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To Béla Bollobás on his 70th birthday

Let G be an abelian group of cardinality n, where hcf(n,6) = 1, and let A be a random subset
of G. Form a graph ΓA on vertex set G by joining x to y if and only if x + y ∈ A. Then, with
high probability as n → ∞, the chromatic number χ(ΓA) is at most (1 + o(1)) n

2log2 n . This is

asymptotically sharp when G = Z/nZ, n prime.
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1. Introduction

A celebrated result of Bollobás [5] asserts that a random graph from the G(n,1/2) model has
chromatic number (1 + o(1)) n

2log2 n w.h.p.1 Our aim in this note is to prove that (1 + o(1)) n
2log2 n

is an upper bound for the chromatic number of random Cayley sum graphs on G,2 where G is
an abelian group of order n where hcf(n,6) = 1. If A ⊂ G is a set then we define its Cayley sum
graph ΓA to be the graph on vertex set G in which i is joined to j if and only if i+ j ∈ A.

Theorem 1.1. Let G be an abelian group of order n, and suppose that A ⊂ G is selected
uniformly at random from all subsets of G. Then, w.h.p. over n with hcf(n,6) = 1, the chromatic
number χ(ΓA) of ΓA is at most (1+o(1)) n

2log2 n .

† The author is supported by ERC Starting Grant 274938 (Approximate Algebraic Structure) as well as by an
Investigator Award from the Simons Foundation.

1 w.h.p. = with high probability. Throughout the paper, this will mean that the claimed statement holds with probability
tending to 1 as n → ∞, sometimes with an additional constraint on n which will be explicitly noted.

2 It is more usual in the literature to take A to be symmetric and to join i to j if and only if i− j ∈ A. This gives the true
Cayley graph as opposed to the Cayley sum graph. There is little genuine difference between the two models, and the
Cayley sum graphs are slightly simpler to handle notationally, which is why we have preferred them.
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What is meant by this is as follows: for every ε > 0, the probability that χ(ΓA)� (1+ε) n
2log2 n

tends to 1 as n → ∞ through values of n coprime to 6.
The condition that hcf(n,6) = 1 could probably be removed, but to do so would involve a

number of non-trivial modifications to certain parts of the argument. This is particularly so with
regard to the definition of dissociativity, which assumes some importance later on. Since the case
of greatest interest is probably G = Z/nZ, n prime, we have chosen not to do this additional work
here. In this case, it follows from work of Morris and the author [8] that we have a corresponding
lower bound χ(ΓA) � (1−o(1)) n

2log2 n w.h.p. To see this, note that we have χ(Γ)ω(Γc) � n for
any graph Γ on n vertices, where Γc denotes the complement of Γ and ω is the clique number.
Indeed, if Γ can be k-coloured then there is a set of vertices of size at least n/k, all of which
get the same colour and which must therefore be independent. An independent set of vertices
is the same thing as a clique in Γc. The stated lower bound on χ(ΓA) is a consequence of this
observation and the main result of [8], which implies that ω(Γc

A) = ω(ΓAc) � (2 + o(1)) log2 n
w.h.p.

A k-colouring of ΓA corresponds precisely to a partition G = X1 ∪ ·· · ∪Xk with the property
that Xi+̂Xi ⊂ Ac for all i, where X+̂X denotes the restricted sumset {x+x′ : x,x′ ∈ X ,x �= x′}. Let
us record the arithmetic formulation of the upper bound in Theorem 1.1 as a separate proposition.

Proposition 1.2. Suppose that A ⊂ G is a random set and let r = (1 + ε) n
2log2 n . Then w.h.p.

over n with hcf(n,6) = 1 there is a partition G = X1 ∪·· ·∪Xr such that Xi+̂Xi ⊂ A for all i.

Note that we wrote A instead of Ac, since if A is a random set then so is its complement.
The reader should be aware that many of the key ideas in the proof of this proposition, and

hence of Theorem 1.1, have exact parallels in Bollobás’s paper [5], though we will not always
draw attention to these explicitly. However a number of quite non-trivial technical obstacles must
be overcome in this arithmetic setting, and herein lies all of the novelty of the present work.

Previous results. A comprehensive resource for questions concerning the clique number of ran-
dom Cayley graphs is Alon’s paper [2]. Alon considers different groups (not necessarily abelian)
and random sets A of different sizes. He notes in [2, Theorem 2.1(i)] that as a consequence of
an earlier result of his, joint with Krivelevich and Sudakov [3], we have χ(ΓA) 	 n

logn almost
surely if A ⊂ G is a random set of size n/2. (Here, and henceforth in the paper, X 	 Y means
that X �CY for some absolute constant C.) The same method gives a similar bound when A ⊂ G
is selected uniformly from all subsets of G.

This whole argument, which is phrased in terms of graph eigenvalues, translates rather suc-
cinctly to the arithmetic setting considered here if one uses a little Fourier analysis (which
amounts to essentially the same thing). We give this argument in Appendix B, obtaining the
bound χ(ΓA) � (2+o(1)) n

log2 n for a random set A by these methods. Note that this is four times
the bound of Theorem 1.1.

Let us note, however, that in the argument of [3] the set A is only required to be pseudorandom
in the sense of having no large Fourier coefficients (the bound being weaker the larger these
coefficients are). In particular it would apply when A = Q is the set of quadratic residues modulo
n when n is prime. In this case ΓQ is called the Paley sum graph, and it follows from [3] that
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250 B. Green

χ(ΓQ)� (2+o(1)) log2 n, a result that appears to be the best known for this problem. By contrast,
our result gives nothing new about this specific graph.

Another observation of Alon is [2, Proposition 4.5], which notes a consequence of an ob-
servation of mine from [7]: if G = F

m
2 and n = 2m then w.h.p. (as n ranges over powers of 2)

χ(ΓA) 	 n
logn log logn . Thus the chromatic number of a random Cayley graph can depend on the

underlying group.

2. Preliminary manœuvres

We begin with the observation that Proposition 1.2 is implied by the following result. Here, and
for the rest of the paper, we write E[X ] := X+̂X (the letter E is supposed to denote ‘edge’).

Proposition 2.1. Suppose that A ⊂ G is a random set. Then w.h.p. there is a partition G =
X1 ∪·· ·∪Xr ∪X∗ such that |Xi| = (2+o(1)) log2 n uniformly in i, E[Xi] ⊂ A, and |X∗| = o

(
n

logn

)
.

Proposition 1.2 follows upon splitting the exceptional set X∗ into singletons. Proposition 2.1
follows in turn by a repeated application of the next statement.

Proposition 2.2. Suppose that A ⊂ G is a random set. Then w.h.p. every set S ⊂ G with |S| =
n

log2 n
contains a set X with |X | = (2+o(1)) log2 n and E[X ] ⊂ A.

Remark. The role of quantity n
log2 n

here is simply to be something concrete that is o
(

n
logn

)
.

Perhaps the most obvious approach to proving Proposition 2.2 would be to obtain a strong
upper bound on the probability that there does not exist such a set X for a fixed S, and then use the
union bound over all S ⊂G of size n

log2 n
. Unfortunately, this approach is too crude, since there are

various difficulties in obtaining a good upper bound for an arbitrary set S. We must instead pass
to a thinner class of sets S′ satisfying some useful technical properties. The following definition
and lemma make this possible.

Definition 1. We say that a set S′ ⊂ G is useful if it enjoys the following properties.

(i) (Cardinality)

2−12 n

log20 n
< |S′|� n

log20 n
.

(ii) (Good clique size) There is some integer k = kS′ , k = (2+o(1)) log2 n, such that

n

2log8 n
<

(
|S′|
k

)
2−(k

2) � n

log8 n
.

(iii) (Lack of structure) For at least 90% of all sets X ⊂ S′ of size k, the following is true: the
number of quadruples (x1,x2,s1,s2) ∈ X ×X × S′ × S′ with x1 �= x2, s1 �= s2 and x1 + x2 =
s1 + s2 is at most 1

log15 n
|S′|.

Lemma 2.3. Suppose that S ⊂ G has size n
log2 n

. Then there is a set S′ ⊂ S that is useful.
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Before proceeding to the proof of this lemma, we offer some explanatory remarks concerning
parts (ii) and (iii) of Definition 1. Concerning (ii), let us assume (a true statement, in fact, as
we shall see below in Lemma 4.2) that ‘most’ sets X ⊂ S′ of size k have |E[X ]| =

(k
2

)
. Then(|S′|

k

)
2−(k

2) is roughly the expected number of X ⊂ S′ with |X | = k and E[X ] ⊂ A. At a later
point in the argument it will be important to have an integer value of k for which this number
is of controlled size, slightly less than n (in fact � n

log8 n
,3 though there is some flexibility in this

choice). Unfortunately, we have (|S′|
k

)
2−(k

2)( |S′|
k+1

)
2−(k+1

2 )
=

(k +1)2k

|S′|− k
.

If |S′| is of order n1+o(1) and k = (2+o(1)) log2 n, this will be roughly n1+o(1). Hence the values

of
(|S′|

k

)
2−(k

2) are rather widely spaced as k varies, and unless |S′| is chosen quite judiciously there
will be no value of k with the property we require. Item (ii) of Definition 1 is devoted to making
just such a judicious choice.

Concerning part (iii) of Definition 1, let us note that a trivial upper bound for the number of
quadruples (x1,x2,s1,s2) with x1 �= x2, s1 �= s2 and x1 + x2 = s1 + s2 is O(|S′| log2 n), since any
choice of x1,x2,s1 uniquely determines s2. However, this trivial bound is not necessarily a very
sharp one, since we will not usually have x1 + x2 − s1 ∈ S′ unless S′ has some particular additive
structure. Item (iii) is asserting, in a certain technical sense, that we can assume S′ does not have
too much structure. We will only make use of (iii) at one later point in the argument, namely in
the proof of Lemma 5.1, but it will be quite crucial there.

Remark. The use of additively unstructured sets in contexts like this goes back at least as far
as [1].

In view of Lemma 2.3, to prove Proposition 2.2 it is enough to establish the following.

Proposition 2.4. Suppose that A ⊂ G is a random set. Then w.h.p. every useful set S′ ⊂ G
contains a set X with |X | = kS′ and E[X ] ⊂ A.

We will prove this by taking a union bound over all useful sets S′. Since any useful set has
cardinality at most n

log20 n
(by item (i) of Definition 1) and

( n
n/ log20 n

)
= eo(n/ log19 n), it suffices to

prove the following.

Proposition 2.5. Let n be sufficiently large, and let S ⊂ G be useful in the sense of Definition 1.
Let kS = (2 + o(1)) log2 n be as in part (ii) of Definition 1. Suppose that A ⊂ G is a random set.
Then, with probability at least 1− e−n/ log19 n, there is a set X ⊂ S with |X | = kS and E[X ] ⊂ A.

The proof of this bound, which by the reductions just given implies our main theorem, will
occupy our attention for most of the rest of the paper. To conclude this section, we prove
Lemma 2.3.

3 X � Y means that X and Y have the same order of magnitude in the sense that c1Y � X � c2Y for absolute constants
c1,c2 > 0.
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Proof of Lemma 2.3. The strategy will be to choose S′ ⊂ S to be a random subset of size
� n/ log20 n. The lack of structure condition of part (iii) of Definition 1 will almost surely be
satisfied, but part (ii) will not. However, we can pass to a further subset, also of size � n/ log20 n,
which does enjoy this property. Doing so does not do substantial damage to part (iii).

We turn to the details. Let ε = 1
2log18 n

and select a set T ⊂ S at random by picking each
element of S independently at random with probability ε . By standard tail estimates such as [4,
Theorem A.1.4], we have

P

(
||T |− ε |S||� 1

2
ε |S|

)
< 2e−Cε2|S| <

1
2
. (2.1)

By an additive quadruple in S we mean a quadruple (s1,s2,s3,s4) with s1 �= s2, s3 �= s4 and
s1 +s2 = s3 +s4. The number of such additive quadruples is certainly less than |S|3, since s1,s2,s3

determine s4. Divide the additive quadruples into two classes: the non-degenerate ones in which
s1,s2,s3,s4 are all distinct, and the degenerate ones in which either s1 = s3 or s1 = s4. There are at
most 2|S|2 degenerate quadruples. A degenerate quadruple lies in T with probability ε2, whereas
a non-degenerate one lies in T with probability ε4. Therefore the expected number of additive
quadruples in T is less than ε4|S|3 +2ε2|S|2, which is less than 2ε4|S|3 if N is large. By Markov’s
inequality, the number of additive quadruples in T is less than 4ε4|S|3 with probability at least
1/2. Noting that the number of additive quadruples is equal to

∑
x,x′∈T :x �=x′

rT (x+ x′),

where rT (ξ ) denotes the number of ways of writing ξ as the sum of two distinct elements x,x′ of
T , we see from this and (2.1) that there is some T for which

1
2

ε |S|� |T |� 3
2

ε |S| (2.2)

and

∑
x,x′∈T,x �=x′

rT (x+ x′) � 4ε4|S|3. (2.3)

These properties will help us satisfy parts (i) and (iii) of Definition 1. Let us leave them aside for
now and concentrate on part (ii). For this we require the following lemma.

Lemma 2.6. Let M be a sufficiently large integer. Suppose that D is a real number satisfying
1 � D � M2. Then there is some integer M′ = M′(D), 2−10M � M′ � M, and an integer k =
(2+o(1)) log2 M such that D �

(M
k

)
2−(k

2) � 2D.

Proof. In the proof of this lemma we write F(k,M) :=
(M

k

)
2−(k

2). First of all note that if M >

M0(ε) is sufficiently large then

F(�(2− ε) log2 M,M) > M10 (2.4)

and

F(�(2+ ε) log2 M�,M) < M−10 = o(1). (2.5)
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We leave the straightforward confirmation of these facts to the reader. Thus if there is a value
of k such that D � F(k,M) � 2D with D in the stated range, then it automatically satisfies k =
(2+o(1)) log2 M.

Note also that if log2 M � k � 3log2 M then

1 � F(k,M)
F(k +1,M)

=
k +1
M− k

2k � M3.

Thus, in view of (2.4) and (2.5), there is certainly some k in this range such that

M2 � F(k,M) � M5.

Now we fix this k and start decreasing M. Note that

F(k,M)
F(k,M−1)

=
M

M− k
< 2,

and so by decreasing M one by one we do hit some M′ for which D � F(k,M′) � 2D. We must
give a lower bound for M′. To do this, note that by Lemma C.1 we have

F(k,2t)
F(k, t)

� 2k > M1/2

for any t � k, and therefore

F(k,210t)
F(k, t)

> M5.

It follows that M′ � 2−10M, concluding the proof of Lemma 2.6.

Let us return now to the proof of Lemma 2.3. Recall that we had isolated a subset T ⊂ S
satisfying (2.2) and (2.3), where ε := 1

2log18 n
. By Lemma 2.6 applied with M = |T | and D :=

n
2log8 n

, we can pass to a subset S′ ⊂ T which satisfies parts (i) and (ii) of Definition 1 for some

k = (2+o(1)) log2 n satisfying D �
(M

k

)
2−(k

2) � 2D. We claim that S′ also satisfies property (iii)
of that lemma.

To this end, note that (2.2) and (2.3) together with the bounds for |S′| imply that

∑
x,x′∈S′,x �=x′

rS′(x+ x′) � ∑
x,x′∈T,x �=x′

rT (x+ x′) �Cε |S′|3 	 1

log18 n
|S′|3. (2.6)

Let X ⊂ S′ be a random subset of S′ of size k. Then, by (2.6),

EX ∑
x,x′∈X ,x �=x′

rS′(x+ x′) = ∑
x,x′∈S′,x �=x′

PX(x,x′ ∈ X)rS′(x+ x′)

=
(

k
|S′|

)2

∑
x,x′∈S′,x �=x′

rS′(x+ x′)

	
(

k(k−1)
|S′|(|S′|−1)

)
· 1

log18 n
|S′|3 	 1

log16 n
|S′|.

By Markov’s inequality, we have

∑
x,x′∈X ,x �=x′

rS′(x+ x′) 	 1

log16 n
|S′|

https://doi.org/10.1017/S0963548316000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000304


254 B. Green

for at least 90% of all X ⊂ S′ of size k, which implies item (iii) of Lemma 2.3 for large n.

3. The exposure martingale

We now explain the main outline of the proof of Proposition 2.5. First, let us recall the statement
(the reader may care to recall the definition of S being useful, which is given in Definition 1, but
the specifics of that definition are not important in this section).

Proposition 2.5. Let n be sufficiently large, and let S ⊂ G be useful. Let kS = (2+o(1)) log2 n
be as in part (ii) of Definition 1. Suppose that A ⊂ G is a random set. Then, with probability at
least 1− e−n/ log19 n, there is a set X ⊂ S with |X | = kS and E[X ] ⊂ A.

In what follows, we write k = kS for short.
For the rest of this section our notation will be as in this proposition. Let Ω be the probability

space consisting of all subsets of G, each occurring with equal probability 2−n. Thus A is drawn at
random from Ω. Let the random variable f : Ω → N be defined as follows: f (A) is the maximum
value of r for which there exist sets Xi ⊂ S, i = 1, . . . ,r, with |Xi| = k and such that the E[Xi] are
disjoint subsets of A. The task of establishing Proposition 2.5 is equivalent to showing that

P( f (A) = 0) � e−n/ log19 n (3.1)

if n is sufficiently large.
Let g1, . . . ,gn be some arbitrary enumeration of the elements of G. Let F j be the sub-σ -algebra

of 2Ω generated by sets of the form

{A ∈ Ω : 1A(g1) = ε1, . . .1A(g j) = ε j} for (ε1, . . . ,ε j) ∈ {0,1} j,

and consider the random variables Zj := E( f (A)|F j). We have the nesting

F0 ⊂F1 ⊂ ·· · ⊂ Fn,

where F ⊂F′ means that F′ is a refinement of F . The sequence Zj is a Doob martingale and we
have Z0 = E f (A) and Zn = f (A). Furthermore, flipping the value of 1A(g j) cannot change f (A)
by more than 1, since if gj ∈ A then removing g j cannot destroy the containment E[Xi] ⊂ A for
more than one value of i, on account of the sets E[Xi] being disjoint. It follows that the martingale
(Zj)n

j=0 enjoys the Lipschitz property |Zj−1 −Zj| � 1 for j = 1,2, . . . ,n, and therefore we may
apply Azuma’s inequality [4, Corollary 7.2.2] to conclude that

P(| f (A)−E f (A)|� t) � 2e−t2/2n.

In order to establish (3.1), and hence Proposition 2.5 and our main theorem, it is enough to prove
that

E f (A) � n/ log9 n (3.2)

provided that n is sufficiently large.

4. In search of edge-disjoint cliques

In the next two sections we always assume that n = |G| is sufficiently large and that hcf(n,6) = 1.
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Our remaining task is to prove (3.2). Let us recall the setup: we have a fixed useful set S ⊂ G,
satisfying parts (i), (ii) and (iii) of Definition 1, and we wish to give a lower bound for the
expectation of f (A), where A ranges uniformly over all subsets of G. Here, f (A) is the maximum
value of r for which there exist sets Xi ⊂ S, i = 1, . . . ,r, with |Xi| = k and such that the E[Xi] are
disjoint subsets of A. Recall that k = kS = (2 + o(1)) log2 n is such that item (ii) of Lemma 2.3
holds.

Define f̃ (A) to be the number of sets X ⊂ S such that the following hold.

(i) |X | = k.
(ii) E[X ] ⊂ A.

(iii) If Y ⊂ S is any other set, distinct from X , with |Y | = k and E[Y ] ⊂ A then E[X ]∩E[Y ] = /0.

We clearly have f (A) � f̃ (A), and so it suffices to obtain a lower bound for E f̃ (A). In fact,
we shall consider the following technical variant of f̃ (A): define

≈
f (A) to be the number of sets

X ⊂ S such that the following hold.

(i) |X | = k.
(ii) E[X ] ⊂ A.

(iii) (Lack of structure with respect to S) The number of quadruples (x1,x2,s1,s2)∈ X ×X ×S×S
with x1 �= x2, s1 �= s2 and x1 + x2 = s1 + s2 is at most 1

log15 n
|S|.

(iv) (Dissociativity) If x1, . . . ,x4,x′1, . . . ,x
′
4 ∈ X and x1 + x2 + x3 + x4 = x′1 + x′2 + x′3 + x′4, then

x1,x2,x3,x4 are a permutation of x′1,x
′
2,x

′
3,x

′
4.

(v) If Y ⊂ S is any other dissociated set with |Y | = k and E[Y ] ⊂ A, then E[X ]∩E[Y ] = /0.

Note that f (A) �
≈
f (A), so it suffices to get a lower bound for E

≈
f (A). Specifically, to conclude

(3.2) and hence our main theorem, we need only prove the following.

Proposition 4.1. Let S ⊂ G be a fixed useful set. Let A ⊂ G be chosen at random, and let
≈
f (A)

be as above. Then E
≈
f (A) � n/ log9 n.

To prove this proposition we will find lower bounds for:

(1) the number of dissociated sets X ⊂ S with |X | = k and having lack of structure with respect
to S;

(2) if X is such a set, the probability that E[X ] ⊂ A;
(3) the conditional probability that there is another dissociated set Y ⊂ S with |Y | = k, E[Y ] ⊂ A

and E[X ]∩E[Y ] �= /0.

Point (2) is actually rather easy: if X is dissociated then all sums x+ x′ with x �= x′ are distinct
apart from the trivial equalities x + x′ = x′ + x, and so |E[X ]| =

(k
2

)
. Therefore if A is a random

set then

P(E[X ] ⊂ A) = 2−(k
2). (4.1)

We turn now to point (1), which is also quite straightforward, the point being that a random subset
consisting of k elements of S is almost certain to be dissociated and to have lack of structure with
respect to S. We formulate this in a lemma.

Lemma 4.2. Let S ⊂ G be useful and let k = kS be as above. Then at least 80% of all sets X ⊂ S
with |X | = k satisfy both lack of structure with respect to S and dissociativity.
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Proof. It is enough to show that at least 90% of sets X ⊂ S with |X | = k are dissociated, since
it is part of the definition of S being useful (Definition 1 part (iii)) that at least 90% of such sets
satisfy lack of structure with respect to S. To prove that this is so, we select the elements of X
one at a time, without replacement and with an order, and ask what might happen to prevent X
being dissociated. If we have selected j elements {x1, . . . ,x j} then the next element x must not
give rise to a non-trivial solution to such equations as xi1 +xi2 +xi3 +xi4 = xi5 +xi6 +xi7 +x. The
number of such equations is no more than 28 j7, and each forbids a unique value of x. Another
example of such an equation is xi1 + x+ x+ x = xi2 + xi3 + xi4 , which forbids a unique value of x
because, since hcf(n,6) = 1, G has no 3-torsion.4 Therefore, if j < k then the number of choices
for x j+1 is at least |S|−28 j7 � |S|−215 log7 n. Since |S| � n

log20 n
, we very comfortably have

(|S|−215 log7 n)k � 9
10

|S|k � 9
10

k!

(
|S|
k

)
,

and this implies the claimed result upon dividing through by k! to take account of the fact that
we counted ordered k-tuples rather than sets.

We turn now to point (3). We shall show in the next section that this conditional probability
is at most 1/2. This finishes the task of proving Proposition 4.1 and hence the main theorem,
because by combining these estimates for (1), (2) and (3) we find that the expected number of X
satisfying (i)–(v) in the definition of

≈
f (A) above is at least

0.8

(
|S|
k

)
×2−(k

2)× 1
2
� n

log8 n
,

this last estimate following from the ‘good clique size’ property, part (ii) of Definition 1.

5. Intersecting arithmetic cliques

At the end of the last section we had reduced the proof of our main theorem to the following fact,
which gives the required bound for the conditional probability (3).

Lemma 5.1. Suppose that S ⊂ G is useful and that X ⊂ S has |X | = k, is dissociated, and has
lack of structure with respect to S. Then, conditioned upon the event that E[X ]⊂A, the probability
that there is some other dissociated set Y ⊂ S with |Y | = k, E[Y ] ⊂ A and E[X ]∩E[Y ] �= /0 is at
most 1/2.

We will divide into a number of cases according to the value of � := |E[X ]∩E[Y ]|. The case
� = 1 is somewhat special, so we handle it separately. This is the only point in the argument at
which the lack of structure condition (Definition 1 part (iii)) is required.

Lemma 5.2. Suppose that S ⊂ G is useful and that X ⊂ S has |X | = k, is dissociated, and has
lack of structure with respect to S. Then, conditioned upon the event that E[X ]⊂A, the probability

4 If G has 2-, 3- or 4-torsion then more delicate arguments, including a change in the definition of dissociativity, are
required.
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that there is some other dissociated set Y ⊂ S with |Y | = k, E[Y ] ⊂ A and |E[X ]∩E[Y ]| = 1 is at
most 1/10.

Proof. If |E[X ]∩E[Y ]|= 1 then there is a pair (x1,x2)∈X×X , x1 �= x2, such that x1 +x2 ∈E[Y ].
Thus Y contains two distinct elements s1,s2 ∈ S with s1 + s2 = x1 + x2. The total number of
choices for this pair of elements (across all choices of x1,x2) is bounded by 1

log15 n
|S|, by the

assumption that X has lack of structure with respect to S. The number of choices for the remaining
elements of Y is at most

( |S|
k−2

)
, and hence there are at most

1

log15 n
|S| ·

(
|S|

k−2

)

choices for Y in total. For each such choice, the probability that E[Y ] ⊂ A given that E[X ] ⊂ A is

precisely 21−(k
2), since Y is dissociated and hence |E[Y ]| =

(k
2

)
.

Therefore the probability we seek to bound is at most

2

log15 n
|S|·

(
|S|

k−2

)
·2−(k

2)

=
2|S|k(k−1)

(|S|− k +1)(|S|− k +2) log15 n
·
(
|S|
k

)
2−(k

2).

Recalling that |S| � n
log20 n

, k � logn and that(
|S|
k

)
2−(k

2) � n

log8 n

(the ‘good clique size’ property, Definition 1 part (ii)), we see that this probability is 	 1
logn =

o(1), as required.

For the remainder of this section, then, we assume that � = |E[X ]∩E[Y ]| � 2. To study this
situation we introduce some further notation.

Apart from �, another key quantity will be d, defined as follows. Fix, once and for all, an
arbitrary total ordering ≺ on G. Then any set Y ⊂ S with |Y | = k may be totally ordered as
y1 ≺ ·· · ≺ yk. Define a graph ΓY on vertex set [k] by joining i and j by an edge if and only if
yi + y j ∈ E[X ]. The number of edges in ΓY is precisely �; write d for the number of connected
components (including isolated vertices) in ΓY .

There is an important relation between � and d.

Lemma 5.3. We have �� 1
2 (k−d +1)(k−d), and

(k
2

)
− �� (d −1)

(
k− 1

2 d
)
.

Proof. The second statement is obviously equivalent to the first, but we have stated it separately
for convenience. Suppose that the components of Γ have sizes (number of vertices) x1, . . . ,xd ,
thus x1 + · · ·+ xd = k and x1, . . . ,xd � 1. Then the number of edges in Γ is at most ∑i

(xi
2

)
. By

convexity this is largest when x1 = k−d +1 and x2 = · · · = xd = 1, in which case the number of
edges is 1

2 (k−d +1)(k−d).

An important notion will be that of the skeleton sk(ΓY ) of ΓY . Given a graph Γ on vertex set
[k], its skeleton sk(Γ) ⊂ Γ is a forest (union of trees) whose connected components are precisely
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the connected components of Γ. There are, in general, many choices of a skeleton sk(Γ) for each
Γ, but we make an arbitrary one.

Turning back to our main task, we now dispense with the case in which � is not extremely
close to

(k
2

)
.

Lemma 5.4. Suppose that S⊂G is useful and that X ⊂ S is a dissociated set with |X |= k. Then,
conditioned upon the event that E[X ]⊂ A, the probability that there is some other dissociated set
Y ⊂ S with |Y | = k, E[Y ] ⊂ A and 2 � |E[X ]∩E[Y ]|�

(k
2

)
− k4/3 is at most 1/10.

Proof. For each � we enumerate the number of sets Y for which |E[X ]∩E[Y ]| = � according to
their skeleton σ := sk(ΓY ). Since this skeleton has at most min(�,k) edges, a very crude bound
for the number of choices for σ is

min(�,k)

∑
i=0

(
k
2

)i

< k2min(�,k).

If σ has d connected components, then an upper bound for the number of choices for Y is at
most

(|S|
d

)
k2min(�,k). To see this, first select vertices i1, . . . , id ∈ [k], one in each of the d connected

components, and assign the values of yi j arbitrarily subject to the order relation that yi ≺ yi′ if

i < i′. These elements must be elements of S, so there are
(|S|

d

)
choices. Some further vertices

will be joined to an i j by an edge of σ . Suppose, for example, that i∗ is joined to i1 by such an
edge. Then yi∗ + yi1 ∈ E[X ], and so there are at most

(k
2

)
< k2 choices for yi∗ . Similarly, some

further vertices will be joined to i∗ by an edge of σ , and so on. By repeating this process we will
eventually assign all of the values y1, . . . ,yk, and the number of choices that has been made is at
most the number of edges of σ , which is at most min(�,k).

Putting these observations together, the number of choices for Y , for a fixed given �, is at most(|S|
d

)
k4min(k,�). For each such choice, the probability that E[Y ]⊂ A, given that E[X ]⊂ A, is 2−(k

2)+�.
Summing over the choices of Y for which |E[X ]∩E[Y ]|= �, we get a total contribution of at most(

|S|
d

)
k4min(k,�) ·2−(k

2)+�. (5.1)

We handle this differently according to the size of �.
Suppose first that 2 � �� k. Then by Lemma C.3 we may bound (5.1) above by(

|S|
k

)
2−(k

2) ·2�k4�

(
k

|S|− k

)k−d

.

The fact that S is useful tells us that(
|S|
k

)
2−(k

2) � n

log8 n
< n.

Furthermore, the first relation in Lemma 5.3 implies that k − d �
√
�. Since |S| � n1+o(1) and

k < 3log2 n, these facts together allow us to bound (5.1) above by

(6log2 n)4�n

n(1−o(1))
√
�
,

which is 	 n−c for the stated range of � (and in fact for � up to about k2

logO(1) k
).
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If k < � �
(k

2

)
− k4/3 then we replace min(k, �) by k, so the quantity (5.1) that we wish to

bound is (
|S|
d

)
k4k2−(k

2)+�. (5.2)

Since S is useful, we have
(|S|

k

)
= 2(k

2)n1+o(1), and so from Lemma C.2 and the fact that k ∼
2log2 N, we have (

|S|
d

)
� kd

(
|S|
k

)d/k

� 2
1
2 d(k−1)kdnO(d/k) � 2

1
2 d(k−1)(2k)O(d).

Since d � k, an upper bound for (5.2) is therefore

2
1
2 dk+�−(k

2)+O(k logk). (5.3)

Since �−
(k

2

)
� −k4/3, we get an upper bound of 2−

1
2 k4/3

if d < k1/10, and this is certainly
acceptable when summed over all �. If d > k1/10, we instead apply the second bound

(k
2

)
− � �

(d −1)
(
k− 1

2 d
)

from Lemma 5.3. This implies that (5.3) is bounded above by

2−
1
2 d(k−d)+O(k logk). (5.4)

As above (a consequence of the first bound in Lemma 5.3) we have k− d �
√
� >

√
k > k1/10,

and so k1/10 � d � k− k1/10. But in this range we have d(k−d) � k11/10. Thus (5.4) is bounded
by 2−ck11/10

, which is again acceptable when summed over �. This concludes the proof.

Finally, we need to consider the possibility that
(k

2

)
− k4/3 < ��

(k
2

)
.

Lemma 5.5. Suppose that S⊂G is useful and that X ⊂ S is a dissociated set with |X |= k. Then,
conditioned upon the event that E[X ]⊂ A, the probability that there is some other dissociated set
Y ⊂ S with |Y | = k, E[Y ] ⊂ A and(

k
2

)
− k4/3 < |E[X ]∩E[Y ]|�

(
k
2

)

is at most 1/10.

In the regime covered here, the argument used in proving Lemma 5.4 breaks down. The key
new observation here is that if �= |E[X ]∩E[Y ]| is nearly

(k
2

)
, then in fact X and Y have substantial

overlap as well, at least if X and Y are sufficiently dissociated. To prepare the ground for proving
this, we first establish a couple of lemmas.

The first of these, which is really the key, has a tedious but basically straightforward proof
which we outsource to Appendix A.

Lemma 5.6 (K5 lemma). Suppose that X ,Z ⊂ G are dissociated, that |Z|� 5 and that E[Z] ⊂
E[X ]. Then Z ⊂ X.

The next lemma is a graph-theoretic fact of a fairly standard type.
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Lemma 5.7. Suppose that Γ is a graph on k vertices with � edges. Then all but at most

5

√(
k
2

)
− �

vertices of Γ lie in a subgraph of Γ isomorphic to the complete graph K5.

Proof. The result is trivial if � =
(k

2

)
, so suppose ��

(k
2

)
−1. Let V ⊂ [k] be the set of vertices

not contained in any copy of K5 in Γ. If |V |� 5 then the result is immediate. Otherwise, certainly
Γ|V does not contain any copy of K5 and hence, by Turán’s theorem, this graph has at most 3

8 |V |2
edges. Hence

(k
2

)
− �, the number of edges in the complement of Γ, is at least(

|V |
2

)
− 3

8
|V |2 � 1

25
|V |2.

The result follows.

Corollary 5.8. Suppose that X ,Y are dissociated sets with |X |= k and |E[X ]∩E[Y ]|= �. Then

|X ∩Y |� k−5

√(
k
2

)
− �.

Corollary 5.9. Suppose that X ,Y are distinct dissociated sets of size k and that k is large. Then

|E[X ]∩E[Y ]|�
(

k
2

)
− 1

2
k.

Proof. Suppose the result is false. Then by Corollary 5.8 we have

|X ∩Y |� k− 5√
2

√
k > k−4

√
k.

Since X and Y are distinct and have the same size k, there is some y that lies in Y but not in X .
By Lemma 5.6, y is not joined in ΓY to more than 3 of the vertices corresponding to X ∩Y by an
edge. Indeed, if it was joined to 4 such vertices y1,y2,y3,y4, then we could apply Lemma 5.6 with
Z := {y1,y2,y3,y4,y}, concluding that Z ⊂ X and in particular that y ∈ X , contrary to assumption.
It follows that the degree of y in ΓY is no more than 3+4

√
k. Thus the complement of ΓY contains

at least k−1− (3+4
√

k) > 1
2 k edges (if n, and hence k, is large enough).

Proof of Lemma 5.5. In the statement of Lemma 5.5 we assumed that(
k
2

)
− k4/3 < ��

(
k
2

)
,

but Corollary 5.9 in fact allows us to assume the stronger upper bound

��
(

k
2

)
− 1

2
k.
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Recall that the graph ΓY is defined as follows. It is a graph on vertex set [k], with i joined to j
by an edge if and only if yi +y j ∈E[X ]. Recall also that d is the number of connected components
of ΓY .

We claim that the number of choices of Y is at most
( |S|

d−1

)
2o(k). To see this, we consider a

variant of the skeleton of ΓY , which we will again call σ . By Corollary 5.8, the graph ΓY has one
extremely large component containing a clique Ω of size at least k− 5k2/3; every element of Y
assigned to a vertex in Ω is an element of X . Take σ to be any collection of � 5k2/3 edges such
that the edges of Ω and σ span all the connected components of ΓY . Such a collection σ may be
found using a greedy algorithm. The number of choices for σ is clearly at most

(
k
2

)5k2/3

= 2o(k),

and the number of choices for Ω is also 2o(k).
Given Ω and σ , we must assign the set Y . All the vertices in Ω must be elements of X , so

the number of choices for these vertices is at most the number of subsets of X of size at least
k−5k2/3, which is again 2o(k). In each of the other d−1 connected components, select one vertex.
The values of these vertices must be elements of S, and they must obey the order relation that
yi ≺ y j if i < j, so this gives at most

( |S|
d−1

)
choices.

The remaining unassigned vertices are connected to vertices already assigned (that is, to
vertices in Ω or to the d − 1 special vertices) by paths in σ . Each time we take an edge of σ
from an assigned vertex i to a currently unassigned one j, the fact that yi + y j ∈ E[X ] gives us at
most

(k
2

)
choices for y j. Therefore the number of possible assignments of the remaining vertices,

of which there are k−|Ω|− (d −1) � 5k2/3, is at most

(
k
2

)5k2/3

= 2o(k),

thereby concluding the proof of the claim.
Now from Lemma 5.3 we have

(d −1)
(

k− 1
2

d

)
�
(

k
2

)
− � < k4/3; (5.5)

since d � k, this immediately leads to the stronger bound

d 	 k1/3. (5.6)

Equations (5.5) and (5.6) together imply that

1
2
(d −1)k �

(
1
2

+o(1)
)((

k
2

)
− �

)
. (5.7)

Since S is useful, we have (
|S|
k

)
2−(k

2) � n,
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and so by Lemma C.2 we have(
|S|

d −1

)
� kd−1

(
|S|
k

)(d−1)/k

� 2
1
2 (d−1)kkd−1n(d−1)/k

� 2
1
2 (d−1)kkO(d) � 2(1/2+o(1))((k

2)−�)kd ,

by (5.7). By (5.6), this is

2(1/2+o(1))((k
2)−�)+o(k).

It follows from this and the earlier claim about the number of choices of Y that the probability
that there is some Y ⊂ S, distinct from X , such that |E[X ]∩E[Y ]| = � is bounded by

2−(1/2−o(1))((k
2)−�)+o(k).

When summed over the range (
k
2

)
− k4/3 < ��

(
k
2

)
− 1

2
k,

this is o(1), as required.

6. Further questions

For a wide selection of further questions we refer the reader to [2] or [6]. Here are two further
questions.

Question 1. What is an asymptotic for χ(ΓA), almost surely, when A ⊂ F
m
2 is selected at

random?

Question 2. If G is an abelian group of size n and if A ⊂ G is selected at random, is

χ(ΓA)ω(ΓA) = (1+o(1))n

almost surely?

Appendix A: Proof of the K5 lemma

Let us begin by recalling the statement of the K5 lemma, Lemma 5.6.

Lemma 5.6. Suppose that X ,Z ⊂ G are dissociated, that |Z| � 5 and that E[Z] ⊂ E[X ]. Then
Z ⊂ X .

Proof. The proof of this is somewhat tedious, though straightforward. We begin by looking at
sets Z of size 4 for which E[Z] ⊂ E[X ]. We claim that such sets are of two types: type I in which
Z ⊂ X , and type II in which zi = g− xi for i = 1,2,3,4, where 2g = x1 + x2 + x3 + x4 and the xi

are all elements of X .
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Let us prove this claim. Suppose that Z = {z1,z2,z3,z4} and that zi + z j = xi j + x′i j. We have
the relations

x12 + x′12 + x34 + x′34 = x13 + x′13 + x24 + x′24 = x14 + x′14 + x23 + x′23. (6.1)

By dissociativity, x12 ∈ {x14,x′14,x23,x′23}, and there is no loss of generality in assuming that
x12 = x14. Thus

x′12 + x34 + x′34 = x′14 + x23 + x′23.

By dissociativity, x′12 ∈ {x′14,x23,x′23}. Now z2 �= z4 and so x′14 − x′12 = z4 − z2 �= 0. Hence we
may assume without loss of generality that x′12 = x′23. Dissociativity and (6.1) also imply that
x12 ∈ {x13,x′13,x24,x′24}. There are two essentially different cases: case 1 in which x12 = x13, and
case 2 in which x12 = x24.

Suppose we are in case 1. Then (6.1) implies that x′12 + x34 + x′34 = x′13 + x24 + x′24, and so
by dissociativity x′12 ∈ {x′13,x24,x′24}. Since z2 �= z3, we cannot have x′12 = x′13. Without loss of
generality, then, x′12 = x′24. Referring back to (6.1), we see that x34 + x′34 = x24 + x′13 = x23 + x′14.
By dissociativity we have x′13 ∈ {x23,x′14}. However, if x′13 = x′14 then we would have z3 = z4,
a contradiction, and therefore x′13 = x23 and x′14 = x24. Writing x1 = x12, x2 = x′12, x3 = x23,
x4 = x24, the above relations imply that xi + x j = zi + z j for all distinct i, j ∈ {1,2,3,4}. Writing
wi := xi − zi, it follows that wi + wj = 0 for distinct i, j. This immediately implies that all of the
wi are zero. This is the type I situation.

Suppose now that we are in case 2, that is to say, x12 = x24. Now (6.1) implies that x23 +x′14 =
x34 + x′34. By dissociativity we have {x23,x′14} = {x34,x′34}, and there is no loss of generality in
assuming that x23 = x34 and x′14 = x′34. We also have, from (6.1), x′24 + x13 + x′13 = x′12 + x23 + x′14

and so, by dissociativity, x′24 ∈ {x′12,x23,x′14}. Since the zi are all distinct we cannot have either
x′24 = x′12 or x′24 = x23, so we must have x′24 = x′14. Writing x1 = x23, x2 = x′14, x3 = x12 and x4 = x′12,
we have zi + z j +xi +x j = s for all distinct i, j ∈ {1,2,3,4}, where s = x1 +x2 +x3 +x4. Writing
wi := xi + zi, this implies that wi + wj = s for all i �= j. This easily implies that all of the wi are
equal to some g and that 2g = s. This is the type II situation. This completes the proof of the
claim.

Suppose now that |Z| � 5 and that E[Z] ⊂ E[X ]. Every set Z′ ⊂ Z with |Z′| = 4 is of type I
or II. We claim that if there is any set of type I then in fact the whole of Z is a subset of X ,
thereby concluding the proof. Suppose that Z′ is of type I, thus Z′ = {x1,x2,x3,x4} with the xi

being elements of X . Suppose that z ∈ Z \Z′. Then we have z + xi = x′i + x′′i for i = 1,2,3,4 and
some x′i,x

′′
i . In particular x1 + x′2 + x′′2 = x2 + x′1 + x′′1, and so by dissociativity we have, without

loss of generality, x1 = x′1. It then follows immediately that z = x′′1, thereby establishing the claim.
It remains to examine the possibility that every subset Z′ ⊂ Z with |Z′| = 4 is of type II. We

claim this case cannot occur. We may suppose that Z′ consists of elements g− xi, i = 1,2,3,4,
where 2g = x1 + x2 + x3 + x4. Let Z′′ ⊂ Z be a different subset of size 4, intersecting Z′ in {g−
x1,g− x2,g− x3}. Since this set is also of type II, we may label it so that it consists of elements
g′ −x′i with 2g′ = x′1 +x′2 +x′3 +x′4, where g−xi = g′ −x′i for i = 1,2,3. This last relation certainly
implies that x1 + x′2 = x′1 + x2 and hence, by dissociativity, that x1 ∈ {x′1,x2}. Since the elements
of Z′ are distinct, we cannot have x1 = x2. Therefore x1 = x′1, from which it follows that g = g′. It
then follows that x2 = x′2 and x3 = x′3. Finally, since x′1 +x′2 +x′3 +x′4 = 2g′ = 2g = x1 +x2 +x3 +x4,
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it follows that x4 = x′4. But then g− x4 = g′ − x′4 lies in both Z′ and Z′′, contrary to assumption.
This contradiction establishes the claim.

Appendix B: On a result of Alon, Krivelevich and Sudakov

In this appendix we give a short proof that χ(ΓA)� (2+o(1)) n
log2 n almost surely if A is a random

subset of an abelian group G, |G| = n. The argument is basically that of Alon, Krivelevich and
Sudakov, but because we are dealing with Cayley sum graphs rather than arbitrary regular graphs,
we can use a concise Fourier argument instead of an eigenvalue argument.

We assume some familiarity with the notation of the discrete Fourier transform as discussed
in [9, Chapter 4], for example. Here we will be writing

f̂ (γ) := Ex∈G f (x)γ(x)

for γ ∈ G∗.

Proposition B.1. Suppose that supγ �=1 |1̂A(γ)|� n−η . Then

χ(ΓA) 	
(

1
η
−o(1)

)
n

log2 n
.

Proof. First of all note that

∑
x,x′∈S

1A(x+ x′) = n2 ∑
γ

1̂S(γ)21̂A(γ) =
1
2
|S|2 +n2 ∑

γ �=1

1̂S(γ)21̂A(γ).

If S ⊂ G has |S| > n1−η logn (say) then the error term here can be efficiently bounded by
Parseval’s identity and the triangle inequality:

n2

∣∣∣∣∑
γ �=1

1̂S(γ)21̂A(γ)
∣∣∣∣� n2−η ∑

γ
|1̂S(γ)|2 = n2−η |S|

n
= o(|S|2).

Thus

∑
x,x′∈S

1A(x+ x′) =
(

1
2

+o(1)
)
|S|2,

and in particular there is some x ∈ S such that x+x′ /∈ A for all x′ in some subset S′ ⊂ S of size at
least (1/2−o(1))|S|.

By repeated application of this, it follows that any set S ⊂ G of size at least n
log2 n

has a subset

X of size at least (η −o(1)) log2 n with the property that X+̂X is disjoint from A.
From this the result follows straightforwardly by iteration, as in Section 2.

If A ⊂ G is a random set then almost surely we have

sup
γ �=1

|1̂A(γ)| 	 n−1/2+o(1).
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This follows from a standard application of Bernstein’s large deviation bound for each individual
γ ∈ G∗, followed by a union bound over all γ �= 1; see for example [9, Lemma 4.16]. Combining
this with Proposition B.1 tells us that indeed χ(ΓA) 	 (2+o(1)) n

log2 n almost surely.

Appendix C: Some bounds on binomial coefficients

In this appendix we collect some bounds on binomial coefficients. These are of standard type, and
we have often given crude bounds sufficient for our purposes rather than the strongest possible
estimates.

Lemma C.1. Let n � k � 1 be integers. Then(
2n
k

)
� 2k

(
n
k

)
.

Proof. We have (2n
k

)(n
k

) =
2n
n

· 2n−1
n−1

· · · 2n− k +1
n− k +1

� 2k,

as required.

Lemma C.2. Let n � k � d � 1 be integers. Then(
n
d

)
� kd

(
n
k

)d/k

.

Proof. First note that nk � kk
(n

k

)
. Indeed,(

n
k

)
=

n
k
· n−1

k−1
· · · n− k +1

1
�
(

n
k

)k

.

Therefore we have (
n
d

)
� nd = (nk)d/k �

(
kk

(
n
k

))d/k

,

which is the stated bound.

Lemma C.3. Let n � k � d � 1 be integers. Then(
n
d

)
�
(

k
n− k

)k−d(n
k

)
.

Proof. We have(
n
d

)
=
(

n
k

)
· d +1

n−d
· d +2

n−d −1
· · · k

n− k +1
�
(

k
n− k

)k−d(n
k

)
.
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