free energy per unit
length of liquid tongue based on a cross-section of an annular capillary is

Φ = Γ − (Σ∗
o cos γo + Σ∗

i cos γi) + l−2
ca

∫
Ω∗

y dx dy + λΩ∗, (2.1)

where λ is a Lagrange parameter, Γ is the length of the gas–liquid interface (meniscus),
Σ∗

o and Σ∗
i are the perimeters of the tube outer and inner walls in contact with the liquid,

respectively, Ω∗ is the liquid area and γ i and γ o are the inner and outer contact angles,
respectively (see figure 1b). The critical emptying line can be determined when the below
condition is satisfied (Finn 1986; Manning et al. 2011; Rascón et al. 2016):

Φ = 0. (2.2)

The Young–Laplace equation describing the shape of a gas–liquid interface can
be determined by minimization of the total free energy of the 3-D droplet. The
Young–Laplace equation in two dimensions is given by (Bhatnagar & Finn 2016; Zhou
& Zhang 2017) (

yx

(1 + y2
x)

0.5

)
x

= l−2
ca y + λ. (2.3)

The Lagrange parameter λ can be obtained from integration of (2.3) as

λ = Σo cos γo + Σi cos γi

Ω
= 2(cos γo + χ cos γi)

Ro(1 − χ2)
, (2.4)

where Ω is the cross-sectional area of the capillary. The numerical procedure is used as
below. First, guess a value of the Bond number. The location of the three-phase contact
point at the outer tube wall changes gradually from the lowest point to the highest point to
calculate the gas–liquid interfaces by (2.3) with the contact angle conditions being satisfied
and then obtain the value of the functional Φ from (2.1). Next, modify the value of the
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Bond number based on the difference between the minimum value of the functional Φ

and zero and then recalculate. The iteration computation is repeated until (2.2) is satisfied.
When the contact angles of the inner and outer walls of a horizontal concentric annular

tube are uniform (γo = γi = γ ), the Lagrange parameter λ can be reduced to

λ = 2 cos γ

Ro(1 − χ)
. (2.5)

From the above equation, it is indicated that the concentric annular tube of outer radius Ro
and radius ratio χ has a larger value of λ than the circular tube of radius Ro when the two
tubes have the same contact angles.

For the uniform contact angle γo = γi = 90◦, the constant λ is equal to 0, and the
interface is a straight line on the x axis. By substituting the relevant parameters into (2.2),
we obtain the theoretical critical Bond number as

Boc = 3

(χ + 0.5)2 + 0.75
. (2.6)

The analytical expression for the critical Bond number given by (2.6) applies only for the
case of inner and outer contact angles both equal to 90°. In the special case, the critical
Bond number Boc is found to be equal to 3 for a horizontal circular capillary without an
inside central rod, decreases with χ increasing and approaches the limit of 1 when χ → 1.
This indicates that rod insertion can cause liquid emptying of a horizontal capillary (see
figure 1a).

3. Experimental validation

Experiments were carried out to observe whether a long water droplet is in a plug or
non-occlusion state before and after a rod is inserted into a long horizontal circular
capillary tube. Both the tube of 20 cm in length and the rod of 30 cm in length were
made of silica glass. The silica glass had a contact angle of approximately 30°. The
two ends of the tube were open and, for the concentric annular tube case, the inside
rod was hung on two accessories that were manufactured by 3D printing. The fluids in
capillaries were exposed to two LED light sources. A Nikon D7200 camera mounted with
Nikon Micro-NIKKOR 105 mm f/2.8G macro lenses was used to visualize the fluids in
capillaries.

In the experiments for circular capillaries and concentric annular capillaries of
inner-to-outer radius ratio χ ≈ 0.5, we used capillaries of different radii to vary the Bond
number. We experimentally observe that the circular capillary is plugged by a long liquid
droplet before a rod is inserted and, amazingly, the insertion of the rod leads to the
emptying of the circular capillary when the Bond number is between Boc for circular
capillary and Boc for concentric annular tube (χ = 0.5) (see figure 3). This observation
from the experiments of several samples basically coincides with the prediction of
calculations using the mathematical model as presented in § 2 (see figures 3b and 3c).
The capillaries are so long that the effect of the contact angle pinning at the sharp edge is
negligible here.

4. Results and discussion

The critical Bond numbers of the concentric annular tubes of various inner-to-outer radius
ratios χ ranging from 0 to 0.9 at an interval of 0.1 for the uniform contact angles (γo = γi)
varying from 1° to 179° with an increment of 1° are shown in figure 4. The results for
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Figure 3. (a) Theoretical predictions for the ‘critical emptying lines’ (Boc(γ ) where γ o = γ i = γ ) for the open
capillary (upper black line), and for the capillary χ = 0.5 with rod inserted (lower red line). Also shown are
experimental results for a 6.79 mm diameter tube with rod inserted (P1) and for a 5.92 mm diameter tube
with rod inserted (P2). Results are also presented for larger diameter capillaries again with inserted rods. The
red circles indicate liquid non-occlusion and the red cross indicates that the liquid plug remains. Note that, as
predicted by theory, the larger tube becomes non-occluding after rod insertion (see P1) whereas the smaller
tube remains blocked (see P2). Panels (b) and (c) show photographs of the liquid plug or non-occlusion before
and after rod insertion in the two cases P1 and P2.

χ = 0 (representing a circular cylinder) are in excellent agreement with those calculated
theoretically and directly computed via Surface Evolver (Brakke 1992) in 3-D mode, by
Manning et al. (2011) and Rascón et al. (2016), independently. The calculated results for
different values of χ for the cases γo = γi = 90◦ are also in good agreement with the
analytical solutions by (2.6) and those directly computed via Surface Evolver in 3-D mode,
which again validates the model considering the effect of the radius ratio. As shown in
figure 4, the insertion of a circular tube causes the reduction of Boc for a wide range of
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Figure 4. Critical Bond numbers of a horizontal circular tube (χ = 0) and a horizontal concentric annular tube
versus uniform contact angle γ o = γ i. The radius ratio of the concentric annular cylinder changes from 0.1 to
0.9. The triangles and the crosses denote the data calculated by (2.6) and those directly computed via Surface
Evolver in 3-D mode, respectively, for γ o = γ i = 90°. The circles denote the kinks of the curves. The squares
denote the representative points each corresponding to a cross-section of the part of the interface that extends
to infinite length at the critical Bond number. Here, A0, B0, C0, D0 and E0 correspond to γ o = γ i = 10°, 50°,
90°, 130° and 170°, respectively, for the circular cylinder, while, A, B, C, D and E correspond to γ o = γ i = 10°,
50°, 90°, 130° and 170°, respectively, for the concentric annular cylinder with χ = 0.1.

contact angles for χ ≤ 0.6 (for example, from 47° to 133° for χ = 0.1) and for all the
contact angles for χ ≥ 0.7. Especially, it causes a large reduction of the maximum of Boc
reached at γo = γi = 90◦ and the reduction is more for larger radius ratio.

Figure 4 also gives the pictures, each of which represents a cross-section of the part
of the interface extending to infinite length at the critical Bond number, for the circular
cylinder and the concentric annular cylinder with χ = 0.1, in the representative cases of
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Figure 5. Critical Bond number of a horizontal concentric annular tube for inner wall contact angle γ i = 90°
versus outer wall contact angle γ o. The radius ratio of the concentric annular cylinder changes from 0.1 to 0.8.
The circles denote the kinks of the curves. The squares denote the representative points each corresponding to
a cross-section of the part of the interface that extends to infinite length at the critical Bond number. Here, A,
B, C, D and E correspond to γ o = 10°, 50°, 90°, 130° and 170°, respectively, for χ = 0.1.

γ o = γ i = 10°, 50°, 90°, 130° and 170°. There exist three different non-occluded liquid
topologies in a capillary with an inside concentric rod. For the type 1 topology (for
example, the cross-section A), the gas–liquid interface is below the rod. For the type 3
topology (for example, the cross-section E), the interface is above the rod. The respective
interfaces of the two topologies only meet the outer wall. For the type 2 topology (for
example, the cross-sections B–D), the interface meets both the inner and outer walls.
The interfaces for the three topologies are symmetric with respect to the vertical line of
symmetry of the cross-section. This is attributed to both the uniformity of the contact
angles on different linked parts of the outer wall and the uniformity of the contact angles
on different linked parts of the inner rod.

For χ = 0.1 and 0.2, with the uniform contact angle increasing, the type 1, 2 and 3
topologies occur in sequence. The type 2 topology corresponds to most of the contact
angels, while the type 1 topology exists for small contact angles and the type 3 topology
exists for large contact angles. Each of the two transitions between the type 1 topology
and the type 2 topology and between the type 2 topology and the type 3 topology is
accompanied by the occurrence of a kink of the Boc curve. With the increase of χ from 0
to 0.2, the minimum of Boc attained at γo = γi = 1◦ or 179° increases. For χ = 0.3–0.9,
there only exists the type 2 topology. In this case, the curves of Boc become smooth and
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Figure 6. Critical Bond number of a horizontal concentric annular tube for inner wall contact angles γ i = (a)
60° (120°), (b) 30° (150°), (c) 5° (175°) and (d) 1° (179°) versus outer wall contact angle γ o. The tick values
outside the brackets on the horizontal axis correspond to the cases for γ i = (a) 60°, (b) 30°, (c) 5° or (d)
1°, while those inside the brackets on the horizontal axis correspond to the cases for γ i = (a) 120°, (b) 150°,
(c) 175° or (d) 179°. In (a–c), different radius ratios from 0.1 to 0.8 are used and in (d) different radius ratios
from 0.5 to 0.9 are used. The circles denote the kinks of the curves. The squares denote the representative points
each corresponding to a cross-section of the part of the interface that extends to infinite length at the critical
Bond number. Here, A, B, C, D and E on the upper (lower) row correspond to γ o = 10° (170°), 50° (130°), 90°
(90°), 130° (50°) and 170° (10°), respectively, for (a–c) χ = 0.1 and (d) χ = 0.9. In (a–d), the interfaces for A,
B, C, D and E in the upper row are shown to be symmetrical to the interfaces for A, B, C, D and E in the lower
row over the x axis, respectively.

the contact angle has a small influence on the value of Boc. With χ increasing from 0.3
to 0.9, the minimum of Boc gradually decreases, and the minimum for χ ≥ 0.7 becomes
a little lower than the minimum for the circular tube. It is found that, for the cases of the
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uniform contact angles, the minimum critical Bond number is influenced to a small extent
by changing the radius ratio of the tube.

Is it possible to further reduce the critical Bond number for a rod inside a capillary?
We try to answer this question by setting different contact angles. In reality, it is easy
to choose to use an inserted rod with a different contact angle from that of the capillary
tube. We should examine the effect of changing the inside rod contact angle from the
outer tube contact angle (which is different from the case of differing contact angles of
four linked walls of the rectangle as shown in Zhu et al. 2020) on Boc. As shown in
figure 4, Boc reaches the maximum at contact angles of γ o = γ i = 90°. By keeping γ i
constant (= 90°), the variations of Boc with the contact angle γ o for different radius ratios
are shown in figure 5. The curves are still symmetric about the vertical line γ o = 90°.
Compared with the circular tube, the maximum of Boc for the annular tube is reduced by
an amount that increases with increasing radius ratio; however, the minimum reached at
γ o = 1° or 179° is larger for χ ≤ 0.6 and a little smaller for χ ≥ 0.7. The three topologies
exist for χ = 0.1–0.3 but there is only the type 2 topology for χ ≥ 0.4. Compared with the
case of equal inner and outer contact angles for a given radius ratio, the minimum of Boc
is reduced by an amount that is very small for χ ≥ 0.4.

The interface for the case of γ i and γ o is found to be symmetrical to the interface for the
case of 180°–γ i and 180°–γ o over the x-axis. Under these circumstances, based on (2.2),
it is observed that the critical Bond number for the case of the inner wall contact angle
γ i and the outer wall contact angle γ o is equal to that for the other case of the inner wall
contact angle 180°–γ i and the outer wall contact angle 180°–γ o. In order to further analyse
the effect of the non-uniformity of γ i and γ o effectively, the inner wall contact angle is
changed to 60° (120°), 30° (150°), 5° (175°) and 1° (179°), all of which are smaller (larger)
than 90°. The variations of Boc with the contact angle γ o for different radius ratios and
different inner wall contact angles are shown in figure 6. In this figure, the curves are
not symmetric about the vertical line γ o = 90°. As shown in figure 6(a–c), the minimum
is attained at γ o = 179° (1°) and χ = 0.8, and decreases with smaller (larger) value of
γ i. By further reducing (increasing) the inner wall contact angle to γ i = 1° (179°), the
minima for χ ≥ 0.8 become lower than 0.13 and even the minimum for χ = 0.9 is equal
to approximately 0.058 (see figure 6d). In comparison with a circular tube and even a
concentric annular tube of equal inner and outer contact angles, the minima are clearly
reduced and the maxima are slightly reduced.

Unlike differing contact angles of four linked walls of a horizontal rectangular tube (Zhu
et al. 2020), differing inner rod contact angles from the outer tube wall contact angle in
the horizontal concentric annular tube never leads to the increase of the maximum critical
Bond number but only decreases the minimum. It is concluded that the insertion of a
hydrophobic circular rod with a large enough radius can make liquid emptying easier in a
hydrophilic circular tube. The insertion of a hydrophilic circular rod with a large enough
radius can also make liquid emptying easier in a hydrophobic circular tube.

5. Conclusions

In this paper, the effect of insertion of a rod on liquid emptying of a horizontal capillary in
a downward gravity field is studied. The critical Bond numbers for the concentric annular
tube for the cases with uniform inner and outer wall contact angles and the cases of
differing inner rod contact angles from the outer tube contact angle are analysed, and
the influence of the cross-section inner-to-outer radius ratio on the critical Bond number
is examined.
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X. Zhou, G. Zhang, C. Zhu, D. Tan and C. Fu

Compared with the cases for a circular tube, for a concentric annular tube with uniform
inner and outer contact angles, the maximum of Boc reached for the inner and outer wall
contact angle γi = γo = 90◦ decreases clearly, and the reduction is larger for larger radius
ratio; however, the minimum is larger for a radius ratio smaller than or equal to 0.6 and
a little smaller for a radius ratio larger than or equal to 0.7. An analytic formula with the
radius ratio for calculation of the critical Bond number for γi = γo = 90◦ is established.
Differing inner rod contact angles from the outer tube contact angle causes the curves of
Boc to be asymmetric about the vertical line γo = 90◦ for γi /= 90◦. If γi< (>) 90°, the
minimum is attained at γo = 179◦ (1°) and decreases with the inner wall contact angle
decreasing (increasing) and with the radius ratio increasing. The minimum attained at
γi = 1◦ and γo = 179◦ (or γi = 179◦ and γo = 1◦) for a large enough radius ratio is much
lower than that reached for a circular tube and a concentric annular tube of equal inner
and outer contact angles. The insertion of a circular rod causes the occurrence of three
topologies, including the type 2 topology with the interface meeting both the inner and
outer walls and the other two topologies with the respective interfaces meeting the outer
wall. A large enough radius ratio induces the type 2 topology to become the only occurring
topology. The insertion of a large enough circular rod with the same wall surface property
as the outer circular capillary may lead to the reduction of the minimum critical Bond
number but the reduction is small. The insertion of a hydrophobic (hydrophilic) circular
rod with a large enough radius can make the liquid emptying easier in a hydrophilic
(hydrophobic) circular capillary. It is hoped that this paper would lay a solid foundation
for design of non-occluding tubes in a transverse body force field.
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