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If a classical system has infinitely many degrees of freedom, its Hamiltonian quantization

need not be unique up to unitary equivalence. I sketch different approaches (Hilbert space
and algebraic) to understanding the content of quantum theories in light of this non-

uniqueness, and suggest that neither approach suffices to support explanatory aspirations

encountered in the thermodynamic limit of quantum statistical mechanics.

1. Introduction. A characteristic, and provocative, feature of quantum
field theory (QFT) is the availability of unitarily inequivalent Hilbert space
representations of its canonical commutation relations (CCRs). Under the
reasonable and historically entrenched assumption that unitary equivalence
is a necessary condition for the physical equivalence of Hilbert space
quantizations, this availability implies that there are myriad physically
inequivalent quantizations of any classical field theory. I aim here to
explore this dramatic non-uniqueness, and its implications for our
understanding of the manner in which theories delimit physical
possibilities. Lending both form and interest to this investigation is the
existence of a level of abstraction at which even unitarily inequivalent
Hilbert space quantizations share a common structure. They are, each of
them, a concrete realization of an abstract algebraic structure—the
structure of a C* algebra called the Weyl algebra, and based upon the
CCRs.

Each Hilbert space quantization is also, of course, a lot else, and it is by
differing in features additional to their realization of the Weyl algebraic
structure that quantizations can fail to be unitarily equivalent. Surveying
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the roiling mob of inequivalent quantizations from the lofty heights of
algebraic abstraction, one might suppose, as an early advocate of the
algebraic approach to QFT does, that ‘‘all the physical content of the
theory is contained in the algebra itself; nothing of fundamental signifi-
cance is added to a theory by its expression in a particular representation’’
(Robinson 1966, 488). It would dissolve the foundational questions posed
by the availability of unitarily inequivalent representations to deprive
differences between those representations of physical significance.

Such a dissolution comes at a cost. In the QFT context, only a proper
subset of the bounded operators on a Hilbert space representation of the
CCRs instantiate the Weyl algebraic structure. Locating the physics solely
in the abstract algebra exposes the remaining bounded operators—oper-
ators parochial to the representation—as unphysical accretions, clinging to
concrete realizations of that algebra. Among the ‘‘accretions’’ in a
particular representation are most of its projection operators, including
those in the spectrum of its total number operator. Locating the physics in,
and only in, the abstract algebra could mean investing with physical
significance fewer observables than either scientific practice or our favored
approaches to interpreting quantum theories can bear.

These reservations should not trigger retreat to a reactionary Hilbert
space chauvinism, which identifies physically relevant observables with
the set of bounded self-adjoint operators on some particular Hilbert space,
and physically possible states with the set of density matrices on that
Hilbert space. For the Hilbert space chauvinist runs the risk of investing
with physical significance fewer states than our favored scientific and
interpretive practices can bear. One option foreclosed is that of using states
from unitarily inequivalent representations in our accounts of the phenom-
enon.

QFT is not the only setting where unitarily inequivalent representations
arise. Quantum Statistical Mechanics (QSM), in its thermodynamic limit,
is replete with unitarily inequivalent representations of its fundamental
systems, infinite collections of microentities whose physics is quantum.
What’s more, explanations envisioned in the thermodynamic limit promise
to complete the schematic arguments against chauvinism just offered. Thus
the thermodynamic limit of QSM provides a motivation and a model for
tempering chauvinisms, both Hilbert space and algebraic, about the
structure and physical content of quantum theories.

I aim in what follows to make the foregoing somewhat more precise.
Section 2 frames issues raised by unitarily inequivalent representations
more ornately than I have so far. It reviews relevant rudiments of both
Hilbert space and algebraic approaches to quantum theories, and describes
Hilbert space and algebraic chauvinisms in more detail. Sketching the use
to which QSM can put unitarily inequivalent representations, and an
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algebraic framework which encompasses them, in its treatments of
equilibrium and phase transitions, Section 3 attempts to discredit both
chauvinisms. In their stead, Section 4 offers an understanding of the
content of physical theories which allows physical possibility to be a
matter of degree.

2. Unitary Equivalence and Its Breakdown. Von Neumann discerned in
both Schrödinger’s wave and Heisenberg’s matrix mechanics the structure
of a Hilbert space theory, that is, a theory which (i) identifies the state
space of a physical system with the set q(H) of all positive normalized
trace-class operators on a separable Hilbert space H ; (ii) associates the
physical magnitudes (or observables) pertaining to that system with the set
BsaðHÞ of all bounded, self-adjoint operators acting on H; and (iii) where
q̂ is a state and Â an observable, assigns Â the expectation value Tr(q̂Â) in
the state q̂.

One way to obtain such a structure is to successfully quantize a classical
theory. A standard scheme for quantizing a theory cast in Hamiltonian
form is to promote its canonical position and momentum observables to
symmetric operators (q̂i , p̂i) acting on a separable Hilbert space H and
satisfying CCRs answering to the classical Poisson bracket.

Call any set of Hilbert space operators that does the trick a representa-
tion of the CCRs. According to a theorem announced in 1930 by Stone and
proven the next year by von Neumann, if ðH; fÔigÞ and ðHV; fÔ Vi gÞ are
both irreducible representations of the CCRs for finitely many degrees of
freedom,1 then ðH; fÔigÞ and ðHV; fÔ Vi gÞ are unitarily equivalent, that is,
there exists a one-to-one, linear, norm-preserving transformation (‘‘unitary
map’’) U : H ! HV such that U�1ÔiVU = Ôi for all values of i. It follows
not only that Heisenberg’s matrix realization of the CCRs for n degrees of
freedom is unitarily equivalent to Schrödinger’s representation in terms of
differential operators, but also that any Hilbert space representation of the
CCRs for n degrees of freedom is equivalent to the Schrödinger repre-
sentation.

The Stone-von Neumann theorem was widely received as proof that the
physical theory arising from the quantization of an n-dimensional classical
theory is essentially unique. A number of non-trivial assumptions about the
nature and content of quantum theories underlies this reception. To
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reconstruct these assumptions, start with the idea that the content of a
physical theory is the set V of worlds possible according to the theory.
Annex to this an assumption about how a statistical theory characterizes a
physical possibility: A physical possibility x a V is an assignment of
expectation values to a set Aof physical magnitudes. Then one may denote
the content of a physical theory by the pair (V;AÞ, where V is its set of
possibilities, that is, maps x : A ! R from its set A of physical
magnitudes to their expectation values. Theories will be physically
equivalent exactly when a suitable isomorphism obtains between the sets
of possibilities they recognize—more precisely, when they satisfy a
content coincidence criterion for physical equivalence, which Clifton
and Halvorson 2001 articulate as follows:

(V, AÞ and (VV;AV) are physically equivalent if and only if there exist
bijections is : V ! VV and io : A ! AV such that for all x a V and for
all A a A, x(A) = [is(x)](io(A)).

To complete the case that quantum theories are physically equivalent if
and only if they’re unitarily equivalent, one now need only assume that
quantum theories are Hilbert space theories, in the sense of satisfying
conditions (i)–(iii) announced in the first paragraph of this section. Then it
follows that quantum theories ðqðHÞ;BsaðHÞÞ and ðqðHVÞ;BsaðHVÞÞ are
physically equivalent if and only if they’re unitarily equivalent, in which
case the unitary map furnishes both the bijection of possibilities from qðHÞ
to qðHVÞ and the bijection of magnitudes from BsaðHÞ to BsaðHVÞ, by
mapping an operator X on H to an operator X V = U�1XU on HV. (For a
proof, see Bratteli and Robinson 1987, Theorem 2.3.16.)

Filtered through these presuppositions, the Stone-von Neumann theorem
issues remarkable reassurance that the Hamiltonian quantization of a finite
dimensional classical theory issues a unique quantum theory. Physicists
embracing the assumptions catalogued here can quantize classical theories
with confidence that the upshot will be an unambiguous and coherent
quantum theory.

Unless, that is, the theory they’re quantizing falls outside the scope of
the Stone-von Neumann theorem. The uniqueness result holds only for
quantizations of classical theories whose configuration spaces are finite in
dimension. Elsewhere, uniqueness breaks down, and breaks down drama-
tically. Where X is a classical field theory, continuously many unitarily
inequivalent quantizations can vie for the title ‘‘quantization of X.’’
Supposing that unitary equivalence is criterial for physical equivalence,
one must also suppose that at most one unitary equivalence class of
quantizations can hold the title. This being supposed, the availability of
unitarily inequivalent representations renders ‘‘the quantization of X’’
ambiguous at best, if not incoherent.
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One reaction to this state of affairs is to disambiguate—to specify that
unitary equivalence class of representations in which resides the content of
the theory. This reaction entails dismissing representations unitarily
inequivalent to the privileged one—and operators parochial to those
representations—as without physical significance. Pledging allegiance to
the idea that the space of quantum theoretic possibilities is given in terms
of a fixed Hilbert space by ðqðHÞ;BsaðHÞÞ, this is the reaction of the
Hilbert space chauvinist.

Investigations of the abstract structure of standard realizations of
quantum field theoretic CCRs conducted in the 50s and 60s inspire
another reaction. These investigations revealed that each concrete
Hilbert space representation of the CCRs gives rise to an abstract
algebra C* algebra, the Weyl algebra, which is representation-
independent. (For more on algebraic notions introduced in this section,
see Wald 1994.) To frame the interpretive stance which rests on this
representation-independence, I will sketch the rudiments of an algebraic
approach to quantum theories. The algebraic approach identifies quantum
observables with self-adjoint elements of a C* algebra A (i.e., elements A
such that A* = A). This algebra can be abstract, like the Weyl algebra, or
it can be an algebra of bounded operators on a fixed and concrete Hilbert
space. Thus the algebraic approach generalizes the Hilbert space notion of
observable.

It is with respect to observables in the more general sense of elements
of an algebra that the algebraic approach constitutes its notion of state.
An algebraic state x on A is a linear functional x : A ! C that is normed
(x(I ) = 1)) and positive (x (A*A) z 0 for all A a A). Hence x(A) may
be understood as the expectation value of an observable A a A. Where
the algebra is realized as bounded operators on H, the set of countably
additive algebraic states stands, via the trace prescription, in one-to-one
correspondence with the set q(H) of density operators on H . But the
general notion of an algebraic state does not require a Hilbert space
middleman.

The set V of states on a C* algebraA is convex. Its extremal elements—
that is, states x which cannot be expressed as non-trivial convex
combinations of other states—are pure states; all other states are mixed.

Associations can be drawn between algebraic and Hilbert space
frameworks. A Hilbert space representation of an abstract algebra A is
a structure-preserving map p : A ! BðHÞ, from elements of A to the set
of bounded linear operators on a Hilbert space H . That even abstract
algebras admit concrete Hilbert space representations enables us to connect
Hilbert space and algebraic notion of states. A state q̂ in a Hilbert space H
carrying a representation p : A ! BðHÞ of an algebra A naturally gives
rise to the algebraic state xðAÞ ¼ Trðq̂pðAÞÞ for all A a A.
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We can also move in the other direction, from an algebraic state to its
realization on a concrete Hilbert space. A statex over a C* algebraAcan be
recast as state in a Hilbert space bearing a faithful2 representation of that
algebra. That is, for such a state, there exists a Hilbert space Hx, a faithful
representation px : A ! BðHxÞ, and a cyclic3 vector jCxiaHx such that
x (A) = hCxjkx(A)jCxi for all AaA. Called the GNS representation of the
state (for Gel’fand, Naimark, and Segal, who showed how to construct it),
the triple (Hx, kN,jCxi) is unique up to unitary equivalence. An algebraic
state x is pure if and only if its GNS representation kx is irreducible. Mixed
algebraic states give rise to reducible GNS representations.

The following facts and locutions will be called into service down the
road. The folium of an algebraic state x is the set of all algebraic states
which may be expressed as density matrices on x’s GNS representation.
Suppose that algebraic states x and x V are pure. Then either they give rise
to unitarily equivalent GNS representations, or they do not. In the first case,
their folia coincide. In the second, their folia are disjoint, that is, no
algebraic state expressible as a density matrix on (Hx , kx) is expressible
as a density matrix on (Hx V, kx V), and vice versa. A fact that will come to
the fore in Section 3 is that mixed algebraic states can be convex
combinations of disjoint algebraic states: consider x = kx1 + (1 � k)x2,
with x1 and x2 disjoint.

Setting this framework for algebraic quantum theory alongside the
result that the Weyl algebra is representation-independent one might
think that where there’s a Weyl (algebra), there’s a way (to do QFT).
The position I’ll call algebraic chauvinism denies that quantum theories
are essentially Hilbert space theories. The algebraic chauvinist identifies
all physical magnitudes pertaining to a system with self-adjoint elements
of its Weyl algebra, and takes the complete set of states possible for
this system to be given by normed positive linear functionals x over
this abstract algebra. For the chauvinist, ‘‘the important thing here is
that the observables form some algebra, and not the representation
Hilbert space on which they act’’ (Segal 1967, 128). Withholding
significance from representation-dependent structures, algebraic
chauvinists have the luxury of greeting unitarily inequivalence with a
yawn.

3. Unitarily Inequivalent Representations in QSM. This section
sketches some uses to which QSM would put unitarily inequivalent
representations, uses which, I suggest, should give both chauvinists pause.

#03170 UCP: PHOS article # 700539
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(Quantum) statistical mechanics aims at a (quantum) microphysical
underpinning of bulk properties associated with macrosystems—their
temperature, pressure, entropy, and the like—an underpinning which
stands in some suitable explanatory relationship to thermodynamic laws
those macro-properties obey. Articulating canons of suitability, and assess-
ing putative statistical mechanical explanations against those canons, has
been a mainstay of work on the foundations of statistical mechanics. Until
my concluding anticlimactic postscript, I will bracket questions raised by
such work, in order to explore certain well-entrenched statistical mechan-
ical explanatory aspirations, and the theoretical/interpretational structures
which sustain them. I will focus in particular on explanatory aspirations
pursued in the thermodynamic limit of QSM, i.e. the limit as the number N
of microsystems and the volume V they occupy goes to infinity, while their
density N

V remains finite. Because the thermodynamic limit for QSM
concerns the quantum physics of infinite collections of particles, there
the spectre of unitarily inequivalent representations rears its head.

Short of the thermodynamic limit, and in the setting of concrete Hilbert
spaces, the Gibbs state equips QSM with a notion of equilibrium. The
Gibbs state of a system with Hamiltonian Ĥ at inverse temperature b ¼ 1

kT
is the density matrix

q̂ ¼ expð�bĤÞ=Tr½expð�bĤÞ� ð1Þ

For realistic, finite quantum systems the Gibbs state is well-defined and
unique (Ruelle 1969). If, however, the spectrum of Ĥ fails to be pure
discrete, or if we are working in an abstract algebraic setting, (1) fails to be
well defined.

Now suppose that we aspire to construct a quantum statistical account
of phase transitions. Then we might have reason to seek a notion of
equilibrium suited to these more general settings. For the apparent macro-
scopic explanandum is the existence, at certain temperatures, of multiple
thermodynamic phases. The explanatory aspirations I’ll recount here rest
on the idea that a statistical account of phase transitions requires the
existence, at these critical temperatures, of multiple distinct equilibrium
states, answering to different thermodynamic phases. Sewell explains how,
short of the thermodynamic limit, the very uniqueness of the Gibbs state
upsets this explanatory applecart:4

The traditional form of statistical thermodynamics for large but finite
systems . . . cannot accommodate different phases of a system (e.g.

#03170 UCP: PHOS article # 700539
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liquid and vapor) under the same thermodynamic conditions, since the
Gibbs ensemble representing the equilibrium state of a finite system is
uniquely determined by the prevailing macroscopic constraints: thus,
if the volume, temperature, and mass are controlled to take specific
values, then the resultant ensemble is the canonical one. (1986, 47)

Explanatory hopes are revived in the thermodynamic limit by using the
KMS condition to explicate a notion of equilibrium more general than that
afforded by the Gibbs state. (A naive introduction to KMS states follows;
for an authoritative treatment, see Bratteli and Robinson 1997, §5.3.) A C*
dynamical system (A,at) consists of a C* algebra A whose self-adjoint
elements correspond to physical magnitudes, and a one (real) parameter
group at of automorphisms on A—that is, maps from A to itself which
preserve A’s algebraic structure—which encodes dynamics. That is, for all
A a A, at(A) represents its evolution through a time t. In a Hilbert space
quantum theory, A is given by an algebra of bounded observables on a
Hilbert space, and at is implemented by a family Ût = e�iĤ t of unitary
operators generated by the Hamiltonian Ĥ of the system: at(Â) = ÛtÂÛt

*.
In terms of such a Hilbert space realization of a C* dynamical system,

the Gibbs state q̂, where it is well-defined, formally satisfies

x½AaibðBÞ� ¼ xðBAÞfor all A;B a A ð2Þ

(here xðxÞ ¼ Trðq̂xÞ for all x a BðHÞÞ. But formulated in general C*
algebraic terms, (eq. 2) can apply as well to states and observables
abstractly conceived. To extrapolate the notion of equilibrium beyond
circumstances where the Gibbs state (eq. 1) is well-defined, make the KMS
condition (2) criterial for equilibrium. Hence: x is a KMS state with
respect to the automorphism group at at inverse temperature b (an (at, b)-
KMS state, for short) if and only if (2) holds for all A, B in a dense
subalgebra of A.

If ðA; atÞ admits a standard Gibbs state at inverse temperature b, the
(at, b)-KMS state is unique and coincides with that Gibbs state (Bratteli and
Robinson 1997, Ex. 5.3.31). KMS states moreover exhibit a number of
stability features, including invariance under the action of the dynamical
group at, putatively characteristic of equilibrium states. For such reasons,
the KMS condition is generally regarded to be a suitable criterion for
equilibrium. So explicated, the notion applies to systems admitting no
Gibbs states—including infinite quantum systems at the thermodynamic
limit.

Now consider a C* dynamical system ðA; atÞ. For b a R, let Kb denote
the set of (at, b)-KMS states. Salient results about the structure of the sets
Kb include (Bratteli and Robinson 1997, Theorem 5.3.30):
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1. Kb is convex;
2. x a Kb is extremal (i.e., x can’t be expressed as a convex

combination of distinct elements of Kb) if and only if it’s a factor
state (i.e., one for which the intersection of kx(A ) and its com-
mutant contains only multiples of the identity);

3. Where x1 and x2 are extremal elements of Kb, either they’re equal
or disjoint.

It follows from (2) that if the set of (at, b)-KMS states has only one
element, then that state is a factor state. Factor states, examples of which
include the equilibrium states of ideal fermi gases, can often be characterized
by the absence of long-range correlations, and of large fluctuations for
space-averaged observables. Typical of ‘‘pure’’ thermodynamic phases,
these absences encourage the identification of factor states with those
phases (for more encouragement, see Sewell 1986, § 4.4, or Emch and
Knops 1970).

Now consider x1a Kb1 and x2 a Kb2 . Under a technical assumption
that holds generally at the thermodynamic limit,5 if b1 p b2, then x1 and
x2 are disjoint (Bratteli and Robinson 1997, theorem 5.3.35). That is, for
an infinite quantum statistical system, there is no single concrete Hilbert
space on which its equilibrium states at different temperatures can be
represented as density matrices.

The position of the Hilbert space chauvinist, viewed in the light of this
result, looks unreasonable. Maintaining that all physical possibilities reside
in a single folium, the chauvinist reckons states outside the favored folium
to be physically impossible. But there are systems for which this amounts
to insisting that at most one equilibrium temperature is physically possible.
The Hilbert space chauvinist cannot allow that it’s in some sense
physically possible for such systems to reach equilibrium at different
temperatures. While not inconsistent, this consequence offends modal
intuitions.

Setting our sights on the explanation of phase transitions only makes
Hilbert space chauvinism look worse. Recall that for finite systems
admitting Gibbs states, the equilibrium (KMS) state at temperature b
with respect to an automorphism group at is unique. But in the general
setting of the thermodynamic limit of QSM, there can be automorphism
groups at and inverse temperatures b such that there are a plurality of (at, b)
KMS states. Everyx in such a set Kb can be represented as a unique convex
combination of extremal elements of Kb, which extremal elements are
pairwise disjoint (Bratteli and Robinson 1997, Theorem 5.3.30).

#03170 UCP: PHOS article # 700539
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This makes available the following template for a quantum statistical
analysis of phase transitions. Phase transitions occur at those inverse
temperatures b for which the set Kb of (at, b) KMS states is not a
singleton set and in those states x a Kb which are not extremal. Such x
are convex combinations of extremal states xi. Each extremal state in
this decomposition corresponds to a pure thermodynamic phase, different
states to different phases. Thus the decomposition corresponds to the
separation of a system at equilibrium into pure thermodynamic phases,
and a system in x at b exhibits phase transitions (see Sewell 1986,
ch. 4).

The analysis of phase transitions just sketched takes disjoint algebraic
states xi to co-exist in the form of different phases present at a phase
transition. Implying that what’s actual can on its own correspond to
multiple, distinct folia, this explanation is incompatible with Hilbert
space chauvinism, which limits the space of physical possibilities to a
single folium.

Pursuing explanatory aspirations in the thermodynamic limit requires
extending physical possibility beyond the lone folium to which a Hilbert
space chauvinist would confine it. It does not follow that algebraic
chauvinism is ideally supportive of the account of phase transitions just
sketched. The algebraic chauvinist’s catechism is that moving to a concrete
representation adds no physical content to a theory couched in terms of an
abstract algebra. The foregoing might tempt one to protest that concrete
representations bear crucial physical content, corresponding as they do to the
phase and the temperature of a system at equilibrium. This on its own needn’t
trouble the chauvinist, provided that she can understand the admittedly
physical differences between unitarily inequivalent representations—
differences of phase and of temperature—in purely algebraic terms. If she
could, for instance, summon from her algebra a self-adjoint element T such
that for any (at, b) KMS state x, x (T) = 1

bk, then purely algebraic resources
would suffice for the temperature discriminations her critic assigns to
concrete representations.

Alas, algebraic resources do not, on their own, supply the chauvinist with
a temperature observable. To indicate why, we must articulate the algebraic
approach to QSM in a bit more detail (Primas 1983, §4.3 offers a sketch; see
also Kronz and Lupher 2001). That approach associates with each bounded
region Vof R3 (i.e., three dimensional physical space) an algebraA(V). Call
elements of such algebras strictly local observables. From these algebras is
constructed a C* algebra, the quasi-local algebra A, roughly as follows:
take [

VaR3 A(V), then close in the topology furnished by the C* algebraic
norm. According to the algebraic chauvinist, it is in this abstract quasi-
local algebra that all physically relevant observables reside. Now the rub is
that classical thermodynamic observables, including temperature, are

#03170 UCP: PHOS article # 700539

1338 laura ruetsche

https://doi.org/10.1086/377411 Published online by Cambridge University Press

https://doi.org/10.1086/377411


absent from this quasi-local algebra. That is, they are not observables in
terms of which the algebraic chauvinist can distinguish between states.

The accounts of equilibrium and phase transitions just sketched extend
physical possibility to unitarily inequivalent representations. Therein lies
their incompatibility with Hilbert space chauvinism. Those same accounts
distinguish physically between those representations on the basis of
observables without correlate in the abstract algebra. Therein lies their
incompatibility with algebraic chauvinism.

Now, algebraic approaches unfettered by chauvinism can bring classical
thermodynamic observables on board. Here’s (again, roughly) how. For
every region V define the algebra A?(V) of quasi-local observables outside
V by taking the norm closure of {A : A a A(V V), V V \ V = t}. Given a
Hilbert space representation p of the quasi-local algebra A , one can
construct a von Neumann algebra V?

p (V ) by taking the closure of pðA?(V))
in the weak operator topology of the representation’s Hilbert space. The von
Neumann algebra ‘at l’ Vl

p is defined by \
VaR3V?

p ðV Þ (see Bratteli and
Robinson 1987, 119–122). It is in this construction, obtained only by way
of a representation k, that one encounters classical thermodynamic
observables.

4. Conclusion: Coalescing Content. How can we construe the content of
quantum theories in a way that accommodates explanatory maneuvers
encountered in the thermodynamic limit of QSM? I’ve just suggested that
neither chauvinism will do. But perhaps they are not the only options open
to us. Their opposition notwithstanding, algebraic and Hilbert space
chauvinism share an assumption about how to interpret a physical
theory. The shared assumption is that a physical theory’s content is to be
specified by simply sorting logical possibilities into one of two disjoint and
exhaustive categories: the physically possible and the physically
impossible—as though a physical theory ran a modal toggle with no
intermediate settings. The Hilbert space chauvinist uses a Hilbert space
structure of observables to do the simple sort; the algebraic chauvinist uses
the abstract algebraic structure.

Mathematical physicists discussing algebras and their representations
might be taken to suggest a different take on how physical theories pick out
possibilities. The remainder of this section aims not at a fully satisfying
explication of the suggestion, but at a partial, and admittedly impres-
sionistic, development of it.

Kadison makes the suggestion this way:

Mathematically, a representation [of an abstract algebra] distinguishes
a certain ‘‘coherent’’ family of states from among [the full set of
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algebraic states], and at the same time, in effect, ‘‘coalesces’’ some of
the algebraic structure. (1965, 186)

The distinguished family is the folium of states expressible as density
matrices on the Hilbert space of the representation; the coalesced structure
includes observables parochial to that representation and accessible
through constructions—e.g. the von Neumann algebra at l—based on
that representation.

Kadison takes concrete representations seriously as repositories of
physical content without assuming that all physically relevant states
must reside in a single folium. He thereby suggests how to chart a
course (a course I’ll call, for reasons which will become apparent, the
Swiss army approach) between algebraic and Hilbert space chauvinisms.
The Swiss army approach has as its point of departure a refusal to specify
the content of a physical theory in one fell swoop, cleaving states possible
according to it from states impossible according to it. Rather, the Swiss
army approach takes the specification of content to be (at least) a two-
tiered affair, with a corresponding gradation in the sort of possibilities
purveyed by the theory. The broadest sort of possibility picked out by a
quantum theory is the space VA of algebraic states on the appropriate
abstract algebra. Self-adjoint elements of the algebra correspond to the
most basic physical magnitudes, those that belong to the theory
automatically. This much of the theory’s content can be specified, so to
speak, a priori, before taking physical contingencies into account.

The next tier of physical content specification does take contingencies
into account. From VA a narrower set of possibilities most relevant to the
contingent empirical situation is distinguished, by appeal to features of that
situation, for instance, equilibrium temperatures. Other algebraic states
aren’t impossible; they’re simply possibilities more remote from the
present application of the theory than these most relevant states.

This narrowing of possibilities expands the core constituency of
relevant observables from A to include observables parochial to concrete
GNS representations of states in the narrower set. Again, observables
parochial to the GNS representations of states outside the most relevant set
aren’t unphysical; they’re simply less relevant for the sorts of
discriminations demanded by the application at hand. This is hardly to
say that they couldn’t be relevant to other applications.

We can also think of this two-tiered specification of content in terms of
the universal representation of an algebra A. This is the direct sum, over
the set of algebraic states for A, of their GNS representations. We could
construe the theory’s broadest set of physical observables in terms of this
universal representation (see Kronz and Lupher 2001 for one version of
this proposal, which they attribute to Muller-Herold; Rob Clifton has also
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offered a version of this proposal in conversation). At this stage of content
specification, this vast host of physical observables is just sitting there, like
blades folded up in a Swiss army knife. The next (coalescence) stage
appeals to contingent features of the physical situation to focus on a small
set of representations, which are summands in the universal representation.
Observables parochial to those representations are extracted for application
to the situation at hand. Thus coalescence is something like opening the
Swiss army knife to the appropriate blade or blades, once you’ve figured
out what you’re supposed to do with it.

Though observables thus coalesced are less fundamental than those
appearing in A, there can be call to draft them. We’ve just seen how the
coalesced von Neumann algebra at l sustains quantum statistical
explanatory aspirations. Coalesced observables can be pressed into other
sorts of service. For example, a Hamiltonian parochial to a representation
might serve as the generator of dynamics in the folium of that
representation. (Emch and Knops’s (1970) variation on the Ising model
of ferromagnetism develops a dynamics of this sort.) The interplay of
abstract and coalesced structure also figures in accounts which characterize
spontaneous symmetry breaking in terms of symmetries of the algebraic
structure which are not symmetries of coalesced structures. In the case of
phase transitions, a non-extremal KMS state x = Ak ixi might be invariant
under symmetries (automorphisms) of the abstract algebra which fail to be
unitarily implementable on representations coalesced around that states’
extremal components xi.

My suggestions that the Swiss army approach admits and supports the
foregoing applications are sketchy, and the Swiss army approach itself
remains a metaphor. But if these ideas can be developed and defended,
they would make plausible the thesis that the best way to make sense of
what physicists do with quantum theories is to allow physical possibility to
be a matter of degree.

I’ll close by acknowledging an objection6 to how I’ve proceeded. Steam
rises from the surface of my coffee; passing to the thermodynamic limit to
account for this, we attribute my coffee cup infinite volume. But the
volume of my coffee cup is finite! So the objection is that I have rested
interpretative conclusions on the consideration of a setting which is a
hotbed of manifest falsehoods and extreme idealizations.

My shamefully curt reply to this objection is that I am not resting
interpretative conclusions on artifacts of the idealization committed by the
thermodynamic limit. I am not (for instance) claiming that, notwithstanding
the appearances, steaming cups of coffee are infinite in volume. I am instead

#03170 UCP: PHOS article # 700539

6. John Earman, brandishing a copy of Callender (forthcoming), has urged this objection

upon me.

1341a matter of degree

https://doi.org/10.1086/377411 Published online by Cambridge University Press

https://doi.org/10.1086/377411


resting interpretative conclusions on the very features of the idealization—
in particular, the structure of equilibrium states it sustains—that enables it to
account for the phenomena—the coexistence of phases at critical temper-
atures. Thus I am resting interpretive conclusions—conclusions about the
manners in which theories represent—on those facets of the thermodynamic
limit that appear to do representational work. But on this question, much
more needs to be said, both by the prosecution and the defense.
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