
J. Inst. Math. Jussieu (2020) 19(2), 571–579

doi:10.1017/S1474748018000129 c© Cambridge University Press 2018

571

PROJECTIVE STRUCTURES AND ρ-CONNECTIONS

RADU PANTILIE
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014700, Bucureşti, România (radu.pantilie@imar.ro)

(Received 13 April 2017; revised 23 January 2018; accepted 26 January 2018;

first published online 22 March 2018)

Abstract We extend T. Y. Thomas’s approach to projective structures, over the complex analytic

category, by involving the ρ-connections. This way, a better control of projective flatness is obtained

and, consequently, we have, for example, the following application: if the twistor space of a quaternionic
manifold P is endowed with a complex projective structure then P can be locally identified, through

quaternionic diffeomorphisms, with the quaternionic projective space.
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Introduction

The classical notion of projective line evolved, for example, into the differential geometric

notion of (unparametrized) geodesic. Locally, these are defined through an equivalence

class of connections (see Proposition 1.1, below; see, also, [19] for a historical background).

There are several ways to give a global (coordinate free) description of the resulting

‘projective structures’ (see [7] for a nice review of projective structures in the smooth

setting). Among these, there is [18] (see [17]) where it is, essentially, shown that any

projective structure on a smooth manifold M corresponds to an invariant Ricci flat torsion

free connection on det(T M). However, the extension of this approach over the complex

analytic category is nontrivial as, in this case, by [2], the relevant bundles (for example,

the tautological line bundle over the complex projective space) can never be endowed

with a connection.

Such an extension has been carried over in [14, §7], under the assumption that the

canonical line bundle admits an (n+ 1)th root, where n is the dimension of the manifold

(see, also, [1] for an extension, of the T. Y. Thomas’s approach, over odd dimensional

complex manifolds).

In this paper, we work out this extension by involving the ρ-connections (see

Definition 1.4, below). The obtained main result (Theorem 2.1) then provides a
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surprisingly simple (and improved) characterization of projective flatness (Corollary 3.1).

From the applications, we mention, here, only the following: if the twistor space of a

quaternionic manifold P is endowed with a complex projective structure then P can be

locally identified, through quaternionic diffeomorphisms, with the quaternionic projective

space.

1. Complex projective structures and ρ-connections

In this paper, we work in the category of complex manifolds. (The corresponding

extensions over the smooth category are easy to be dealt with.) A good starting point

for (complex) projective structures is [12]. The reader interested, also, in the ‘almost

complex’ setting and other related facts, may consult [5].

Recall that two connections on a manifold are projectively equivalent if and only if they

have the same geodesics (up to parametrizations). Also, any connection on a manifold

is projectively equivalent to a torsion free connection, and the following result is well

known. For the reader’s convenience, we sketch its proof.

Proposition 1.1. Let ∇ and ∇̃ be torsion free connections on M. Then the following

assertions are equivalent:

(i) ∇ and ∇̃ are projectively equivalent.

(ii) There exists a one-form α on M such that ∇̃X Y = ∇X Y +α(X)Y +α(Y )X , for any

local vector fields X and Y on M.

Proof. For this we only need the equivalence of the following facts, for a symmetric (1, 2)
tensor 0 on a vector space V :

(1) 0(v, v) is proportional to v, for any v ∈ V .

(2) There exists α ∈ V ∗ such that 0(u, v) = α(u)v+α(v)u, for any u, v ∈ V .

Indeed, if dim V = 1 then this is obvious, whilst, if dim V > 2 and on assuming (1) then,

for any i1, i2 = 1, . . . , dim V , we have 0i1
jk x j xk x i2 = 0

i2
jk x j xk x i1 , where (x i )i is any basis

on V ∗ and x i
◦0 = 0i

jk x j xk .

Consequently, 0i
jk = 0 if j 6= i 6= k. Furthermore, with i fixed, the one-form α =

1
2 (0

i
i i x i
+ 2

∑
j 6=i 0

i
i j x j ) is well defined (that is, it does not depend on i) and satisfies

(2), with u = v.

The following definition is, essentially, classical.

Definition 1.2. A projective covering on a manifold M is a family {∇U
}U ∈ U , where:

(a) U is an open covering of M ,

(b) ∇U is a torsion free connection on U , for any U ∈ U ,

(c) ∇U and ∇V are projectively equivalent on U ∩ V , for any U, V ∈ U .

Two projective coverings are equivalent if their union is a projective covering.

A projective structure is an equivalence class of projective coverings.
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For any manifold M , endowed with a projective structure, there exists a representative

of it {∇U
}U ∈ U such that, for any U ∈ U , the connection induced by ∇U on det(T U ) is

flat; such a representative will be called special. The existence of special representatives

(an essentially known fact) is proved as follows. Let {∇̃U
}U ∈ U be any representative

of the projective structure. By passing to a refinement of U , if necessary, we may

suppose that each U ∈ U is the domain of a frame field (u 1
U , . . . , u n

U ) on M , over U ,

where dim M = n. Let αU be the local connection form, with respect to u 1
U ∧ . . .∧ u n

U ,

of the connection induced by ∇̃U on det(T U ). Let βU = −
1

n+1 αU and ∇U be given by

∇
U
X Y = ∇̃U

X Y +βU (X)Y +βU (Y )X , for any U ∈ U and any local vector fields X and Y on

U . Then {∇U
}U ∈ U is as required.

Let {∇U
}U ∈ U be a representative of a projective structure on M . For any overlapping

U, V ∈ U , denote by αU V the one-form on U ∩ V which gives ∇V
−∇

U , through

Proposition 1.1. Then (αU V )(U,V )∈ U∗ is a cocycle representing, up to a nonzero factor,

the obstruction [2] to the existence of a principal connection on det(T M), where U∗ =
{(U, V )∈ U ×U |U ∩ V 6= ∅}. Recall that this can be defined as the obstruction to the

splitting of the following exact sequence of vector bundles

0 −→ M ×C −→ E
ρ
−→ T M −→ 0,

where E = T (det(T M))
C\{0} and ρ : E → T M is the projection induced by the differential of

the projection det(T M)→ M .

Let L be a line bundle on M . Denote E = T (L∗\0)
C\{0} , and ρ : E → T M the projection.

Recall that the sheaf of sections of E is given by the sheaf of vector fields on L∗ \ 0 which

are invariant under the action of C \ {0}. Therefore to any local sections s and t of E
(defined over the same open set of M) we can associate their bracket [s, t]. Then [·, ·]

is skew-symmetric, satisfies the Jacobi identity and ρ intertwines it and the usual Lie

bracket on local vector fields on M ; that is, (E, ρ, [·, ·]) is a Lie algebroid (see [13]).

Remark 1.3. Let L be a line bundle on M and denote E = T (L∗\0)
C\{0} . If we replace L by

Ln , for some n ∈ Z \ {0}, then in the exact sequence 0 −→ M ×C ι
−→ E

ρ
−→ T M −→ 0,

we just need to replace ι by (1/n) ι.

If F is a vector bundle over M we denote by 0(F) the corresponding sheaf of sections;

that is, 0(U, F) is the space of sections of F over U , for any open set U ⊆ M .

The following definition is taken from [16] (cf. [6]).

Definition 1.4. (1) Let M be endowed with a vector bundle E , over it, and a morphism

of vector bundles ρ : E → T M .

If F is a vector bundle over M a ρ-connection on F is a linear sheaf morphism ∇ :

0(F)→ 0(Hom(E, F)) such that ∇s( f t) = ρ(s)( f ) t + f∇s t , for any local function f on

M , and any local sections s of E and t of F .

(2) Suppose (for simplicity) that ρ : E → T M is the projection, with E = T (L∗\0)
C\{0} and

L a line bundle over M . Then the curvature form of a ρ-connection ∇ on F is the section

R of End(F)⊗32 E∗ given by R(s1, s2) t = [∇s1 ,∇s2 ] t −∇[s1,s2] t , for any local sections

s1, s2 of E and t of F .

https://doi.org/10.1017/S1474748018000129 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000129


574 R. Pantilie

If ∇ is a ρ-connection on E then its torsion is the section T of E ⊗32 E∗ given by

T (s1, s2) = ∇s1s2−∇s2s1− [s1, s2], for any local sections s1, s2 of E .

Remark 1.5. (1) With the same notations as in Definition 1.4(1), if L admits a (classical)

connection then any ρ-connection on F corresponds to a (non-unique) pair formed of a

connection on F and a section of End(F)⊗ E∗.
(2) Let E be a vector bundle over M , let ρ : E → M be a morphism of vector bundles,

and let ∇ be a ρ-connection on E . On defining {s1, s2} = ∇s1s2−∇s2s1, for any local

sections s1 and s2 of E , we obtain that {·, ·} is bilinear skew-symmetric and {s1, f s2} =

ρ(s1)( f ) s2+ f {s1, s2}, for any local sections s1 and s2 of E , and any local function f
on M . Obviously, ρ intertwines {·, ·} and the usual bracket on 0(T M) if and only if the

section [16] (cf. [15]) of T M ⊗32 E∗ given by T (s1, s2) = ρ ◦ (∇s1s2−∇s2s1)− [ρ ◦ s1, ρ ◦

s2], for any local sections s1 and s2 of E , is zero.

Suppose, now, that we are given a bracket [·, ·] on E such that (E, ρ, [·, ·]) is a Lie

algebroid. Then we may define T just like in Definition 1.4(2), thus, obtaining T = ρ ◦ T .

Furthermore, T = 0 if and only if {·, ·} = [·, ·], and each one of these two relations implies

T = 0.

Any (classical) connection ∇ on F defines a ρ-connection ∇̃ given by ∇̃s t = ∇ρ(s)t , for

any local sections s of E and t of F .

However, not all ρ-connections are obtained this way. For example, if M is compact

Kähler then a line bundle over M admits a connection if and only if its (first) Chern class

with complex coefficients is zero [2].

Nevertheless, any line bundle L over a manifold M is endowed with a canonical flat

ρ-connection ∇, where ρ : E → T M is the projection, with E = T (L∗\0)
C\{0} . This can be

defined as follows. First, recall that any local section s of E over an open set U ⊆ M
can be seen as a C \ {0} invariant vector field on L∗ \ 0, whilst any section t of L over U
corresponds to a function ft on π−1(U ), where π : L∗ \ 0→ M is the projection. Then,

by definition, ∇s t = s( ft ).

For another example, let V be a vector space and let L be the dual of the tautological

line bundle over the projective space PV . From L∗ \ 0 = V \ {0}, it follows that T (L∗\0)
C\{0} =

L ⊗ (PV × V ). Thus, although PV does not admit a connection, we can associate to it

the canonical flat ρ-connection given by the tensor product of the canonical ρ-connection

of L and the canonical flat connection on PV × V . Note that, the canonical ρ-connection

of the projective space is torsion free.

The following fact will be used later on.

Remark 1.6. Let L be a line bundle over M and let V be a finite dimensional subspace

of the space of sections of L. Then V induces a section sV of L ⊗ V ∗(= Hom(M × V, L))
given by sV (x, s) = sx , for any x ∈ M and s ∈ V . Obviously, the base point set SV of V
is equal to the zero set of sV . Assume that SV = ∅.

Then the differential of the corresponding map ϕ : M → PV ∗ is induced by ∇sV : E →
L ⊗ V ∗, where E = T (L∗\0)

C\{0} and ∇ is the tensor product of the canonical ρ-connection of

L and the canonical flat connection on M × V ∗. This means that, if we, also, denote by dϕ
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the morphism T M → ϕ∗(T (PV ∗)) corresponding to the differential of ϕ, then dϕ ◦ ρ =
ρV ◦ (∇sV ), where ρ : E → T M and ρV : L ⊗ V ∗→ ϕ∗(T (PV ∗)), are the projections.

2. The main result on projective structures

In this section, we prove the following result (cf. [14, 17, 18]).

Theorem 2.1. Let M be a manifold, dim M = n > 2, denote E = T (det(T M))
C\{0} and let ρ :

E → T M be the projection. There exists a natural correspondence between the following:

(i) Projective structures on M.

(ii) Torsion free ρ-connections ∇ on E satisfying:

(ii1) ∇1s = − 1
n+1 s, for any local section s of E, where 1 is the section of E given

by x 7→ (x, 1)∈ M ×C ⊆ E;

(ii2) The ρ-connection induced by ∇ on 3n+1 E corresponds, under the isomorphism

3n+1 E = 3n(T M), with the canonical ρ-connection of 3n(T M);

(ii3) Ric = 0, where Ric(s1, s2) = trace(t 7→ R(t, s2)s1), for any s1, s2 ∈ E, with R the

curvature form of ∇.

Proof. Suppose that E is endowed with a torsion free ρ-connection ∇ such that, for any

local section s of E , we have ∇1s = − 1
n+1 s. Then, also, ∇s1 = −

1
n+1 s, as ∇ is torsion

free and [1, s] = 0, for any local section s of E .

We define the geodesics of ∇ to be those immersed curves c in M for which, locally, up

to a parametrization, there exists a section s of E , over c, such that ρ ◦ s = ċ and ∇ss = 0
(compare [15, Remark 1.1]). Note that, then, if t is another section of E , over c, such

that ρ ◦ t = ċ then t = s+ f 1 for some function f , on the domain of c, and, consequently,

∇t t = 0 if and only if f = 0; that is, s = t .
We shall show that for any x ∈ M and any X ∈ Tx M \ {0} there exist a curve c on M

and a section s of E , over c, such that ċ(0) = X , ρ ◦ s = ċ, and ∇ss = 0; in particular, c
is a geodesic (in a neighbourhood of x).

For this, let V be the typical fibre of E and let (P,M,GL(V )) be the frame bundle of E ;

denote by π : P → M the projection. Then ∇ corresponds [16] to a map C : P × V → T P
satisfying:

dπ(C(u, ξ)) = ρ(uξ),

C(ua, a−1ξ) = dRa(C(u, ξ)),
(2.1)

for any u ∈ P, a ∈ GL(V ) and ξ ∈ V , and where Ra is the ‘(right) translation’ on P defined

by a. Note that, similarly to the classical case, we have

∇uξ s = u C(u, ξ)( fs), (2.2)

for any local section s of E , any u ∈ P such that π(u) is in the domain of s, and any

ξ ∈ V , and where fs is the equivariant (V -valued) function on P corresponding to s.

For ξ ∈ V , we denote [16] by C(ξ) the vector field on P given by u 7→ C(u, ξ).
Now, let x ∈ M and X ∈ Tx M \ {0}. Choose u0 ∈ P and ξ ∈ V such that ρ(u0ξ) = X and

let c be the projection, through π , of the integral curve u of C(ξ) through u0. Thus, if
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we denote s = uξ , then the first relation of (2.1) implies ρ ◦ s = dπ(u̇) = ċ; in particular,

ċ(0) = X . Furthermore, by (2.2), we have ∇ss = u C(u, ξ)(ξ) = 0, where the second ξ

denotes the corresponding constant function along u.

To show that we have constructed, indeed, a projective structure, let cU : T U → E |U be

the local section of ρ corresponding to a connection on det(T U ), for some open set U ⊆ M
(note that, we may cover M with such open sets U). Then E |U = T U ⊕ (U ×C), where

we have identified T U and the image of cU ; in particular, ρ|U is just the projection from

E |U onto T U . Let ∇U be the (torsion free) connection on U given by ∇U
X Y = ρ(∇X Y ),

for any local vector fields X and Y on U . Then if we intersect with U any geodesic of ∇

we obtain a geodesic of the projective structure on U , determined by ∇U .

We have, thus, proved that any torsion free ρ-connection ∇ on E , satisfying the

condition ∇1s = − 1
n+1 s, for any local section s of E , determines a projective structure

on M .

Conversely, suppose that M is endowed with a projective structure given by the special

projective covering {∇U
}U ∈ U .

As ∇U induces a flat connection on det(T U ), it corresponds to a section cU , over U ,

of ρ; furthermore, cU ◦ [X, Y ] = [cU ◦ X, cU ◦ Y ] for any local vector fields X and Y on

U . Therefore there exists a unique βU ∈ 0(E∗|U ) such that, for any t ∈ E |U , we have

t = cU (ρ(t))+βU (t)1.

Let U, V ∈ U , be such that U ∩ V 6= ∅, and let αU V be the one-form on U ∩ V given

by Proposition 1.1 applied to ∇U
|U∩V and ∇V

|U∩V . Then, on U ∩ V , we have cV =

cU − (n+ 1)αU V1; equivalently, (n+ 1)αU V (ρ(t)) = βV (t)−βU (t), for any t ∈ E |U∩V .

For any U ∈ U , we define a ρ-connection ∇̃U on E |U by

∇̃
U
s t = cU (∇

U
ρ(s)(ρ(t))−

1
n+1βU (s)ρ(t)− 1

n+1βU (t)ρ(s))+ (bU (s, t)+ ρ(s)(βU (t)))1,

for any local sections s and t of E |U , where bU is some section of �2 E∗|U ; consequently,

∇̃
U
s t −∇̃U

t s = cU ([ρ(s), ρ(t)])+ (ρ(s)(βU (t))− ρ(t)(βU (s)))1

= [cU (ρ(s)), cU (ρ(t))] + (ρ(s)(βU (t))− ρ(t)(βU (s)))1 = [s, t],

that is, ∇̃U is torsion free.

Let U ∈ U , and denote by RicU the Ricci tensor of ∇U defined by RicU (X, Y ) =
trace(Z 7→ RU (Z , Y )X), for any X, Y ∈ T M , where RU is the curvature form of ∇. For

s, t ∈ E |U , we define

bU (s, t) = n+1
n−1 RicU (ρ(s), ρ(t))− 1

n+1βU (s)βU (t).

Then a straightforward computation shows that ∇̃U
|U∩V = ∇̃

V
|U∩V , for any U, V ∈ U ,

with U ∩ V 6= ∅. We have, thus, obtained a torsion free ρ-connection ∇ on E which is

easy to prove that it satisfies (ii1).

Further, we may suppose that, for any U ∈ U , there exists an n-form ωU on U such

that ∇UωU = 0. Consequently, for any t ∈ E |U , we have ∇t (ρ
∗ωU ) =

n
n+1βU (t) ρ∗ωU , on

im cU .

Now, the isomorphism3n(T ∗U ) = 3n+1(E∗|U ) is expressed by ωU 7→ βU ∧ ρ
∗ωU . Also,

(ii1) implies that, for any t ∈ E |U , we have ∇t (βU ∧ ρ
∗ωU ) = βU (t) βU ∧ ρ

∗ωU .
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On the other hand, the relation t = cU (ρ(t))+βU (t)1, for any t ∈ E |U , means that βU
is the ‘difference’ between the connection induced by ∇U on 3n(T U ) and the canonical

ρ-connection
can
∇ on 3n(T U ); equivalently,

can
∇ t ωU = βU (t) ωU , for any t ∈ E |U . Thus, ∇

satisfies (ii2).

Finally, let R be the curvature form of ∇. Then a straightforward calculation shows

that, on each U ∈ U , we have

R = cU (ρ
∗W U )+ n+1

n−1 (ρ
∗CU )1, (2.3)

where W U and CU are the projective Weyl and Cotton–York tensors of ∇U , respectively,

given by

W U (X, Y )Z = RU (X, Y )Z + 1
n−1 (RicU (X, Z)Y −RicU (Y, Z)X),

CU (X, Y, Z) = (∇U
X RicU )(Y, Z)− (∇U

Y RicU )(X, Z),

for any X, Y, Z ∈ T U .

Note that, (2.3) implies that ∇ satisfies (ii3). Moreover, condition (ii2) fixes the

‘horizontal’ part ρ ◦∇ of ∇ (among the torsion free ρ-connections satisfying (ii1)), whilst

(ii3) fixes the ‘vertical’ part βU ◦∇, for U ∈ U .

Remark 2.2. (1) Suppose that, in Theorem 2.1, there exists a line bundle L such

that Ln+1
= 3n(T M). Then we may replace det(T M) by L∗ \ 0, and, by Remark 1.3,

condition (ii1) becomes ∇1s = s, for any local section s of E , as satisfied by the canonical

ρ-connection of the projective space. Furthermore, the canonical ρ-connection of the

projective space, also, satisfies (ii2) and (ii3), and the corresponding geodesics are the

projective lines (as the ‘the second fundamental form’, with respect to the canonical

ρ-connection, of any projective subspace is zero).

(2) Let λ∈ C \ {0} and let M be a manifold. Denote E = T (det(T M))
C\{0} and let ρ : E →

T M be the projection. Then, similarly to the proof of Theorem 2.1, any torsion free

ρ-connection ∇ on E satisfying ∇s1 = λ s, for any s ∈ E , defines a projective structure

on M .

3. Applications

In this section, first, we explain how the well known characterization of ‘projective

flatness’ can be improved by using our approach.

Corollary 3.1. Let M be endowed with a projective structure, given by the torsion free

ρ-connection ∇, and suppose that there exists a line bundle L over M such that Ln+1
=

3n(T M), where dim M = n > 2.

Then ∇ is flat if and only if there exists a (globally defined) local diffeomorphism from

a covering space of M to CPn mapping the geodesics to projective lines.

Proof. Assume, for simplicity, M is simply connected. Also, by Remark 2.2(1), we may

suppose that E = T (L∗\0)
C\{0} so that ∇1s = s, for any local section s of E . Then, on denoting

by V the typical fibre of E , we have that ∇ is flat if and only if L \ 0 is a reduction to
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C \ {0} of the frame bundle of E , where C \ {0} ⊆ GL(V ) through λ 7→ λ IdV . Equivalently,

∇ is flat if and only if there exists an isomorphism of vector bundles α : E → L ⊗ V ,

preserving the ρ-connections. In particular, if we define s = α(1) then s is a section of

L ⊗ V which is nowhere zero; note, also, that ∇s = α. Therefore s induces a section of

P(L ⊗ V ) = M × PV given by x 7→ (x, ϕ(x)), for any x ∈ M , for some map ϕ : M → PV .

Moreover, ϕ is as required, as, by Remark 1.6, its differential is induced by α. The proof

is complete.

Denote by O(n) the line bundle of Chern number n ∈ Z over the projective line.

Corollary 3.2. Let M be a manifold endowed with a projective structure and an

immersion t : CP1
→ M with normal bundle kO(1)⊕ (n− k− 1)O, where dim M = n > 2

and k ∈ {0, . . . , n− 1}.
Then t is a geodesic, k = n− 1 and the projective structure of M is flat.

Proof. Denote E = T (det(T M))
C\{0} and let ρ : E → T M be the projection. For simplicity, we

denote by F |t the pull back by t of any vector bundle F over M , and, accordingly, by ρ|t
the induced morphism from E |t to T M |t . We have an exact sequence

0 −→ O −→ E |t
ρ|t
−→ O(2)⊕ kO(1)⊕ (n− k− 1)O −→ 0.

This exact sequence corresponds to k+ 2∈ C = H1(t,O(−2)⊕ kO(−1)⊕ (n− k− 1)O)
(the Chern number of O(k+ 2) = det(T M)|t ), and, consequently, we must have E |t =
(k+ 2)O(1)⊕ (n− k− 1)O.

Let ∇ be the ρ-connection on E giving the projective structure of M . The second

fundamental form of t , with respect to ∇, is a section of

(2O(1))∗⊗ (2O(1))∗⊗ (kO(1)⊕ (n− k− 1)O) = 4kO(−1)⊕ 4(n− k− 1)O(−2)

and therefore it is zero. Thus, t is a geodesic, and, then, similarly to the proof of

[3, Proposition 4], we may assume that t is an embedding.

By using [11], we deduce that M contains a locally complete (n+ k− 1)-dimensional

family of embedded projective lines whose normal bundles are kO(1)⊕ (n− k− 1)O. As

the space of geodesics sufficiently close to t has dimension 2n− 2, it follows that k = n− 1.

Let R be the curvature form of ∇ and note that we can see it as a section of E ⊗
⊗3 E∗.

Then the restriction of R to any embedded projective line, with normal bundle (n−
1)O(1), is a section of (n+ 1)O(1)⊗

⊗3
((n+ 1)O(−1)) = (n+ 1)4O(−2) and therefore it

is zero. Consequently, R = 0 and the proof is complete.

The first application of Corollaries 3.1 and 3.2 is that if the twistor space of a

quaternionic manifold P is endowed with a complex projective structure then P can be

locally identified, through quaternionic diffeomorphisms, with the quaternionic projective

space.

Also (compare [3]), any projective structure that admits a geodesic which is an

immersed projective line must be flat.

Finally, as any Fano manifold is compact simply connected and satisfies the hypothesis

of Corollary 3.2 (see [9] and the references therein) from Corollary 3.1 we obtain the

following fact [4] : the projective space is the only Fano manifold which admits a projective

structure (compare [10, (5.3)], [8], [9]).
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