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Scaling analysis of the swirling wake of a porous
disc: application to wind turbines
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We report a comprehensive study of the wake of a porous disc, the design of which has
been modified to incorporate a swirling motion at an inexpensive cost. The swirl intensity
is passively controlled by varying the internal disc geometry, i.e. the pitch angle of the
blades. A swirl number is introduced to characterise the competition between the linear
(drag) and the azimuthal (swirl) momenta on the wake recovery. Assuming that swirl
dominates the near wake and non-equilibrium turbulence theory applies, new scaling
laws of the mean wake properties are derived. To assess these theoretical predictions, an
in-depth analysis of the aerodynamics of these original porous discs has been conducted
experimentally. It is found that, at the early stage of wake recovery, the swirling motion
induces a low-pressure core, which controls the mean velocity deficit properties and the
onset of self-similarity. The measurements collected in the swirling wake of the porous
discs support the new scaling laws proposed in this work. Finally, it is shown that, as far
as swirl is injected in the wake, the characteristics of the mean velocity deficit profiles
match very well those of both laboratory-scale and real-scale wind-turbine data extracted
from the literature. Overall, our results emphasise that, by setting the initial conditions of
the wake recovery, swirl is a key ingredient to be taken into account in order to faithfully
replicate the mean wake of wind turbines.

Key words: wakes

1. Introduction

To tackle the challenges posed by climate change, global policies increasingly advocate
for a significant rise of renewable sources within the energy mix. In this context, the wind
energy sector has shown an exceptional growth, raising problems related to the sizing,
positioning and operation of wind turbines. The trade-off between technical constraints
and resource availability usually results in wind turbines being densely grouped in clusters
known as wind farms, whose efficiency largely depends on the so-called wake interactions.
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Wind power extracted by a wind turbine is intimately related to its drag coefficient CD
defined as follows:

CD = FD

1
2
ρU2∞A

, (1.1)

where FD is the drag force experienced by the body, ρ is the air density, U∞ is
the incoming velocity and A is the frontal area of the body. Since CD is intimately
linked to wake recovery, accurately predicting the development of wind-turbine wakes
is crucial for optimising wind farm operation. However, the number of degrees of freedom
characterising this problem is so vast that it is currently extremely challenging to solve it
with standard high-fidelity numerical tools. To overcome this issue, simplified approaches
are required. A popular example of this strategy is the actuator disc concept first introduced
by Rankine (1865), which assimilates the wind-turbine rotor to a porous medium surrogate
across which a pressure drop can be tuned to match the drag coefficient (Van-Kuik et al.
2015).

At the laboratory scale, the actuator disc concept has been implemented using porous
discs to mimic isolated wind turbines (see e.g. Aubrun 2013; Howland et al. 2016) or
wind farms (see e.g. Camp & Cal 2016; Bossuyt, Meneveau & Meyers 2017; Stevens,
Martínez-Tossas & Meneveau 2018). As a starting point, the seminal work of Castro (1971)
on perforated flat plates, later on extended by Steiros & Hultmark (2018), emphasise
the attractiveness of this analogy reducing the problem complexity to a single physical
parameter: the porosity β, which represents the ratio of empty volume to total volume.
Based on potential flow theory and conservation laws, Steiros & Hultmark (2018) derived
a relationship between CD and β, which was successfully validated against experimental
measurements for any porosity value. This means that tuning the porosity of a porous
disc is a simple and efficient way to match the drag coefficient of a wind turbine, while
keeping the global dimensions (i.e. the diameter of the area swept by the rotor) constant.
By doing so, some physics of the mean wake of a wind turbine can be reproduced at low
costs in a laboratory setting, even if it does not generate power from the wind (Aubrun
2013). For instance, Sforza, Sheerin & Smorto (1981) studied experimentally the wake
generated by porous discs within various operating conditions. Aubrun (2013) conducted
an experimental survey comparing the wake generated by a laboratory-scale rotating wind
turbine with that of a porous disc. Analysing mean velocity and turbulence intensity
profiles, these authors concluded that, beyond 3 rotor diameters, both wakes behave
similarly. Identical conclusions were reached by Stevens et al. (2018), who investigated
the influence of the wind-turbine model incorporated in large eddy simulations for both
a single wind turbine and a wind farm. Comparing their results with the experimental
database reported by Chamorro & Porte-Agel (2011), these authors showed that the
actuator disc model is well adapted to capture the main features of the mean wake.

As depicted in figure 1, the porous disc model has shown an evolution throughout the
years marked by a shift in focus towards porosity distribution – from models with uniform
porosity (Sforza et al. 1981; Aubrun 2013; Lignarolo, Ragni & Ferreira 2016) to those
featuring a non-uniform porosity distribution (Camp & Cal 2016; Howland et al. 2016;
Helvig et al. 2021). The progression toward increasingly intricate designs, with the aim
of more accurately mirroring the blades of a wind turbine, is evident. Recently, Aubrun
et al. (2019) and Vinnes (2023) performed a detailed comparison of both types of porosity
distribution in different facilities. The authors found discrepancies from flow to flow that
they attributed to variations in the initial conditions of the wake, which are known to
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Figure 1. Schematic diagram showing the chronology of the porous disc model used as a wind-turbine
surrogate for wind-tunnel experiments and corresponding references.

have a very long-range influence (Bevilaqua & Lykoudis 1978; Wygnanski, Champagne
& Marasli 1986). This observation resonates with the results reported by Stevens et al.
(2018), who showed that adding more details to the initial conditions of the actuator disc
model (like the nacelle, hub and mast) greatly increased its fidelity. This tends to show that
by restricting the design of the actuator disc concept to a single parameter, porosity, the
relevance of this model is likely to remain limited.

Camp & Cal (2016) pointed out that, although the porous disc model can closely
approximate most statistics of the mean flow, it inherently lacks the ability to replicate
swirl, which is a defining feature in the near wake of wind turbines (Porté-Agel,
Bastankhah & Shamsoddin 2020). This additional motion comes from the rotation of
the blades, which confer an angular momentum to the wake. Knowing that swirl plays
a crucial role in areas like combustion (Masri, Kalt & Barlow 2004) and geophysics
(Moisy et al. 2011), its omission in the design of actuator disc may result in oversimplified
wind-turbine surrogate. In fact, professor Joukowsky (1912) had already emphasised the
relevance of rotation in screw vortex systems like propellers, helicopters and wind turbines
(readers interested in Joukowsky’s legacy to the development of rotor theory are referred
to Okulov, Sørensen & Wood (2015) and Van-Kuik et al. (2015)). Introducing the swirl
number FDL/G0, where L is a characteristic length scale (typically the rotor diameter)
and G0 is the axial flux of angular momentum (Oberleithner et al. 2011), Reynolds
(1962) investigated the self-similar solutions by considering two asymptotic cases: linear
momentum (drag) dominated flows, i.e. FDL/G0 � 1, and angular momentum (swirl)
dominated flows, i.e. FDL/G0 � 1. While the latter regime is reminiscent of wakes
behind self-propelled bodies (Chernykh, Demenkov & Kostomakha 2005), the former
regime corresponds to the framework in which most popular wake recovery models
were established (Jensen 1983; Frandsen et al. 2006; Bastankhah & Porté-Agel 2014).
Recently, Holmes & Naughton (2022) estimated a range of swirl number values for real
wind turbines using the results from the National Renewable Energy Laboratory’s FAST8
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wind-turbine model (Bortolotti et al. 2019). Swirl numbers reaching values up to 0.25 (i.e.
O(1)) were found, meaning that the influences of both linear and angular momentum are
significant and cannot be disregarded. In this scenario, the consideration of swirl becomes
indispensable in accurately predicting wind-turbine wake development.

The objective of this investigation is twofold and is based on the following two
questions: How can a porous disc generate a swirling wake while maintaining its
simplicity? What is the influence of swirl on the structure and the development of the
wake? The latter question underscores the primary focus of the paper, which is to examine
the influence of swirl on the self-similar behaviour of the wake. While the studies by
Wosnik & Dufresne (2013) and Holmes & Naughton (2022) offer valuable insights into
the classical similarity analysis of swirling wakes, based on the approaches of Tennekes &
Lumley (1972), Townsend (1976) and George (1989), recent advancements in turbulence
theory (see Seoud & Vassilicos 2007; Nedic 2013; Dairay, Obligado & Vassilicos 2015;
Vassilicos 2015) provide an opportunity to revisit self-similar analysis of the swirling wake
without relying on restrictive assumptions about the nature of turbulence in the flow.
The outline of the paper is therefore structured as follows: § 2 examines the theoretical
implications of considering swirl in the development of a turbulent axisymmetric wake
with particular attention to the similarity analysis; § 3 describes the porous disc design
process to passively include swirl and presents the experimental set-up. The aerodynamic
performances of the proposed porous disc is assessed in § 4, which is completed by a mean
wake survey in § 5, where a scaling analysis is conducted. Conclusions are drawn in § 6
along with some perspectives.

2. Self-similarity analysis of the mean swirling wake

In this section, the scaling laws of the main parameters featuring a swirling wake are
derived based on a self-preserving approach. To this end, simplified conservation laws
are first established. Then, different scenarios are explored depending on the state of the
dissipation rate of turbulent kinetic energy. As illustrated in figure 2, we consider an
axisymmetric wake generated by an actuator of diameter D centred at the origin of the
cylindrical coordinates system (x, r, φ). The swirling motion of the wake is triggered by
an angular momentum G0 injected to the flow at the actuator disc location. The wake is
characterised by its velocity components u, v and w along the streamwise (x), the radial (r)
and the azimuthal (φ) directions, respectively. The actuator disc is subjected to an inflow
characterised by a free-stream velocity U∞. For the remainder of the paper, the symbol •�

denotes normalised quantities using U∞ and D as characteristic scales for velocities and
lengths, respectively.

2.1. Governing equations and relevant simplifications
Since the theoretical framework describing the development of axisymmetric free shear
flows has been established by previous works (see e.g. Townsend 1976; George 1989;
Johansson, George & Gourlay 2003; Shiri, George & Naughton 2008), we will only give
a brief review of the main equations on which the self-similar analysis is based. Under
the boundary-layer approximation (i.e. ∂/∂r � ∂/∂x), the mean momentum transport
equation along the streamwise direction is the following:

U
∂U
∂x

+ V
∂U
∂r

= −1
r

∂(ru′v′)
∂r

+ ∂

∂x

{
v′2 − u′2 +

∫ ∞

r

W2 + (w′2 − v′2)
r′ dr′

}
, (2.1)
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Figure 2. Schematic diagram of the axisymmetric swirling wake generated by an actuator disc contained in a
control volume V . Here, U and W are the mean streamwise and azimuthal components, respectively, P∞ is the
free-stream static pressure and ni are the outbound vectors normal to the surfaces.

where U, V and W are the mean velocity components, while u′, v′ and w′ represent
the turbulent fluctuations along the streamwise (x), the radial (r) and the azimuthal
(φ) directions, respectively. The symbol •̄ stands for the ensemble averaging operator.
Note that, in this expression, the streamwise pressure gradient is inferred via the mean
momentum transport equation along the radial direction leading to the term in brackets
(Shiri et al. 2008). Equivalently, the mean momentum transport equation along the
azimuthal direction reads

U
∂W
∂x

+ V
∂W
∂r

+ VW
r

= −∂v′w′

∂r
− 2

v′w′

r
− ∂u′w′

∂x
. (2.2)

Integrating (2.1) over a control volume V encompassing the actuator disc (see figure 2)
leads to the following expression:

CD = 2FD

ρU2∞Adisc
= 16

∫ ∞

0
U∗�U∗r∗ dr∗

︸ ︷︷ ︸
I

−16
∫ ∞

0

[
u′2∗ − w′2∗ + v′2∗

2

]
r∗ dr∗

︸ ︷︷ ︸
II

+ 16
∫ ∞

0

[
W∗2

2

]
r∗ dr∗

︸ ︷︷ ︸
III

, (2.3)

where ρ is the working fluid density, Adisc = πD2/4 the surface area of the actuator disc,
FD its aerodynamic drag and �U = U∞ − U the velocity defect. Here, FD acts as a body
force, representing the external force term from the wind turbine. Equation (2.3) relates
the drag coefficient CD to the mean momentum deficit flow rate (term I), the turbulence
anisotropy (term II) and the mean kinetic energy of swirl (term III). Our measurements
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emphasise that term I predominates in (2.3) which reduces to

CD ≈ 16
∫ ∞

0
U��U�r� dr�. (2.4)

In the same manner, an angular momentum budget using (2.2) applied on the control
volume V yields

G�
0 = 2G0

ρU2∞AdiscD
= 16

∫ ∞

0

(
U�W� + u′w′�

)
r�2

dr�, (2.5)

which expresses that the integrated angular momentum remains constant along the
streamwise direction and is equal to its source value. Here again, our measurements
show that the transport of angular momentum by the Reynolds shear stress (i.e. u′w′�)
is marginal compared with that transported by the mean swirling motion (i.e. U�W�) in
the examined region of the flow. Equation (2.5) thus reduces to

G�
0 ≈ 16

∫ ∞

0
U�W�r�2

dr�. (2.6)

The validity of these approximations is discussed in more detail in Appendix A, where the
contribution of the omitted terms is quantified. It should be noted that the conservation
laws (2.4) and (2.6) are valid asymptotically for the far-wake region of the flow but are
useful to establish compelling phenomena in more intermediate regions of the flow. These
laws govern the evolution of the mean swirling wake as it develops in the streamwise
direction and are at the basis of the self-preservation analysis conducted in the following
part.

2.2. Similarity analysis
In this section, we revisit the self-similar analysis of the swirling wake conducted by
Wosnik & Dufresne (2013), and extend it to the non-equilibrium turbulence paradigm
(Vassilicos 2015). The similarity analysis consists in seeking self-similar solutions for the
flow properties which have to satisfy the conservation laws (2.4) and (2.6). Following
Townsend (1976) and George (1989), these conservation laws act as the ‘similarity
constraints’, which allow us to establish the so-called ‘intermediate asymptotics’ (Cantwell
1978; Barenblatt 1996). To this end, we assume that any flow variable can be expressed
as •(x, r) = •s(x)f (ζ ), where •s represents the typical amplitude of the variable, f is
a self-similar function and ζ = r/δ(x), with δ(x) a characteristic length of the flow.
An important remark regarding the choice of δ has to be made here. Since the evolution
of classical axisymmetric wakes is solely governed by the linear momentum conservation
law (2.4), it is natural to choose a characteristic length directly connected to the velocity
deficit �U. For that reason, δ is most often assimilated to the wake half-width δ1/2, which
is by definition �U(x, r = δ1/2) = Us(x)/2, where Us(x) is the maximum velocity deficit
at the streamwise location x (Pope 2000). Unlike classical axisymmetric wakes, however,
the swirling wake features an additional constraint in the form of the conservation of mean
angular momentum (2.6). This introduces an additional characteristic length scale δswirl to
the similarity analysis linked to the swirling velocity such that W(x, r = δswirl) = Ws(x),
where Ws(x) is the characteristic swirl amplitude at the streamwise location x. The way
both δswirl(x) and Ws(x) are estimated is detailed in § 4 of the manuscript and illustrated
in figure 10. In other words, the way the swirling wake develops will depend on the
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Scaling analysis of the swirling wake of a porous disc

competition between the linear and angular momenta. In contrast to the analysis of Wosnik
& Dufresne (2013), we assume in the following that the wake in the vicinity of the actuator
disc is a region of the flow governed by the swirling motion. Moreover, no assumption
is made about the dissipation scaling law, i.e. whether it be based on equilibrium or
non-equilibrium turbulence.

Substituting self-similar forms in the conservation laws (2.4) and (2.6) and assuming
that the porosity of the actuator disc is high enough so that U� ≈ 1, we get

CD ∼
[
U�

s δ
�2

] ∫ ∞

0
ζg(ζ ) dζ, (2.7)

G�
0 ∼

[
W�

s δ�3
] ∫ ∞

0
ζ 2h(ζ ) dζ, (2.8)

where g and h are similarity functions. Given that the linear and angular momenta remain
constant and equal to their source values, the products in square brackets in the previous
equations are also constant, which implies that

U�
s ∼ δ�−2

, (2.9)

W�
s ∼ δ�−3

. (2.10)

Using (2.9) and (2.10) yields Us ∼ W2/3
s , a relationship that is well supported by the data

reported in Wosnik & Dufresne (2013). As discussed in Townsend (1976) and in George
(1989), a final step is then necessary to close the system. To this end, the transport equation
of the turbulent kinetic energy is used, providing an additional constraint relating the
expansion rate of the characteristic length scale δ to the turbulent dissipation rate ε and
reads

dδ

dx
∼ εδ

U2
s U∞

. (2.11)

A general expression for ε was proposed by Vassilicos (2015) and specifically applied
by Dairay et al. (2015) to derive non-equilibrium scaling laws for axisymmetric wakes.
It reads

ε = Cε

U3
s

δ
, (2.12)

with Cε ∼ Rem
D/Ren

�, where ReD = U∞D/ν and Re� = Usδ/ν represent global and local
Reynolds numbers, respectively. Note that, while the integral length scale and the square
root of the turbulent kinetic energy at a centreline location

√
K0(x) were originally used as

characteristic scales, Dairay et al. (2015) outlines how (2.12) is adapted for the similarity
analysis of wakes. The nature of the turbulence is then controlled by the exponents
m and n. Following Dairay et al. (2015), the classical equilibrium turbulence (in the
Kolmogorov sense) is retrieved by imposing m = n = 0, which yields Cε = const, while
non-equilibrium turbulence corresponds to the condition m = n = 1. Coupling (2.11) and
(2.12) yields

dδ�

dx� ∼ Rem−n
D

U�1−n

s

δ�n . (2.13)

Taking n = m = 0, (2.13) becomes dδ�/dx� ∼ U�
s , meaning that the expansion rate scales

linearly with the velocity deficit. Substituting (2.9) into (2.13) yields the classical so-called
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Townsend (1976) and George (1989) scalings

δ� ∼ (x� − x�
0)

1/3 and U�
s ∼ (x� − x�

0)
−2/3, (2.14a,b)

where x0 stands for a virtual origin. Accounting for (2.10), it immediately follows that

W�
s ∼ (x� − x�

0)
−1. (2.15)

This scaling law, which dictates the decay of the swirl amplitude, was initially established
by Wosnik & Dufresne (2013). However, the authors noticed that this prediction was
not well supported by their experimental data. They argued that this departure from the
predicted law might have been related to the presence of tip vortices. Recently, Holmes &
Naughton (2022), who studied the axisymmetric swirling wake of a rotating porous disc
at different rotation speeds, claimed that the equilibrium scaling laws predicted the swirl
decay rate only after an ‘initial adjustment region’. In other words, Wosnik & Dufresne
(2013) as well as Holmes & Naughton (2022) evidenced that equilibrium similarity fell
short in accurately predicting swirl decay in the intermediate wake region. In fact, recent
findings suggest that non-equilibrium regions are found in turbulent wakes and hold over a
large span of streamwise distances from the wake generator and even at very far distances
(Nedic 2013; Dairay et al. 2015).

Accordingly, considering now the non-equilibrium framework, i.e. n = m = 1, (2.13)
becomes dδ�/dx� ∼ δ�−1

, which implies

δ� ∼ (x� − x�
0)

1/2. (2.16)

Note that neither of the similarity constraints (2.9) nor (2.10) were invoked to obtain (2.16).
This means that, with a non-equilibrium approach, the nature of the length scale δ is
not implicitly attributed either to the velocity deficit or the swirling motion. Instead, δ

is directly related to the mechanism which sets the level of dissipation in the turbulent
wake. Injecting (2.16) into (2.9) and (2.10) yields

U�
s ∼ (x� − x�

0)
−1, (2.17)

and
W�

s ∼ (x� − x�
0)

−3/2. (2.18)

This novel non-equilibrium scaling law (2.18) predicts a faster decay of swirl amplitude
when compared with its equilibrium counterpart. Naturally, this theoretical law needs
to be confronted with data for validation. In this work, an experimental wind-tunnel
approach was privileged. The following section will therefore provide a comprehensive
description of the experimental set-up used to generate and characterise the swirling wake
of a modified actuator disc.

3. Experimental set-up

3.1. Design of the porous discs with passive swirl generation
The actuator discs used in this study have been designed based on the work of Helvig et al.
(2021), who investigated the wake generated by porous discs featuring various porosity
patterns. Here, following the nomenclature proposed by Helvig et al. (2021), a scaled-up
version of their non-uniform holes disc with 35 % solidity (referred to as NHD35 in
Helvig et al. 2021) has been selected as a reference. The main geometrical parameters and
dimensions of the porous discs are shown in figure 3. The porous discs have a diameter
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Blades ×16

2 mm

1.5 mm

φ100 mm

φ6 mm

5 mm

17.6°

4.9°

R12.5 mm

R30.5 mm

(b)(a)

Figure 3. The NHD35 porous disc (a) global parameters (front and side view) and (b) isometric view.

and a thickness of D = 100 mm and e = 5 mm, respectively. Each porous disc has a central
solid disc of 25 mm in diameter with a 6 mm hole in the middle. From this solid disc, 16
trapezoidal blades make up the body of the disc along with an inner rim that is 61 mm in
diameter and 1.5 mm in width. The outer rim of the porous disc is 2 mm wide. Following
Camp & Cal (2016) and Helvig et al. (2021), the number of blades and their size are the
main factors which can be adjusted to obtain the desired porosity, noted β, defined as

β = Ah

Adisc
, (3.1)

where Ah is the empty area of the trapezoidal holes. While the local porosity varies
along the radial direction, the global porosity of the disc is β = 65 %, matching exactly
the NHD35 disc studied in Helvig et al. (2021). The porous discs were designed with
a commercial three-dimensional design software (ANSYS™ SpaceClaim) and printed in
polylactic acid using a Cura™ Ultimaker 3 Extended printer.

In contrast to the approach taken by Holmes & Naughton (2022), we chose to introduce
the swirling motion in a passive manner by slightly modifying the disc’s geometry. This
methodology is illustrated schematically in figure 4. It consists in pitching the trapezoidal
blades that come out from the centre of the disc of an angle α > 0◦. The main interest of
this approach is to keep the design stage simple and inexpensive. However, this method
lacks pre-defined control over the level of injected swirl and must be therefore estimated a
posteriori. Nevertheless, some predictions for the swirl amplitude as a function of α can be
made by assimilating each individual blade to a thin flat plate of infinite span for which the
thin airfoil theory (Anderson 2011) predicts a lift coefficient CL = 2πα, with α expressed
in radians, as depicted in figure 5. Besides, according to the Kutta–Joukowski theorem,
for non-stalled blades, the lift coefficient per unit span can be expressed as a function
of the circulation Γ such as CL = 2Γ �/e�, where e� is assimilated to the dimensionless
blade chord. Since the inclination of the blades is what induces the swirling motion, the
circulation per unit span is intimately related to the swirling velocity such as Γ ∼ Ws�
where, by definition, � is the typical extent of the contour integral on which the circulation
is computed. It comes naturally that � = πD/n, where n is the number of blades of the
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U∞

U∞ U∞
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α = 0° α > 0°

α
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α

(b)(a)

(c)

Figure 4. Modification of the porous discs to generate a swirling wake showing a frontal view of (a) the α = 0◦
reference case, (b) a porous disc with pitched blades (α > 0◦) and (c) an unfolded view of the modifications.
Black dashed lines: zoomed-in area.

porous disc, which leads to

CL ∼
(

2π

n

)
W�

s

e�
. (3.2)

Therefore, the amplitude of the swirling motion featured by W�
s scales linearly with the lift

coefficient per unit span CL according to potential flow theory. Replacing the expression
for the lift coefficient derived from thin airfoil theory in (3.2) yields

W�
s ∼ ne�α = 0.8α, (3.3)

which predicts a linear increase of the swirl magnitude with respect to the pitch angle α.
The slope of (3.3) sets the theoretical upper limit for the generation of swirl until stall
appears. Due to finite size blade effects, non-constant aspect ratio of the blades and their
surface finish, a lower slope is expected. As shown in figure 5, there is a critical pitch
angle αc beyond which stall appears. This will result in a decrease in lift, consequently
reducing the swirl intensity according to (3.2). The value of αc depends on several
parameters (e.g. Reynolds number, surface roughness, aspect ratio. . .), making it difficult
to accurately predict. However, based on experimental data reported in the literature, a
discernible range can be defined for flat plates with comparable average aspect ratios,
as highlighted by Nakayama (1988); Mohebi, Wood & Martinuzzi (2017), this range is
αc ∈ [14◦–20◦]. To tackle this issue, a parametric study has been conducted by varying
the pitch angle α within the range [5◦–30◦]. Moreover, the appearance of massive flow
separation over the blades will diminish the effective porosity of the actuator disc, leading
to an increase in its drag. To evaluate this effect, supplementary discs with thicker, but
not pitched, blades were manufactured. For those discs, the blade thickness was chosen
such that their frontal area matches the projected area of an original blade at a specific
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Scaling analysis of the swirling wake of a porous disc

Post-stall regime

αc α

U∞

CL

U∞ U∞

α = 0°

0° < α < αc α ≥ αc

Us

Us Us
Ws Ws

(   ) (   )

(   )

Figure 5. Schematic of the influence of the pitch angle α on the lift coefficient experienced by the blades of the
porous disc to passively add swirl. The thin airfoil theory prediction is symbolised by the red dashed line. The
vertical black dot-dashed line represents the critical angle at which stall occurs. Unfolded views are provided
to illustrate the flow path through the actuator disc with different scenarios: (�, red) blades with no pitch, (�,
blue) blades with a pitch angle in the pre-stall regime and (•, green) with a pitch angle in the post-stall regime.

pitch. These low-porosity discs have been manufactured to be compared with pitched discs
at α = 15◦ and α = 25◦. Alternative porous disc designs featuring curved blades, rather
than straight pitched blades, were tested to passively generate swirl. While this approach
generated stronger swirl, it also resulted in increased drag. This design was ultimately set
aside due to the added complexity it introduced to the study and its impact on the disc’s
drag coefficient. The three-dimensional models of the porous discs used in this work are
available upon request.

3.2. Wind tunnel and test rig implementation
The experiments were conducted in the S2 subsonic, Eiffel type, open-circuit wind tunnel
of the PRISME Laboratory at the University of Orléans. The test section is 2 m long with
a cross-sectional area of 0.50 × 0.50 m2 with walls entirely made of Plexiglas to allow
for optical access. The free-stream velocity U∞ can reach 50 m s−1, while the background
turbulence intensity remains lower than 0.35 %. This laminar inflow type was specifically
selected to isolate and assess the impact of swirl on wake development. While a more
realistic representation of wind-turbine wakes would account for external turbulence to
capture interactions with the atmospheric boundary layer, this falls outside the scope of
the current study. For details regarding the effects of external turbulence, we refer readers
to studies such as Gambuzza & Ganapathisubramani (2023).

The implementation of the porous discs in the wind tunnel is depicted in figure 6.
The discs are fixed on a T-shaped aluminium cylindrical rod with a diameter d = 6 mm
representing the wind-turbine nacelle and tower. The hub can be assimilated to the central
solid disc where the disc is fixed to the rod (figure 3). With this set-up, the porous
discs were interchangeable without the need to remove the rod, ensuring that our data
would not be affected by an eventual misalignment between experiments. The wind-tunnel
blockage ratio is approximately 2 % (rod included), ensuring a relatively undisturbed
wake. Accordingly, no blockage correction was applied. The test rig is mounted to an
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Figure 6. (a) Front view of the test rig and (b) schematic of the experimental set-up (not to scale). Green
boxes: particle image velocimetry (PIV) fields of view, magenta solid lines: maps in y–z planes, dotted red lines:
vertical (z) profiles, blue squares: horizontal (y) profiles (three-component hot-wire anemometry, 3CHWA).

aerodynamic balance placed below the wind tunnel floor. The origin of the coordinates is
located at the cross-roads between the mast and the nacelle rod. The x-axis corresponds to
the streamwise direction, the y-axis to the spanwise direction and the z-axis to the vertical
direction.

3.3. Metrology and methodologies
The measurement tools used in this work were selected to assess the conservation laws
and similarity analysis established in § 2. Accordingly, the drag force experienced by the
porous disc has to be measured to obtain direct values of CD. Besides, three-component
velocity measurements are needed to fully characterise the wake evolution.

3.3.1. Drag force measurements
In order to determine the drag coefficient CD of each porous disc, an ATI™ Mini40-E
balance was used. Placed directly beneath the wind tunnel floor, this balance is capable
of measuring force and torque components in all three directions (x, y, z). Since the entire
test rig is attached to the Mini40-E attach point, the balance provides measurements of the
test rig’s total drag FTR

x . To isolate the drag experienced by the porous disc from that
generated by the mast (excluded from our definition of CD), we followed the method
proposed in Helvig et al. (2021). It consists in performing drag measurements of the
T-shaped rod alone, Frod

x , and subtracting them from the test rig’s total drag, giving thereby
a surrogate for the porous disc drag following FD = FTR

x − Frod
x . For the α = 0◦ case, the

value of FTR
x /Frod

x is 5. This indicates that the rod contributes 20 % of the total drag.
Note that this method introduces errors to the drag measurements of the porous discs due
to the interactions between the disc and the rod. However, the assumption is made that
this interaction remains the same for all pitch angles. The sampling frequency was set to
1 kHz and the measurement duration was 180 s. A moving average on 100 samples was
used to filter out the vibrations, resulting in an effective sampling frequency of 10 Hz.
The uncertainties were estimated using the calibration errors (±1.5 % of the measured
load) and the statistical errors. The statistical errors were determined using the standard
deviation of the force signal. The uncertainties amounted to εCD = 0.03 on average. It was
found that, beyond ReD ≈ 105, CD becomes Reynolds number independent. Therefore, in
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Scaling analysis of the swirling wake of a porous disc

α (deg.) 0 5 10 15 20 25 30

Lint (mm) 16 15 16 17 23 28 30
λ (mm) 3 3 3 3 2 2 3
η (μm) 250 230 262 220 230 250 290
Tint (ms) 1.4 1.3 1.4 1.6 1.9 3.2 2.5

Table 1. Typical turbulent length and time scales calculated in the wake of the different porous discs at
x� = 6, y� = z� = 0.

the remainder of this paper, we report only results obtained at ReD = 1.3 × 105, which
corresponds to a free-stream velocity of U∞ = 20 m s−1.

3.3.2. Three-component hot-wire anemometry
To measure the swirling wake, 3CHWA measurements were conducted using a Dantec
Dynamics™ Streamline constant temperature anemometry system with a gold-plated
tungsten tri-axial wire probe (Dantec Dynamics™ 55P91 probe). The probe has three
gold-plated tungsten wires having a diameter of 5 μm, an individual wire sensing length
of 1.2 mm and a total sensing length of 3.2 mm, which is of the order of the Taylor
microscale λ ∈ [2; 4] mm (Sreenivasan, Prabhu & Narasimha 1983; Mora et al. 2019).
The probe was subjected to a directional calibration before each campaign and to a
velocity calibration between measurements. This specific probe has a maximum yaw angle
range of [−30◦;+30◦] beyond which velocity measurements are erroneous. The hot-wire
anemometry (HWA) measurements were used to estimate the characteristic scales of the
turbulent flow, which are reported in table 1. The estimated scales are: Lint the integral
length scale, λ the Taylor microscale, η the Kolmogorov length scale and Tint = Lint/U the
integral time scale. In particular, the integral length scale was calculated at each available
position by integrating the autocorrelation function of the streamwise velocity fluctuations
until its first zero crossing. This approach was confronted with other methods such as the
one described in Mora & Obligado (2020). The estimated error from the discrepancies
between these methods remained below 6 % beyond x = 3D for all cases. As shown in
figure 7, cross-sectional planes were measured at three streamwise positions: x = 2D,
x = 4D and at x = 6D. The number of measurements points is Np = 1130. The spatial
resolution is �ywake = �zwake = 5 mm (≈2λ) inside the wake and 10–20 mm (≈Lint)
in the free stream (figure 7). Spanwise and vertical profiles were measured between
X = 2D and X = 6D with a streamwise step of �x = 0.5D. The sampling frequency was
set to 40 kHz for an acquisition time of 2.5 s (∼103Tint) at each location. Streamwise
profiles (y� = z� = 0) were also measured from x� = 1 to x� = 7. The trade-off of using
a three-component probe was the reduction in the spatial resolution due to its size,
which affects the estimation of dissipation rate ε. In this study, we use a formulation
based on local isotropy and Taylor’s hypothesis to compute εiso = 15ν(∂u′

x/∂x)2, a
surrogate commonly employed in the literature. Hereinafter, a detailed analysis is carried
on two distinct configurations: the swirling case with α = 25◦ (65 % porosity) and
its non-swirling counterpart with reduced porosity. These configurations are selected
as they represent the conditions where probe resolution is most critical. Additionally,
measurements are taken at several key locations along the centreline (z� = 0), the top
edge of the disc (z� = 0.5) and the bottom edge of the disc (z� = −0.5). It is important
to note that the use of this approach, although common, must be made with care as the
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Figure 7. The 3CHWA measurement points. Grey disc: porous disc position, solid black line: cylindrical
mast.

assumptions on which it is based are far from fully validated in the present case. For
this reason, a concurrent approach was also used to estimate the dissipation rate. This
second method is based on zero crossings to estimate the Taylor microscale from which
the dissipation rate can be computed (Rice 1944, 1945; Liepmann & Robinson 1952;
Sreenivasan et al. 1983; Mazellier & Vassilicos 2008; Goto & Vassilicos 2009). This
technique was used in a number of flows (jet, grids and so-called ‘chunk’ turbulence)
and is notably less sensitive to the probe resolution with respect to the Kolmogorov scale
η, as evidenced by Mazellier & Vassilicos (2008). Indeed, it relies on an inner cutoff scale
η� which is found to be approximately 60 times larger than η. This implies that the probe
resolution is around 0.25η�, making it well suited to estimating the zero-crossing-based
dissipation rate εzc. Note that, while the study of Mazellier & Vassilicos (2008) covered
a broad range of turbulent flows, wakes were not part of the dataset. The variation of
εzc compared with its isotropic counterpart εiso is displayed in figure 8. It appears that
the uncertainties remain within 20 % whatever the operating conditions and the probe
location. Although encouraging, these results are not entirely satisfactory due to the
shortcomings of the methods used. For this reason, the results obtained on dissipation must
be regarded qualitatively rather than quantitatively. To fully validate the results reported
for dissipation, more experiments are needed comparing data using a higher resolution
hot-wire probe at different locations of the wake for example. Future work could also
consider a different experimental approach using high resolution PIV where the dissipation
rate can be accurately estimated when properly denoised, as reported in Chen et al. (2021).
Based on this analysis, we report εiso as the dissipation rate throughout the remainder of
the paper.

During the HWA measurements, the main uncertainty sources came from the inherent
changes in the experimental conditions (temperature, humidity, pressure) and from the
calibration of the hot-wire probe (Duffman 1980; Bruun 1996). The total uncertainty
in the free-stream was below 0.5 % and around 0.8 %–2 % in the wake depending on
the position of the probe with respect to the test rig. The temperature of the room was
monitored throughout each experiment and was shown not to exceed a variation of more
than 1 ◦C for all cases. The HWA uncertainties were estimated between experiments using
the calibration unit and corroborated by redundant measurements. Following (2.4) and to
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Scaling analysis of the swirling wake of a porous disc
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Figure 8. Comparison between the zero-crossing-based dissipation rate εzc and the surrogate estimated from
the local isotropy assumption εiso for different configurations (3CHWA). Vertical dashed line: position from
which the wake is analysed.

better assess the effect of swirl on the flow, the streamwise velocity component had to be
measured with a better spatial resolution and accuracy than what is achievable with HWA.
Therefore, PIV measurements were performed in the streamwise plane.

3.3.3. Particle image velocimetry over multiple fields of view
Planar PIV (PIV2D2C) was used to characterise the generated wakes in an x–z plane
(figure 6). In the streamwise direction, the region of interest is located between x = −2D
and x = 8D. This region is decomposed into 3 separate fields of view (FoVs) with
an overlapping area of 25 % (1D). The dimensions of the individual FoVs are (x × z)
4.2D × 2.6D and the full region reaches 10D × 2.6D. The total region was obtained by
merging the mean velocity fields and standard deviations using a similar approach to
that proposed in Li et al. (2021). The image sets were captured using an 11 megapixels
LaVision™ LX-11M CCD camera mounted on an optical rail parallel to the test section.
A ZEISS™ camera lens was used with focal length f0 = 85 mm and was set at an aperture
of f0/4. The flow was illuminated using a double pulse Nd:YAG (532 nm) laser system
generating a laser sheet of 1.5 mm thickness. The flow was seeded with olive oil droplets
from an aerosol generator and had an average diameter of dp ≈ 2–3 μm. Olive oil droplets
were chosen as tracers since they are non-reactive, non-toxic, scatter light appropriately
and are sufficiently small in order to faithfully represent the fluid motion. To prove this last
important point, the average Stokes number St was calculated using all scales of motion
and showed that St ∈ [1; 40] × 10−3 � 1. The generated tracer particles will therefore
follow all scales of motions reliably (Kallio & Stock 1992; Vincent 2007).

For each FoV, 2600 image pairs were recorded at a time interval of dt = 55 μs between
snapshots. The sampling frequency was set at fPIV = 2.1 Hz, a rate which corresponds
to a total acquisition time of TPIV = 24 min. The laser pulses and the frame recordings
were synchronised using an external LaVision™ programmable timing unit. The snapshots
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were analysed using a commercial PIV software (Davis 10.2, LaVision™). A multi-pass
cross-correlation method was applied using an initial interrogation window (IW) size
of 64 × 64 pixels and a final IW of 32 × 32 with 50 % overlap (Raffel, Willert &
Kompenhans 2007). A Gaussian filter was used for sub-pixel interpolation and a median
filter was applied in order to remove eventual spurious vectors.

Each FoV required an individual calibration. The calibration was performed using a
custom calibration plate with uniformly spaced dots. The plate is 540 mm long and 420 mm
tall and has a total of 560 dots (28 × 20) which are 4 mm in diameter and 19.45 mm apart.
The calibration plate was placed in the mid-span plane of the test section next to the test
rig. The resulting calibrations allowed each FoV to have a magnification factor (pixels to
mm) and to correct optical aberrations (Raffel et al. 2007). The magnification factor had a
constant value of SF = 9.61 pixels mm−1 for each calibration. The PIV algorithm resulted
in a resolution of �PIV

x = �PIV
z = 1.66 mm, which is of the order of the Taylor microscale

λ and 10 times smaller than the integral length scale Lint (see table 1).
Uncertainties for the PIV measurements were calculated using correlation statistics,

a method presented in Wieneke (2015) and applied here. This method estimates PIV
uncertainties based on a pixel-wise statistical analysis that quantifies the contribution of
each pixel to the shape of the correlation peak. The error quantification method resulted
in a displacement uncertainty of εd ∈ [0.03; 0.08] px, which range falls within the order
of magnitude of the 0.06 px value recommended in Raffel et al. (2007). As a side note,
the error shoots up to values of εd ≈ 0.15–0.20 px very close to the test rig, which is
expected since strong three-dimensional effects are present and increase the noise due to
out-of-plane motion. Moreover, the swirling cases will increase this out-of-plane motion
by definition. This error was quantified and corresponds to an instantaneous velocity
uncertainty of 0.8 % and a mean uncertainty below 0.5 % in the wake of the porous discs.
It was verified that the flow statistics converged properly beyond 2000 snapshots.

4. Modified porous disc aerodynamics

This section is devoted to a parametric study of how the pitch angle α affects the
aerodynamics of the porous discs presented in the previous section, with reference to the
unmodified porous disc for which α = 0◦. First, the evolution of swirl characteristics with
respect to α is examined, from which two distinct operating regimes are highlighted. Then,
the drag and the swirl number induced by the modified discs are analysed in detail with
the aim of distinguishing the effects of porosity and swirl.

4.1. Characteristics of the swirling motion
Let us start by assessing the level of swirling motion injected in the wake of the
modified porous discs. Figure 9 shows the streamwise evolution (x� = 2, 4 and 6) of the
dimensionless mean swirling velocity W� for α = 15◦ and α = 25◦ in comparison with
the porous disc with non-pitched blades. For the latter, it is evident that the swirling
motion is marginal, aside from a small area where the wake of the disc merges with
that of the mast. This is likely due to three-dimensional effects in this wake interaction
region. Furthermore, the absence of swirl for the reference case confirms that the porous
disc is properly aligned with the direction normal to the incoming flow. As evidenced in
figure 9(c–h), incorporating a pitching angle yields the generation of a swirling motion
whose distribution is toroidal. Moreover, the swirl intensity decays as the streamwise
distance from the disc increases. Besides, its distribution spreads radially as a consequence
of the conservation of the initial angular momentum.

1003 A34-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1215


Scaling analysis of the swirling wake of a porous disc

0

0.05

W
/U

∞

0.10

0.15

0.20

0.25

0

0.05

W
/U

∞

0.10

0.15

0.20

0.25

0

0.05

W
/U

∞

0.10

0.15

0.20

0.25

1

0Z/
D

–1

1

0Z/
D

–1

1

0Z/
D

y/D y/D y/D

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

–1 0 1 –1 0 1

–1 0 1–1 0 1 –1 0 1

–1 0 1–1 0 1 –1 0 1

(b)(a)

(e)

( f )

(d )(c)

(h)(g)

Figure 9. Normalised swirling velocity W� spanwise maps (3CHWA) for the (a,b) α = 0◦ case, (c–e) the
α = 15◦ case and ( f –h) the α = 25◦ case evaluated at x� = 2 (a,c, f ), x� = 4 (d,g) and at x� = 6 (b,e,h). Solid
blue line: contour of the porous disc, dashed blue line: cylindrical mast.

To further characterise the swirling motion, it is essential to derive physical parameters
that represent the swirl intensity and its spatial distribution, i.e. Ws and δswirl, respectively.
As illustrated in figure 10, these quantities are inferred from spanwise profiles of W�. Note
that, while the results reported in figure 10 were obtained at two streamwise locations, x�

and x� = 6, for α = 25◦, profiles with similar shapes have been obtained for the other pitch
angles. These profiles confirm that the swirl intensity decays with increasing streamwise
distance from the disc. At x� = 2, W�

s reaches values of around 0.34, while it falls to
around 0.12 at x� = 6. Meanwhile, δ�

swirl increases from 0.65 at x� = 2 to 0.98 at x� = 6.
Furthermore, it is worth noting that the presence of the mast causes an asymmetry on the
swirling velocity profiles which is prominent at X = 2D but is damped as the wake evolves
downstream.

The effect of the pitch angle on W�
s and δ�

swirl at x� = 6 is reported in figures 11(a) and
11(b), respectively. The swirl magnitude W�

s increases linearly with α until α = 20◦ and
then drops. This result agrees fairly well with the critical angle αc at which stall is likely to
occur (see § 3.1). This phenomenon represents an intrinsic limitation to the generation of
swirl using this kind of modified porous disc. Surprisingly, as emphasised in figure 11(b),
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Figure 10. Definition of the peak-to-peak swirling velocity W�
s (x) and the swirling length δ�

swirl(x) for the
α = 25◦ case at (a) x� = 2 and at (b) x� = 6 (3CHWA).
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Figure 11. (a) Peak-to-peak swirling velocity W�
s and (b) swirling length δ�

swirl as a function of the pitch angle
α evaluated at x� = 6 (3CHWA).

the influence of stall is not observed on the evolution of δ�
swirl with respect to α. The trend

shows that the data are well approximated by a linear fit such as δ�
swirl = 0.54(α − α0),

with α in radians and α0 = −0.5 rad. Interestingly, extrapolated to α = 0◦, the swirling
length is non-null, corresponding to the position of the inner rim of the porous disc. This
might provide a potential control parameter to tune the initial swirl length scale. This issue
is beyond the scope of this study and is therefore left for future work. In the following, two
key metrics of the similarity analysis are investigated: the drag coefficient and the swirl
number.

4.2. Aerodynamic performances
The evolution of the drag coefficient CD with respect to the pitch angle α is displayed
in figure 12. For comparison purposes, the value obtained by Helvig et al. (2021) is also
reported. One can remark on a very good agreement between our result and that reported
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Figure 12. Measured drag coefficient CD as a function of α. Dotted black line: constant CD pre-stall, dashed
black line: linear trend post-stall.

in Helvig et al. (2021), although the Reynolds number in this study is much larger. The
drag coefficient appears to follow two different trends, with a transition around α = 15◦,
i.e. a pitch angle slightly lower than the critical value observed for the swirl intensity
(see figure 11a). Indeed, for pitch angles α ≤ 15◦, the drag coefficient remains roughly
constant, while for α > 15◦, CD increases linearly with α such as CD = 0.78α + 0.40
(with α in radians). As discussed in § 3.1, the onset of stall is expected to cause a
reduction in the effective porosity of the discs. To confirm this assumption, the results
obtained for low-porosity discs without swirl are also plotted in figure 12. Comparing
these low-porosity discs with their counterparts at α = 15◦ and 25◦, one can clearly see
that reducing the effective porosity without injecting azimuthal momentum leads to an
increase in drag comparable to that caused in the post-stall regime for discs with pitched
blades. While in both cases the increase in drag is well adjusted by a linear fit with the same
slope, it can be noticed that the drag of the low-porosity discs is approximately 8 % higher
relative to their stalled counterparts. This positive offset is probably due to a contraction
effect of the streamlines as the working fluid passes around the blades, which tends to
reduce even more the effective porosity.

Although the tip speed ratio (TSR) is used to characterise the rotational motion in
wind-turbine applications, this parameter is of little relevance in this study, as the vortex
is generated in a stationary manner. Instead, the swirl number Ŝ will be used to effectively
quantify and compare the swirl generated in the wake of the modified porous discs with
that of wind turbines. Following Reynolds (1962) and Alekseenko et al. (1999), the swirl
number Ŝ can be calculated as follows:

Ŝ =
∫ ∞

0 (U�W� + u′w′�)r�2
dr�

∫ ∞
0

[
U��U� + W�2

2
− u′2� + w′2� + v′2�

2

]
r� dr�

. (4.1)
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Figure 13. Swirl number Ŝ as a function of the pitch angle α measured at x� = 6 (3CHWA).

To the authors’ knowledge, very few studies have reported on the swirl number of
real-scale wind turbines, and even fewer on establishing a correlation between the TSR
and the swirl number. For this reason, only estimates of Ŝ for wind turbines exist in the
current literature (Wosnik & Dufresne 2013; Morris et al. 2016; Bortolotti et al. 2019; Lee
et al. 2020; Holmes & Naughton 2022), giving values of swirl Ŝ ∈ [0, 0.3]. Furthermore,
it is worth noting that our measurements emphasise that the predominant terms in (4.1)
are the mean shear and the momentum deficit flow rate, meaning that the swirl number is
well approximated by (see Appendix A for more details)

Ŝ ≈
∫ ∞

0 U�W�r�2
dr�∫ ∞

0 U��U�r� dr�
. (4.2)

The effect of the pitch angle on the estimated swirl number Ŝ is emphasised in figure 13.
Before the critical pitch angle αc, the swirl number increases with α until reaching a
plateau in the post-stall regime. Remarkably, prior to the onset of stall, the swirl number
generated by the modified porous discs falls within the range of values observed in
real-scale wind turbines, meaning that the new design proposed in this study enables us
to reproduce a swirl intensity comparable to that encountered at all stages of wind-turbine
operation without altering the value of CD (Bortolotti et al. 2019; Holmes & Naughton
2022).

The advantages of using a porous disc over a rotating model to reproduce the wake of a
wind turbine at laboratory scale have been detailed in Schliffke (2022) and Vinnes et al.
(2022), particularly in addressing the issue of Reynolds number mismatches associated
with rotating models. Building on this, the present work further enhances the porous
disc model by incorporating a swirling motion, a key characteristic of a wind-turbine
wake. Therefore, it appears that pitching the blades of a porous disc is an effective and
inexpensive way of reproducing the aerodynamic properties, at least on a macroscopic
scale, of a wind turbine. Two characteristic angles around the critical stall angle emerge
from this first analysis. More specifically, these angles are α = 15◦ and α = 25◦ and will
be used in the following to benchmark the influence of swirl and porosity, respectively.
The test case α = 15◦ corresponds to a regime where the blades have not yet stalled
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Scaling analysis of the swirling wake of a porous disc

and for which the swirl intensity is almost at its maximum. Moreover, at this angle, the
drag coefficient is equal to that of the reference case (i.e. α = 0◦). This implies that
data collected at α = 15◦ can be used to isolate the effect of the swirling motion on
the evolution of the wake. On the other hand, case α = 25◦ corresponds to a flow in the
post-stall regime, but for which the generated swirl intensity is comparable to that obtained
at α = 15◦. However, the drag coefficient featuring α = 25◦ is greatly increased due to the
reduction in apparent porosity. The comparison between the cases α = 15◦ and α = 25◦
will therefore make it possible to isolate the influence of effective porosity on the evolution
of the swirling wake.

5. Mean wake survey

In this section, an in-depth analysis of the wake evolution is provided. As previously
explained, the investigation is conducted for cases α = 15◦ and α = 25◦ alongside the
reference case α = 0◦ to emphasise the role of swirl.

5.1. Mean flow
The mean streamwise velocity fields for cases α = [0◦, 15◦, 25◦] along the streamwise
(y� = 0) plane are reported in figure 14. For each case, the very near wake (x� ≤ 1) is
characterised by the presence of a recirculation region, which is likely caused by the
central solid disc at the hub height of each surrogate (see figure 3). The presence of the
porous disc yields a velocity deficit area which remains roughly confined within the disc
region until x� = 8. In addition, the cylindrical mast produces its own wake, which is
observable up to approximately x� = 2, meaning that strong interactions between the disc
and the mast are expected at the early stage of the wake development. The mast introduces
an axisymmetry defect, but was ultimately retained to mimic real-scale models with a
cylindrical tower. However, as shown by Bossuyt et al. (2017), axisymmetry remains a
reasonable approximation for rotating models despite the tower. To assess the influence of
this wake interaction on the mean flow, figure 15(a) displays the streamwise evolution
of the dimensionless vertical position Z�

c of the wake centre, which is assimilated to
the location the minimum streamwise velocity. Regarding the reference disc (α = 0◦), it
appears clearly that the wake centre is deviated downwards until x� = 2.5, where it reaches
a minimum height Zc/D = −0.3, and then recovers towards hub height further downwind
(x� = 7). This downwash motion is a direct consequence of the pressure drop caused by the
mast’s wake, as emphasised in figure 16(a), which displays the mean pressure coefficient
Cp (≡ 2(P − P∞)/ρU2∞ where P is the mean pressure, P∞ is the free-stream pressure
and ρ the air density) which is inferred from the velocity measurements following the
so-called Poisson approach to pressure estimation. This methodology is comprehensively
described in Shanmughan et al. (2020) and briefly presented in Appendix B. Indeed, the
presence of the mast induces a low pressure region which pulls the wake downwards.
Further downstream, since the wake recovers, the imprint of the mast on the pressure field
diminishes, allowing the wake to stabilise at hub height.

Given that the radial pressure gradient is primarily balanced by the swirling motion
(Shiri 2010), the introduction of swirl is expected to influence the pressure distribution
and, consequently, alter the behaviour of the mean flow. This is well supported by the
results reported in figure 15(a), which show that the wake generated by the pitched porous
discs is only slightly deflected downwards, regardless of the value of α. The impact of
swirl on the pressure distribution is emphasised in figures 16(b) and 16(c) for α = 15◦ and
α = 25◦, respectively. In both cases, while the imprint of the mast wake is still visible,
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Figure 14. Normalised streamwise velocity (PIV) U� fields for the (a) α = 0◦ case, (b) the α = 15◦ case and
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Figure 16. Reconstructed pressure coefficient CP from 3CHWA spanwise planes for the α = 0◦ case (a,d), the
α = 15◦ case (b,e) and for the α = 25◦ case (c, f ) evaluated at x� = 2 (a–c) and at x� = 6 (d–f ). Dashed black
lines: swirl vortex core, dashed blue lines: test rig outline.

the corresponding pressure coefficient is much larger (Cp ≈ −0.75 × 10−2) than that of
the reference disc (Cp ≈ −1.5 × 10−2). More interestingly, unlike the non-pitched case,
the pressure distribution downstream of the pitched discs is nearly axisymmetric, with a
pronounced low-pressure core centred at hub height. The formation of this low-pressure
core arises from the generation of mean swirl, which has to be counterbalanced by a
radial pressure gradient. As the swirl strength diminishes, the intensity of the low-pressure
region gradually weakens (see figure 16e, f ). This low-pressure core counterbalances the
suction induced by the mast wake, enabling the disc wake to resist downwash. This
low-pressure core is also responsible for the lower initial mean axial velocity behind the
porous disc for the α = 15◦ case, compared with its non-swirling counterpart with the
same drag coefficient. However, as shown in figure 15(b), the mean streamwise velocity
at the centreline Uc/U∞ recovers faster. This is also the case for the α = 25◦ case despite
showing an even lower initial velocity due to its higher blockage. These findings suggest
that swirl not only resists the symmetry-breaking downwash caused by the mast, but also
accelerates wake recovery (Boudreau & Dumas 2017; Lobasov et al. 2020), aligning with
recent studies on swirling wakes of comparable swirl numbers, such as those by Schutz &
Naughton (2022) and Holmes & Naughton (2022).

Axisymmetry being a key ingredient in the self-similarity framework, we now
investigate how the change in initial conditions affects the spanwise distribution of mean
streamwise velocity. In the vicinity of the disc, the wake deflection induced by the mast for
the reference case (i.e. α = 0◦) is clearly evident in figure 17(a), causing an axisymmetry
breaking. On the contrary, figure 17(b) emphasises that adding swirl without altering the
effective porosity generates a nearly axisymmetric wake deficit. Moreover, the velocity
deficit obtained for α = 15◦ is much higher than that featuring the reference disc at
the same streamwise position. As a complementary remark, one can see that the radius
of the central core of velocity defect is comparable to that of the low-pressure core
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(see figure 16b). Overall, these results suggest that, through the action of pressure, the
swirling motion significantly affects the velocity distribution at the early stage of wake
development. As shown in figure 17(c), increasing the effective porosity yields similar
conclusions, albeit with an increase in the maximum velocity deficit, reflecting the drag
increase observed in the post-stall regime. Figures 17(d), 17(e) and 17( f ) illustrate that,
further downstream, the differences between the non-swirling wake and the swirling wake
vanish, probably due to the decay in swirl intensity.

All in all, these findings provide evidence that, while the change in apparent
porosity appears to a have marginal influence on the mean flow, the addition of swirl
significantly impacts the initial conditions on which the wake of the actuator disc develops.
Furthermore, a close inspection of the low-pressure core shown in figures 16(b) and 16(c)
reveals that its radial extension is set by δswirl, indicating that this length scale plays a
major role in the early stage of the wake development.

5.2. Scaling laws of the swirling wake’s properties
Echoing the discussions made in § 2, we first examine whether swirl changes the nature
of turbulence in the wake (equilibrium vs non-equilibrium). To this end, the centreline
streamwise evolution of the dissipation coefficient Cε(x) and of the Taylor microscale

Reynolds number Reλ =
√

u′2λ/ν is plotted in figure 18 for cases α = 0◦ and α =
15◦. For the non-swirling wake (figure 18a), the variations of Cε(x) are mostly within
the measurement uncertainty and no trend is evident. However, for the case α = 15◦
(figure 18b), Cε(x) has a clear variation in the near wake before stabilising at a constant
value beyond x = 6D. Interestingly, in the region where Cε is not constant, it shows an
anti-correlation behaviour with Reλ, which has been previously linked to non-equilibrium
turbulence in a variety of other flows (Goto & Vassilicos 2015; Chen et al. 2021;
Apostolidis, Laval & Vassilicos 2022). Similar trends are observed for the α = 25◦ case
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Scaling analysis of the swirling wake of a porous disc

(not shown here). To emphasise the role of swirl on the state of turbulence in the wake,
figure 19 displays the evolution of Cε as a function of Reλ for different cases and locations
in the flow. Again, it is difficult to draw a conclusion concerning the data obtained at
the centreline for the reference disc (α = 0◦) for which the restricted variations of Cε

do not allow to discern between equilibrium or non-equilibrium. On the other hand, the
addition of swirl clearly induces a behaviour in excellent agreement with the predictions
of non-equilibrium turbulence (Cε ∼ Re−1

λ ). This phenomenon is even more pronounced
for case α = 25◦ and is not restricted to the centreline but also extends to other regions
of the flow. These results suggest that the addition of swirl triggers a non-equilibrium
turbulence behaviour for the swirling wakes in the examined region of the flow. Recent
wind-turbine wake measurements under similar inflow conditions (see Neunaber, Peinke
& Obligado 2021) performed beyond x = 6D seem to suggest that the wake reaches a
state closer to equilibrium beyond x = 6D. While our data overlap for only two rotor
diameters, the trends we observe in Cε both along the centreline and off of the centreline
appear to support this finding. While farther regions of the wake were not within the
scope of this study, it is important to highlight that neither equilibrium or non-equilibrium
turbulence can be ruled out for regions beyond x� = 6 due to the limited streamwise
range of our measurements. However, certain arguments supporting non-equilibrium are
given in the following along with recommendations for future work. Unlike equilibrium
similarity theory, the non-equilibrium approach outlined in § 2 allows the characteristic
length scale δswirl to describe the near wake (figures 16 and 17) and potentially shift to a
classical velocity-deficit-related length scale as swirl weakens in more distant regions of
the flow. In this linear-momentum-governed region, non-equilibrium may still be present
but now applied to a different characteristic length scale. In fact, the findings by Nedic
(2013) and Dairay et al. (2015) suggest that non-equilibrium turbulence may persist in
wakes at distances well beyond those considered here or in Neunaber et al. (2021).
To draw definitive conclusions, longer streamwise distances need to be explored, keeping
in mind that swirl strength rapidly decays with distance (∼x−3/2). High-fidelity numerical
simulations could therefore serve as a more appropriate tool to tackle this issue. Given
these factors, it is argued that the swirling motion dominates the near wake, exhibiting
a behaviour aligned with non-equilibrium turbulence and setting the length and velocity
scales that drive self-similarity. To complete this assessment, a scaling analysis of the
mean wake properties is carried out in the following section. In particular, we check if the
novel mean swirl decay scaling law (2.18), derived in § 2, is present in our swirling wake.
The methodology used to determine the best fit parameters for each law is similar to the
nonlinear fit methods used by Nedic (2013) and later improved in the work of Dairay et al.
(2015). The following functions are considered for the scaling laws:

Us

U∞
= A

(
x − x0U

θ

)βU

, (5.1)

δswirl

θ
= B

(
x − x0δ

θ

)βδ

, (5.2)

Ws

U∞
= C

(
x − x0W

θ

)βW

, (5.3)

where βU , βδ and βW are the fit exponents of the power laws for the velocity deficit,
the swirling length and the swirling velocity, respectively. Here, x0U , x0δ and x0W are
the corresponding virtual origins, A, B and C are fit constants and θ is the momentum
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Figure 18. Streamwise evolution of the dissipation coefficient Cε and of the Taylor microscale Reynolds
number Reλ calculated at the centreline (y� = z� = 0) for cases (a) α = 0◦ and (b) α = 15◦ (3CHWA).
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thickness, defined by

θ2 = 1
U2∞

∫ ∞

0
U∞(U∞ − U)r dr. (5.4)

The first step of the fitting method consists of setting all virtual origins to 0 and performing
initial linear fits of (Us/U∞)1/βU , (δswirl/θ)1/βδ and (Ws/U∞)1/βW in order to obtain a
first approximation for the power-law exponents. These values are then used in order to
bound and initialise the nonlinear least-squares regression algorithm. This algorithm is
then used to simultaneously find the optimal values for the parameters. The resulting
parameters from the fitting method are listed in table 2. It was verified that these parameters
were consistent if the analysis was restricted to distances beyond x� = 4.5, where mean
centreline velocities are closer between cases α = 15◦ and α = 25◦ (see figure 15b).
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Scaling analysis of the swirling wake of a porous disc

Case function A, B, C β(U,δ,W) x0(U,δ,W)

α = 15◦ Us/U∞ 11.99 −0.9 −23.6
α = 15◦ δswirl/θ 0.65 0.54 −0.50
α = 15◦ Ws/U∞ 19.9 −1.36 −11.1

α = 25◦ Us/U∞ 13.06 −1.02 −5.7
α = 25◦ δswirl/θ 0.96 0.47 −1.38
α = 25◦ Ws/U∞ 21.02 −1.40 −8.54

Table 2. Nonlinear fit parameters obtained for the scaling laws (5.1)–(5.3).

The streamwise evolution of Us(x)/U∞ with the resulting scaling laws for cases α = 15◦
and α = 25◦ is reported in figure 20. Additionally, the α = 0◦ case is also considered in
figure 20(b) for reference. Case α = 0◦ clearly shows no signs of either similarity scaling
law for the considered streamwise distances, and the fitted law has a light slope (Us(x) ∼
x0.13). Note that the slower wake recovery evidenced for α = 0◦ (also shown in figure 15b)
and the lack of a self-similarity scaling in this region would most likely change if a more
realistic turbulent inflow or a different disc geometry were chosen (Aubrun 2013; Aubrun
et al. 2019). For the other cases, the deficit recovery (figure 20d, f ) is well predicted by the
non-equilibrium predictions (βU = −1).

As for the scaling of δswirl, figure 21 shows the streamwise evolution of the swirling
length scale δswirl(x)/θ for both swirling wakes. The results show very good agreement
with the non-equilibrium similarity predictions (βδ = 1/2) for both cases. Further
downstream, when swirl no longer drives the wake’s behaviour, it is expected that δ1/2
will also scale as x1/2 (if non-equilibrium is still relevant), which was observed in the
recent findings of Lingkan & Buxton (2023).

The swirl decay for cases α = 15◦ and α = 25◦ is emphasised in figure 22 and shows
the downwind evolution of Ws(x)/U∞ along with their respective fitted scaling law. Once
again, the data match the non-equilibrium predictions (βW = −3/2). Altogether, these
results point out that the region of interest in the wake is well approximated by scaling
laws based on non-equilibrium similarity. In particular, the proposed scaling law (2.18)
was verified in our data. The fact that the same conclusions are obtained for cases α = 15◦
α = 25◦ suggests that porosity may play a lesser role than swirl in the near field of the
wake. Echoing the discussions made in the introduction, swirl might be the dominant
initial condition of the wake. However, in order to fully confirm this claim, future studies
featuring lower-porosity actuator discs are needed. Moreover, as discussed in § 2, both
similarity analyses result in the same scaling law between the swirl decay and the wake
recovery, such as Ws/U∞ ∼ (Us/U∞)3/2. The linear fit plots of these quantities are
reported in figure 23 for cases α = 15◦ and α = 25◦. It is found that the data support
this scaling law, especially for the α = 25◦ case.

5.3. Mean velocity deficit
A striking observation can be made regarding the scaling analysis of the generated wakes:
the wake of the α = 0◦ case did not scale with any known law. In particular, the mean
velocity deficit appeared to recover very slowly and exhibited an axisymmetry defect. This
behaviour is likely due to the region of interest being located closer to the wake generator
compared with recent non-swirling wake studies of non-porous bluff bodies, such as
those by Nedic (2013) and Dairay et al. (2015). In this region, a lack of self-similarity
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Figure 20. Scaling plots of the characteristic axial velocity deficit (Us/U∞) as a function of X/D (a,c,e) and
of (x − x0)/θ (b,d, f ) for (a,b) the α = 0◦ case, for (c,d) the α = 15◦ case and (e, f ) the α = 25◦ case. Only 1
in 8 of the (PIV) markers are plotted for clarity.
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Figure 22. Scaling plots of the characteristic swirling velocity for (a) the α = 15◦ case and for (b) the
α = 25◦ case (3CHWA).

might be observed from case to case, as initial conditions were shown to play a crucial
role in determining self-similarity (Bevilaqua & Lykoudis 1978). Interestingly, both of
these characteristics are corrected by the presence of swirl. Since the mean velocity
deficit �U is central in wind-turbine performance modelling (Porté-Agel et al. 2020), the
following section will examine how swirl modified the properties of this critical parameter.
The profiles of �U are reported in figure 24 using similarity variables. For comparison
purposes, data reported for experimental laboratory-scale (Chamorro & Porté-Agel 2010)
and large-eddy simulations of real-scale (Wu & Porté-Agel 2012) wind turbines are
represented by the grey shaded area in figure 24. The Gaussian profile model proposed
by Bastankhah & Porté-Agel (2014) was in fact compared with these exact data sets and
used as a validation criterion.

The reference case (figure 24a), exhibits velocity profiles with a trilby hat shape up until
x� = 6, where the profiles only start to collapse towards a Gaussian shape. In contrast, the

1003 A34-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1215


E. Fuentes Noriega and N. Mazellier

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.10

0.15

0.20

0.25

0.30

0.35 Exp. α = 25° 
Best fit |β = 1.08 
Theory |β = 1 
Exp. α = 15° 
Best fit |β = 1.1

(Us/U∞)3/2

W
s/

U
∞

Figure 23. Scaling plots of Ws(x) vs Us(x)3/2 for cases α = 15◦ and α = 25◦ (3CHWA).

swirling wake streamwise velocity profiles (figure 24b,c) collapse and show self-similarity
already at x� = 3. Furthermore, the Gaussian profiles show good agreement with wind
tunnel and numerical simulations reported in the literature for rotating wind turbines (grey
shaded area). This evidences that one of the main mechanisms governing self-similarity
in the wakes of wind turbines is the swirling motion of the wake. Similarly to the case
of a swirling jet shown in the work of Shiri et al. (2008), the mixing is enhanced and
self-similarity is sped up by the swirling motion. Therefore, the proposed porous disc
not only generates a wake featuring swirl numbers comparable to those observed in
wind-turbine wakes (Ŝ ∈ [0 − 0.25]), but also accelerates the onset of self-similarity in
the mean velocity deficit profiles. This allows the porous disc analogy to be applied in
regions closer to the wake generator, where similarity theory may be used. As wind
farm layout optimisation becomes increasingly critical, future wake models should
incorporate the insights from self-similarity theory for greater accuracy. Our findings
suggest that non-equilibrium similarity effectively captures the streamwise evolution of
key model-relevant quantities, such as mean deficit, mean swirl and characteristic length
scales. To delve deeper into the similarity of the swirling wake, our attention is turned to
higher-order statistics of the flow, which were shown to play a lesser role in the momentum
budgets. The Reynolds shear stress Rxr profiles for case α = 15◦ are therefore plotted in
figure 25. Following the Townsend (1976) and George (1989) progressive relaxation of
the Reynolds shear stress scaling, two self-similar scalings are considered: U2

s and the
maximum of these profiles R0(x) = maxr(Rxr(x, r)). Aside from the clear non-similarity
of the X = 2D profile, our measurements endorse the R0 scaling (Townsend 1976; George
1989) rather than the restrictive U2

s (Tennekes & Lumley 1972) scaling. Beyond X = 3D,
a fairly good data collapse is observed. This result is consistent with other studies of
axisymmetric wakes, such as that of Dairay et al. (2015).

In order to compare the wake’s width with the reported trends for rotating turbines,
the wake width can be calculated as an equivalent standard deviation σ(x). In the work
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Figure 24. Self-similar streamwise velocity deficit profiles (3CHWA) for (a) the α = 0◦ case, (b) the α = 15◦
case and for the (c) α = 25◦ case. Black solid line: theoretical self-similar Gaussian curve, grey shaded area:
experimental and numerical data reported in the literature.

of Bastankhah & Porté-Agel (2014) for example, the proposed Gaussian velocity deficit
model was fitted to numerous data points also reported in this work. In particular, the
data points reported in Chamorro & Porté-Agel (2010) are shown in figure 26, where the
wake of a laboratory-scale three-bladed rotating wind turbine immersed in a boundary
layer was investigated. For our data, σ(x) can be directly calculated as the square
root of the calculated variance from the streamwise velocity deficit profiles. Figure 26
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α = 25◦ (PIV) compared with the data reported in Chamorro & Porté-Agel (2010). Fitted linear trends are
represented in solid lines.

compares the downwind evolution of σ(x) along with the data reported in Chamorro &
Porté-Agel (2010). The data points from the literature show a rupture in the trend of
the wake expansion around x� = 6. From x� = 2D to x� = 6D a light slope (≈ x0.15)
is observed which does not correspond to any known scaling laws. Beyond this point,
however, the trend abruptly changes and endorses a wake expansion law closer to the
non-equilibrium scaling σ ∼ x1/2 (Dairay et al. 2015) than to the classical equilibrium
scaling x1/3 (Johansson et al. 2003). Interestingly, the data obtained for α = 25◦ mimic
this behaviour. The α = 15◦ case also shows this rupture in trend, albeit with lower values
of σ(x) attributable to its lower drag coefficient. In the near wake, the swirling velocity
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will be the driving factor admitting a length scale related to swirl. The velocity deficit
will take over as swirl decays, imposing its length scale σ . This is in line with what was
theorised in § 2 regarding the existence of two scales governing the streamwise evolution
of the swirling wake when Ŝ = O(1) (Reynolds 1962). On the other hand, the evolution of
σ(x) for case α = 0◦ appears to remain roughly constant at all streamwise positions as this
case has not reached a self-preserving state yet. These results underscore the central role
that swirl plays in near-wake development and the critical importance of incorporating it
in future wind turbine studies based on the actuator disc model.

6. Conclusions

In this study, the absence of swirl in the wake of a porous disc wind-turbine surrogate
was tackled. The theoretical examination of the turbulent swirling wake produced
by an actuator disc unveiled intriguing phenomena with the added ingredient of
angular momentum conservation. Additional length and velocity scales of the flow
were introduced to the problem, thus enriching the framework of similarity theory as
discussed by Reynolds (1962). In particular, it was shown that the conservation of
angular momentum adds an extra degree of freedom to the similarity analysis where
two scales coexist and can potentially drive the development of the wake depending
on the swirl number dimensionless parameter Ŝ. It was revealed that non-equilibrium
turbulence is a more appropriate similarity framework for swirling flows since it avoids
making assumptions about the swirl number asymptotic values. This scenario leads to
the identification of alternative scaling laws supported by recent literature. Additionally, a
novel non-equilibrium scaling law for swirl decay was proposed, expressed as Ws/U∞ ∼
(x/θ)−3/2. To validate our theoretical analysis, an extensive experimental investigation
was conducted on the swirling turbulent wake generated by a modified porous disc now
including swirl.

A porous disc featuring non-uniform porosity β was designed taking inspiration from
the work of Camp & Cal (2016) and Helvig et al. (2021). To passively generate swirl,
the blades of the porous disc were pitched of an angle α. Two regimes were underscored
based on the pitch angle α: the attached flow regime and the stall regime. In the attached
flow regime, swirl magnitude increases linearly and drag is constant. In the stall regime,
swirl starts to decrease with α and drag increases linearly due to the decreased apparent
porosity. A critical pitch angle was evidenced αc ∈ [16◦, 18◦] beyond which stall occurs.
Cases α = 0◦, α = 15◦ and α = 25◦ were chosen as key pitch angles since the α = 15◦
case generated a maximum amplitude of swirl at iso-porosity while the α = 25◦ case
generated comparable levels of swirl with a decreased apparent porosity. Swirl was fully
characterised for these cases and showed swirl number values (Ŝ ≈ 0.3) comparable to
what is reported for real wind turbines (Dufresne 2013; Bortolotti et al. 2019; Holmes &
Naughton 2022). It was shown that swirl generated a low-pressure core at the centre of the
wake near (Y, Z) = (0, 0). For the non-swirling wake (α = 0◦), the low-pressure area was
located near the mast region, where a strong downwash effect was observed (Aubrun et al.
2019). It was found that swirl enhanced the wake’s axisymmetry, resisting downwash.
Furthermore, an inverse correlation between the streamwise variations of Cε and Reλ,
characteristic of non-equilibrium turbulence (Vassilicos 2015), was evidenced for the
swirling wake. This further highlights the central role of swirl on the near-wake behaviour.
A scaling analysis revealed that the streamwise evolution of the wake’s properties showed
very good agreement with the non-equilibrium similarity predictions. In particular, the
novel non-equilibrium swirl decay scaling law was obtained for α = 15◦ and α = 25◦. The

1003 A34-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1215


E. Fuentes Noriega and N. Mazellier

3.0 3.5 4.0 4.5 5.0 5.5 6.0
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Figure 27. Evaluation of the ratio Ŝfull/Ŝ (a) as a function of the streamwise direction for cases α = 15◦ and
α = 25◦ and (b) as a function of α for X = 6D (3CHWA).

universal scaling law coupling the characteristic axial velocity deficit and the characteristic
swirling velocity Ws(x)/U∞ ∼ (Us(x)/U∞)3/2 was also found in a restricted range of
streamwise locations. Identical results were obtained for cases α = 15◦ and α = 25◦,
which suggested that swirl is the dominant initial condition of the wake relative to porosity.
It is thus argued that swirl triggers self-preservation in the wake of the porous disc
regardless of porosity. However, to firm up this conclusion, additional experiments need
to be carried out with a lower-porosity set of discs. Self-similar data collapse of the mean
velocity deficit Us(x)/U∞ profiles was enhanced by swirl, indicating that swirl governs
the scaling laws for the mean wake properties. These profiles were shown to better match
the velocity deficit profiles from recent literature (Chamorro & Porté-Agel 2010; Wu
& Porté-Agel 2013) used as benchmark data to validate the widely known wake model
proposed by Bastankhah & Porté-Agel (2014). The presence and magnitude of swirl was
shown to set the virtual origin of the wake, a critical parameter in similarity analysis that
has recently been highlighted as crucial for enhancing wake models (Neunaber, Peinke &
Obligado 2022). Future investigations should therefore further investigate this parameter
and the physics which govern it. Overall, this study proved the critical role of the swirling
motion in shaping the near wake and governing its development. Our results underscore
the importance of incorporating swirl in future wind-turbine wake studies featuring the
actuator disc model. Additionally, this work introduced a novel scaling law for the mean
swirl decay based on non-equilibrium self-similarity, which sets the stage for future wake
models including swirl. Furthermore, we proposed an innovative porous disc design that
passively introduces swirl in a cost-effective manner featuring no blockage alteration
and swirl numbers comparable to those of real wind turbines under various operating
conditions.
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Appendix A. Swirl number estimation error

This section provides further details on the use of specific approximations. Note
that, since our measurements are conducted in the near-wake region, the validity of
these approximations must be assessed. To assess the accuracy of the swirl number
approximation Ŝ (4.2), the ratio Ŝfull/Ŝ is plotted in figure 27 for various streamwise
locations and pitch angles. Here, Ŝfull is calculated using all of the terms in (4.1). For
all measured profiles beyond X = 3D, Ŝ underestimates Ŝfull by less than 5 %–6 % in
the region of interest. Complementarily, similar ratios are evaluated and presented in
figure 28 for the terms in (2.3) and (2.5), used to compute the drag coefficient CD and
the dimensionless angular momentum coefficient G�

0 from velocity measurements. The
omitted terms contribute less than 3 % for the CDfull/CD ratio and less than 8 % for the
G�

0full
/G�

0 ratio. This indicates that, in the examined wake region, the omitted terms are
indeed negligible, with the mean flow terms dominating the axial momentum, angular
momentum and, consequently, the swirl number (George 2013).

Appendix B. Mean pressure estimation

The methodology described in Shanmughan et al. (2020) and used here to reconstruct the
mean pressure coefficient from the available velocity fields is described in the following.
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Here, the mean pressure is estimated using a Poisson approach in Cartesian coordinates
in y–z planes and neglecting viscosity. If a given x plane is considered, the horizontal (y)
and vertical (z) Reynolds-averaged Navier–Stokes equations can give an expression for the
in-plane mean pressure gradients as

∂P
∂y

= −ρ

⎛
⎜⎜⎝Uy

∂Uy

∂y
+ Uz

∂Uy

∂z︸ ︷︷ ︸
Swirl

+ ∂u2
y

∂y
+ ∂uyuz

∂z︸ ︷︷ ︸
Turbulence

⎞
⎟⎟⎠ , (B1)

and

∂P
∂z

= −ρ

⎛
⎜⎜⎝Uy

∂Uz

∂y
+ Uz

∂Uz

∂z︸ ︷︷ ︸
Swirl

+ ∂uyuz

∂y
+ ∂u2

z

∂z︸ ︷︷ ︸
Turbulence

⎞
⎟⎟⎠ , (B2)

where the out-of-plane gradients ∂/∂x are neglected following the thin shear layer
approximation. Two key contributions to the mean pressure arise: from the mean flow
gradients and from the Reynolds stress gradients. Notably, the mean flow gradients are
expected to be primarily influenced by the additional swirl W. From the in-plane pressure
gradients (B1) and (B2), the Poisson problem can be formulated, allowing the pressure
coefficient CP( y, z) to be estimated using the least-squares surface reconstruction method.
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