
PRACTICUM ARTICLE

Solving the tool switching problem with memetic algorithms

JHON EDGAR AMAYA,1 CARLOS COTTA,2 AND ANTONIO J. FERNÁNDEZ-LEIVA2

1Laboratorio de Computación de Alto Rendimiento, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
2Departamento Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga, Campus de Teatinos, Málaga, Spain

(RECEIVED October 2, 2009; ACCEPTED April 7, 2011)

Abstract

The tool switching problem (ToSP) is well known in the domain of flexible manufacturing systems. Given a reconfigurable
machine, the ToSP amounts to scheduling a collection of jobs on this machine (each of them requiring a different set of tools
to be completed), as well as the tools to be loaded/unloaded at each step to process these jobs, such that the total number of
tool switches is minimized. Different exact and heuristic methods have been defined to deal with this problem. In this work,
we focus on memetic approaches to this problem. To this end, we have considered a number of variants of three different
local search techniques (hill climbing, tabu search, and simulated annealing), and embedded them in a permutational evo-
lutionary algorithm. It is shown that the memetic algorithm endowed with steepest ascent hill climbing search yields the best
results, performing synergistically better than its stand-alone constituents, and providing better results than the rest of the
algorithms (including those returned by an effective ad hoc beam search heuristic defined in the literature for this problem).

Keywords: Evolutionary Algorithm; Flexible Manufacturing System; Local Search; Memetic Algorithm; Tool Switching
Problem

1. INTRODUCTION

Flexible manufacturing systems have the capability to be ad-
justed for generating different products and/or for changing
the order of product generation. Thus, they incorporate versa-
tility and efficiency in the production process. This is pre-
cisely the reason that has motivated an increasing interest
on this kind of systems; for some time now, the manufactur-
ing industry is more and more often demanding flexible
manufacturing systems as an alternative to traditional rigid
production systems.

In the setting dealt in this work, we consider a simple ma-
chine that has several slots into which different tools can be
loaded. Each slot just admits one tool, and each job executed
on that machine requires a particular set of tools to be com-
pleted. Jobs are sequentially executed; therefore, each time
a job is to be processed, the corresponding tools must be
loaded in the machine magazine. The number of slots avail-
able in this magazine is obviously limited. Because in general
the total number of tools required to process all jobs is also

larger than the number of slots in the magazine, it may be re-
quired at some point to perform a tool switch, that is, remov-
ing a tool from the magazine and inserting another one in its
place. In this context, tool management is a challenging task
that directly influences the efficiency of flexible manufactur-
ing systems: an inadequate schedule of jobs and/or a poor tool
switching policy may result in excessive delays for reconfig-
uring the machine.

Although the order of tools in the magazine is often irrele-
vant, the need of performing a tool switching does depend on
the order in which the jobs are executed. The tool switching
problem (ToSP) consists of finding an appropriate job se-
quence in which jobs will be executed, and an associated se-
quence of tool loading/unloading operations that minimizes
the number of tool switches in the magazine. Clearly, this
problem is specifically interesting when the time needed to
change a tool is a significant part of the processing time of
all jobs, and therefore the tool switching policy will signifi-
cantly affect the performance of the system. Different exam-
ples of the problem can be found in diverse areas such as elec-
tronics manufacturing, metalworking industry, computer
memory management, and aeronautics, among others (Be-
lady, 1966; Bard, 1988; Tang & Denardo, 1988; Privault &
Finke, 1995; Shirazi & Frizelle, 2001).

Reprint requests to: Carlos Cotta, Departamento Lenguajes y Ciencias de
la Computación, ETSI Informática, University of Málaga, Campus de Teati-
nos, 29071, Málaga, Spain. E-mail: ccottap@lcc.uma.es

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2012), 26, 221–235.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S089006041100014X

221

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

It must be noted that the ToSP is an extremely hard prob-
lem, whose difficulty scales up depending on the number of
jobs, tools, and magazine capacity. As later described in Sec-
tion 2.1, exact methods ranging from integer linear program-
ming (ILP) techniques to heuristic constructive algorithms
have been already applied to the problem with moderate suc-
cess. The reason is clear: the ToSP has been proved to be NP-
hard when the magazine capacity is higher than 2 (which is
the usual case), and thus exact methods are inherently limited.
In this context the use of alternative techniques that might
eventually overcome this limitation has been explored. In par-
ticular, the use of metaheuristic techniques (Blum & Roli,
2003) can be considered. These techniques utilize high-lever
strategies to combine basic heuristics, and their most distinctive
feature is their ability to escape from local optima (or extrema).
They thus have global optimization capabilities, although they
cannot in general provide optimality proofs for the solutions
they obtain. Nevertheless, when adequately crafted, they will
likely provide optimal or nearly optimal solutions to a wide
range of continuous and combinatorial optimization problems.

Amaya et al. (2008) recently proposed three metaheuristics
to tackle the ToSP: a simple local search (LS) scheme based
on hill climbing (HC), a genetic algorithm (GA), and a me-
metic algorithm (MA; Moscato & Cotta, 2003, 2007; Krasno-
gor & Smith, 2005), based on the hybridization of the two lat-
ter methods. This MA produced very good results compared
with a very efficient method [i.e., a beam search (BM) heuris-
tic; Zhou et al., 2005] that generated high-quality results on a
number of ToSP instances. That seminal work paves the way
for considering other memetic approaches to the ToSP, based
on the use of other recombination approaches, other LS tech-
niques, partial Lamarckianism, as well as the utilization of al-
ternative neighborhood structures. This has been done here,
also providing an extensive empirical evaluation that includes
a meticulous statistical comparison among 27 algorithms. Our
analysis highlights the appropriateness of attacking the ToSP
via metaheuristic, in particular, memetic approaches, and
yields a sound ranking of techniques for the problem, provid-
ing useful insights on its heuristic resolution.

2. BACKGROUND

Before describing formally the ToSP, let us first overview the
problem and its variants, and review related work.

2.1. Related work

The ToSP is a combinatorial optimization problem that in-
volves scheduling a number of jobs on a single machine
such that the resulting number of tool switches required is
kept to a minimum. We are going to focus here on the uniform
case of the ToSP, in which there is one magazine, no job re-
quires more tools than the magazine capacity, and the slot size
is constant. To the best of our knowledge, the first reference to
the uniform ToSP can be found in the literature as early as in
the 1960s (Belady, 1966); since then, the uniform ToSP has

been tackled via many different techniques. The late 1980s
contributed especially to solve the problem (ElMaraghy,
1985; Bard, 1988; Kiran & Krason, 1988; Tang & Denardo,
1988). This way, Tang and Denardo (1988) proposed an ILP
formulation of the problem, and Bard (1988) formulated the
ToSP as a nonlinear integer program with a dual-based re-
laxation heuristic. More recently, Laporte et al. (2004) pro-
posed two exact algorithms: a branch and bound approach
and a linear programming-based branch and cut algorithm.
This latter one is based on a new ILP formulation with a bet-
ter linear relaxation than that proposed previously by Tang and
Denardo (1988). An alternative definition to the problem was
formulated by Ghiani et al. (2007), who demonstrated that the
ToSP is a symmetric sequencing problem; under this perspec-
tive, the authors enriched the branch and bound algorithm
proposed by Laporte et al. (2004) with this new formulation,
obtaining a significant computational improvement.

Despite the moderate success of exact methods, it must be
noted that they are inherently limited, because Oerlemans
(1992) and Crama et al. (1994) proved formally that the
ToSP is NP-hard for C . 2, where C is the magazine capacity,
that is, the number of tools it can accommodate. This limitation
was already highlighted by Laporte et al. (2004) who reported
that their algorithm was capable of dealing with instances with
9 jobs, but provided very low success ratios for instances with
more than 10 jobs. Some ad hoc heuristics have been devised
in response to this complexity barrier. We refer to Amaya et al.
(2008) for an overview of these. The use of metaheuristics has
been also considered recently. In addition to Amaya et al.
(2008) mentioned before, LS methods such as tabu search
(TS) have been proposed (Hertz & Widmer, 1993; Al-Fawzan
& Al-Sultan, 2003). Among these, we find the approach pre-
sented by Al-Fawzan and Al-Sultan (2003) specifically inter-
esting, because of the quality of the obtained results; they de-
fined three different versions of TS that arose from the
inclusion of different algorithmic mechanisms such as long-
term memory and oscillation strategies. We will return later
to this approach and describe it in more detail because it has
been included in our experimental comparison.

A different and very interesting approach has been de-
scribed by Zhou et al. (2005), who proposed a BS algorithm.
BS is a derivative of the branch and bound that uses a breadth-
first traversal of the search tree, and incorporates a heuristic
choice to keep at each level only the best (according to some
quality measure) b nodes (the so-called beamwidth). This sac-
rifices completeness but provides a very effective heuristic
search approach. Actually, this method provided good results,
for example, better than those of Bard’s heuristics, and will be
also included in the experimental comparison.

Note that the ToSP admits a number of variants. In this
work we focus on the uniform ToSP (cf. Section 2.2), but
this problem can be augmented if additional constraints are
posed on tools or on the magazine. In this case, one refers
to the so-called nonuniform ToSP (Crama et al., 2007). For
example, it might be the case that different tools required slots
of different sizes (or more than one slot); this was precisely

J.E. Amaya et al.222

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

the case addressed by Tzur and Altman (2004) that consid-
ered one magazine with slots of variable size, and pointed
out three types of decisions to solve the problem, that is,
how to select the job sequence, which tools to switch before
each processing operation, and where to locate each tool in
the magazine by means of an integer-programming heuristic.
An additional variant of the ToSP consists of having multiple
magazines. Several proposals for solving this problem variant
can be found in the literature; for instance, Kashyap and
Khator (1994) analyzed the control rules for tool selection
in a flexible manufacturing system with multiple magazines
and used a particular policy to determine tool requirements.
Błażewicz and Finke (1994) considered two-level nested
scheduling problems (i.e., the part-machine scheduling prob-
lem, and the resource allocation and sequencing problem) and
described some concrete models and solution procedures. In
addition, Hong-Bae et al. (1999) described several algorithms,
(e.g., greedy search based techniques, as well as tool group-
ings-based methods) to solve the problem with a number of
identical magazines, each of which had a particular capacity.
A more general case with parallel machines and different mag-
azine capacities was considered by Keung et al. (2001). From
a wider perspective, Hop (2005) presents the ToSP as a hier-
archical structure that can be analyzed under four different
assumptions: variable size for the tools/slots, jobs requiring
more tools than the magazine capacity, partial or complete
job splitting, and (non)concurrent tool changes/job changes.
All variations of the problem considered under these assump-
tions were proven to be NP-complete.

2.2. Formulation of the uniform ToSP

In light of the informal description of the uniform ToSP given
before, there are two major elements in the problem: a machine
M and a collection of jobs J ¼ fJ1, . . . , Jng to be processed.
Regarding the latter, the relevant information that will drive the
optimization process are the tool requirements for each job. We
assume that there is a set of tools T ¼ ft1, . . . , tmg, and that
each job Ji requires a certain subset TðJiÞ#T of tools to be pro-
cessed. As for the machine, we will just consider one piece of
information: the capacity C of the magazine (i.e., the number of
available slots).

Given the previous elements, we can formalize the ToSP as
follows: let a ToSP instance be represented by a pair, I ¼ kC,
Al, where C denotes the magazine capacity and A is an m�n
binary matrix that defines the tool requirements to execute
each job, that is, Aij ¼ 1 if and only if tool ti is required to
execute job Jj, being 0 otherwise.

We assume that C , m; otherwise, the problem is trivial.
The solution to such an instance is a sequence kJi1 , . . . , Jin l
(where i1, . . . , in is a permutation of numbers 1, . . . , n) deter-
mining the order in which the jobs are executed, and a se-
quence T1, . . . , Tn of tool configurations (Ti , T) determining
which tools are loaded in the magazine at a certain time. Note
that for this sequence of tool configurations to be feasible, it
must hold that T ðJij Þ # Tj.

Let N ¼ f1, . . . , hg henceforth. We will index jobs (tools,
respectively) with integers from Nn (Nm, respectively). An
ILP formulation for the ToSP is shown below, using two
sets of zero-one decision variables:

† xjk ¼ 1 if job j [Nn is assigned to position k [Nn in the
sequence, and 0 otherwise, see Eqs. (2) and (3),

† yik ¼ 1 if tool i [Nm is in the magazine at instant k [
Nn, and 0 otherwise, see Eq. (4).

Processing each job requires a particular collection of tools
loaded in the magazine. It is assumed that no job requires a
number of tools higher than the magazine capacity, that is,Pm

i¼1 Aij � C for all j [Nn. Tool requirements are reflected
in Eq. (5). Following Bard (1988), we assume the initial con-
dition yi0 ¼ 1 for all i [Nm. This initial condition amounts to
the fact that the initial loading of the magazine is not consid-
ered as part of the cost of the solution (in fact, no actual
switching is required for this initial load). The objective func-
tion F (.) counts the number of switches that have to be done
for a particular job sequence; see Eq. (1). We assume that that
the cost of each tool switching is constant and unitary.

min F(y) ¼
Xn

j¼1

Xm
i¼1

yij(1� yi, j�1), (1)

8j [Nn :
Xn

k¼1
xjk ¼ 1, (2)

8k [Nn :
Xn

j¼1
xjk ¼ 1, (3)

8k [Nn :
Xm
i¼1

yik � C, (4)

8j, k [Nn 8i [Nm : Aij xjk � yik , (5)

8j, k [Nn 8i [Nm : xjk , yij [f0, 1g: (6)

Recall that this general definition shown above corresponds
to the uniform ToSP in which each tool fits in just one slot.

2.3. The ToSP as a machine-loading problem

The ToSP can be divided into three subproblems (Tzur & Alt-
man, 2004): the first subproblem is machine loading and con-
sists of determining the sequence of jobs; the second subprob-
lem is tool loading, consisting of determining which tool to
switch (if a switch is needed) before processing a job; finally,
the third subproblem is slot loading, and consists of deciding
where (i.e., in which slot) to place each tool. Because we are
considering the uniform ToSP, the third subproblem does
not apply (all slots are identical, and the order of tools is irrel-
evant). Therefore, only two subproblems have to be taken into
account: machine loading and tool loading. In the following
we will show that the tool loading subproblem can be

Solving the ToSP with memetic algorithms 223

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

optimally solved if the sequence of jobs is known beforehand.
This is very important for optimization purposes, because it
means that the search effort can be concentrated on the ma-
chine loading stage.

As already mentioned, the cost of switching a tool is consid-
ered constant (the same for all tools) in the uniform ToSP, the
relevant decision being whether the tool is to be loaded in the
magazine or not at any given time (were the size of the tools
not uniform, the location of the tools in the magazine would
be relevant also). Under this assumption, if the job sequence
is fixed, the optimal tool switching policy can be determined
in polynomial time using a greedy procedure termed Keep
Tool Needed Soonest (KTNS; Bard, 1988; Tang & Denardo,
1988).1 The functioning of this procedure is as follows:

† At any instant, insert all the tools that are required for the
current job.

† If one or more tools are to be inserted and there are no
vacant slots on the magazine, keep the tools that are
needed soonest. Let J ¼ kJi1 , . . . , Jin l be the job se-
quence, and let Tk , Nm be the tool configuration at
time k. Let Jjk(J) be defined as

J jk(J) ¼ min {t j (t . k) ^ A jJit
¼ 1},

that is, the next instant after time k at which tool tj will
be needed again given sequence J. If a tool has to be re-
moved, the tool tj� maximizing Jjk(J) is chosen, that is,
remove the tools whose next usage is furthest in time.

The importance of this policy is that, as mentioned before,
given a job sequence KTNS obtains its optimal number of tool
switches. Therefore, we can concentrate on the machine load-
ing subproblem, and use KTNS as a subordinate procedure to
solve the subsequent tool loading subproblem. As an aside re-
mark, the tool loading problem is NP-hard in the nonuniform
ToSP, even if the job sequence is known and unit loading/un-
loading costs are assumed (Crama et al., 2007).

2.4. An illustrative example

To illustrate the formal definition of the problem given in pre-
vious subsections, let us present a small example. Let there be
a machine with a magazine capacity C ¼ 4, and let there be
n¼ 10 jobs requiring a total number of m¼ 9 tools. More pre-
cisely, let the requirement matrix be the indicated in Table 1.

Now, let us assume we have a job sequence k1, 6, 3, 7, 5, 2,
8, 4, 9, 10l. The initial loading of the magazine must thus
comprise the tools required by job 1, namely, T ð1Þ ¼ f2, 3,
6g. Because there are still free slots in the magazine, these
are loaded with tools required by the next job in the sequence
(job 6; this means tool 1 is loaded also; see Fig. 1).

Job 1 can thus be executed, and so does job 6 without any
tool switch. Next job is number 3, which requires tools f2, 6,
7g. Tools 2 and 6 are already in the magazine but 7 is not, so
a tool must be unloaded to make room for it. Two options are
available for this purpose: tools 1 and 3. The KTNS policy de-
termines that tool 3 has to be replaced because the next time it
will be required is when serving job 2 at position 6 in the se-
quence, whereas tool 1 is required again for job 5 in position
5 in the sequence. Job 7 come next and requires tools f6, 8g.
Tool 8 is then loaded replacing tool 7 (required again by job
9 at time step 9; the other candidates for replacement were
tool 2 (required by job 2 at time 6) and tool 1 (required by
job 5 at time 5). Now, job 5 requires tools f1, 5, 9g and only
tool 1 is loaded so a double switch is required. Candidates to
be replaced at this point are: tool 2 (required by job 2 at time
6), tool 6 (not required again) and tool 8 (required again by
job 8 at time 7). Therefore, tools 6 and 8 are replaced. Job 2
comes next and requires tools f2, 3, 5, 9g, among which
only tool 3 is not loaded. In this case the only possibility is re-
placing tool 1 by tool 3. Proceeding to job 8, tools f5, 8, 9g are
needed, so tool 8 enters in the magazine replacing tool 3 (not
required again in the future; the same holds for tool 2, so it is
irrelevant which one of the two is removed). Getting to job 4,
tool 4 is required in addition to 9 (already loaded). The former
enters the magazine substituting tool 8 (again, not used again,
much like tool 2; tool 5 is however required later by job 10 at
time 10). The last but one is job 9, needing tools f4, 7g. Be-
cause tool 4 is already in the magazine, only tool 7 has to be
loaded, replacing either tool 2 or tool 9 (none of them required
again in the future). Finally, job 10 is completed using tools f4,
5g already in the magazine, so no new switch is required.

3. SOLVING THE ToSP WITH
METAHEURISTICS

Let us now describe the metaheuristics considered to tackle
the ToSP. To do so, Section 3.1 deals with general issues
of representation and neighborhood structure, whereas algo-
rithm-dependent issues are described in Sections 3.2 and 3.3.

Table 1. Example of tool requirement matrix

Jobs

Tools 1 2 3 4 5 6 7 8 9 10

1 W W W W † † W W W W

2 † † † W W W W W W W

3 † † W W W † W W W W

4 W W W † W W W W † †

5 W † W W † W W † W †

6 † W † W W † † W W W

7 W W † W W W W W † W

8 W W W W W W † † W W

9 W † W † † W W † W W

Note: Each cell Aij identifies if a particular job j requires (†) tool i or
(W) not.

1 As Błażewicz and Finke (1994) point out, the KTNS property was al-
ready known to Belady (1966).

J.E. Amaya et al.224

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

3.1. Representation and neighborhood structure

The use of metaheuristics to solve the ToSP requires determin-
ing in each case how solutions will be represented, and which
the structure of the underlying search space will be. For the
purpose of the techniques considered in this work, these con-
siderations turn out to be general issues that we address here.
According to the discussion presented in previous subsection,
the role of the metaheuristics will be to determine an optimal
(or near optimal) job sequence, such that the total number of
switches is minimized. Therefore, a permutational encoding
arises as the natural way to represent solutions. Thus, a candi-
date solution for a specific ToSP instance I¼ kC, Al is simply
a permutationp¼ kp1, . . . ,pnl [Pn, wherepi [Nn, and Pn

is the set of all permutations of elements in Nn.
Having defined the representation, we now turn our attention

to the neighborhood structure. This will be a central ingredient
in the local search-based metaheuristics considered, both when
used as stand-alone techniques or when embedded within other
search algorithms. Permutations are amenable to different
neighborhood structures. We focused on the following two:

1. The well-known swap neighborhood N swapð�Þ, in
which two permutations are neighbors if they just differ
in two positions of the sequence, that is, for a permuta-
tion p [Pn

N swap(p) ¼ {p0 [Pn j H(p, p0) ¼ 2},

where H(p, p0)¼ n 2
Pn

i¼1 [pi ¼ pi
0] is the Hamming

distance between sequences p and p0 (the number of
positions in which the sequences differ), and [.] is Iver-

son bracket (i.e., [P]¼ 1 if P is true, and [P]¼ 0 other-
wise). Given the permutational nature of sequences, this
implies that the contents of the two differing positions
have been swapped.

2. The block neighborhood N blockð�Þ, a generalization of
the swap neighborhood in which a permutation p0 is a
neighbor of permutation p if the former can be obtained
from the latter via a random block swap. A random
block swap is performed as follows:

(a) A block length bl [Nn=2 is uniformly selected at
random.

(b) The starting point of the block bs [Nn22bl is subse-
quently selected at random.

(c) Finally, an insertion point bi is selected, such that bs

þ bl � bi � n 2 bl, and the segments kpbs , . . . ,
pbsþbl21l and kpbi , . . . , pbiþbl21l are swapped.

Obviously, if the block length bl ¼ 1, then the operation re-
duces to a simple position swap, but this is not typically the
case.

Having defined the neighborhood structures, the next step
is deploying LS-based procedures on them. This is described
in the next subsection.

3.2. LS metaheuristics for the ToSP

LS metaheuristics are based on exploring the neighborhood
of a certain “current” solution, using some specific decision-
making procedure to determine when and where within this
neighborhood the search is to be continued. Thus, LS can be

Fig. 1. An example of the application of the Keep Tool Needed Soonest policy. The tool requirements for each job are those indicated in
Table 1. Slots in the magazine are denoted by circles (each row depicting the state of the magazine at a give time step). Black circles denote a
tool switch. Finally, the sequence of jobs is given by the dark squares, and the cumulative number of switches is indicated in the right side of
the figure. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Solving the ToSP with memetic algorithms 225

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

typically modeled as a trajectory in the search space, that is, an
ordered sequence of solutions such that neighboring solutions
in this sequence differ in some small amount of information.
The quality of solutions in this sequence does not have to be
monotonically increasing in general. Indeed, the ability of per-
forming “downhill” moves, that is, moving to a solution of in-
ferior quality than the current one, is a crucial feature of most
LS metaheuristics, allowing them to escape from local extrema,
and hence endowing them with global optimization capabil-
ities. Even more so, the dynamics of some LS techniques can-
not even be modeled as a simple trajectory in search space, be-
cause some additional mechanisms can be considered to
resume the search from a different point when stagnation is de-
tected.

The first LS technique considered is classical exhaustive
steepest ascent HC. Given a current solution p, its neighbor-
hood N ðpÞ is fully explored, and the best solution found is
taken as the new current solution, provided it is better than
the current one (ties are randomly broken). If no such neigh-
boring solution exist, the search is considered stagnated, and
can be restarted from a different initial point.

The basic HC scheme suffers when confronted with a rug-
ged search landscape, keeping the search trapped in low-
quality local optima. In order to escape from these, a mecha-
nism for accepting strictly nonimproving moves has to be
incorporated. One of the most classical proposals to this
end is simulated annealing (SA; Kirkpatrick et al., 1983). In-
spired in the physical process of thermal cooling and residual
strain relief in metals, SA uses a probabilistic criterion to ac-
cept a neighbor as the current one. This criterion is based on
Boltzmann’s law, and is parameterized by a so-called tem-
perature value (recall the analogy with thermal cooling).
More precisely, let Df be the fitness difference between the
tentative neighbor and the current solution (in this case, a
negative value if the neighbor is better than the current solu-
tion), and let T be the current temperature. Then, the neigh-
boring configuration is accepted with probability P given by

P ¼ 1, if Df . 0
e�(Df =kBT) otherwise

,

�

otherwise where kB is Boltzmann’s constant (which can be ig-
nored in practice, by considering an appropriate scaling for
the temperature). The current temperature T modulates this
acceptance probability (if T is high, higher energy increases
are allowed). The temperature is decreased from its initial
value T0 to a final value Tk , T0 via a process termed cooling
schedule. Two classical cooling schedules are geometric
cooling, that is, Tiþ1 ¼ gTi for some g , 1, and arithmetic
cooling, that is, Tiþ1¼ Ti 2 1 for some 1. 0. These are, how-
ever, somewhat simplistic strategies, nowadays superseded
by more sophisticated cooling schedules that adaptively
modify the temperature in response to the evolution of the
search. To be precise, we have also considered an approach
based on adaptive cooling and reheating (cf. Elmohamed
et al., 1998).

The idea underlying the use of adaptive cooling is keeping
the system close to equilibrium by decreasing the temperature
according to a search state-dependant variable termed specific
heat. This variable measures the variability of the cost of
states at a given temperature; higher values indicate it will
take longer to reach equilibrium and hence slower cooling
is required. Following Huang et al. (1986), the next tempera-
ture is thus calculated as

Tiþ1 ¼ Tie
�hTi=�s(Ti),

where h is a tunable parameter and s̄(Ti) is a smoothed ver-
sion of s(Ti), the standard deviation of cost at temperature Ti,
computed as (Otten & van Ginneken, 1989; Diekmann et al.,
1993)

�s(Tiþ1) ¼ (1� n)sðTiþ1Þ þ ns(ti)
Tiþ1

Ti
:

Parameter n tunes the learning rate and is generally set to 0.95.
As to reheating, it is invoked whenever the search is deemed
stagnated (after ni evaluations without improvement, where
ni is a parameter). In that case, the temperature is reset to

Tiþ1 ¼ kfB þ T(Cmax
H),

where k is a parameter, fB is the cost of the best so far solution,
and T(Cmax

H) is the temperature at which the specific heat
CH(T) ¼ s2(T)/T2 took its maximum value.

The last LS scheme considered is TS (Glover, 1989a,
1989b). TS is a sophisticated extension of basic HC in which
the best neighboring solution is chosen as the next configura-
tion, even if it is worse than the current one. To prevent cycling,
that is, the search returning to the same point after a few steps
(consider, e.g., that it may be the case that y [N ðxÞ is the best
neighbor of x and vice versa), a tabu list of movements is kept.
Hence, a neighboring solution is accepted only if the corre-
sponding move is not tabu. This tabu status of a move is not
permanent: it only lasts for a number of search steps, whose
value is termed tabu tenure. This value can be fixed for all
moves and/or the search process, or can be different for differ-
ent moves or in different stages of the search. Furthermore, an
aspiration criterion may be defined, so that the tabu status of a
move can be overridden if a certain condition holds (e.g., im-
proving the best known solution).

The TS method considered in this work is based on the pro-
posal described by Al-Fawzan and Al-Sultan (2003). Differ-
ent TS schemes were defined and compared therein, the best
one turning out to be a TS algorithm featuring long-term
memory and strategic oscillation. The first feature refers to
the maintenance of a long-term memory, in this case measur-
ing the frequency of application of each move. The basic idea
is to diversify the search penalizing neighbors attainable via
frequent moves. As to the strategic oscillation mechanism,
it refers to a procedure for switching between the two neigh-
borhoods defined in Section 3.1. A deterministic criterion

J.E. Amaya et al.226

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

based on switching the neighborhood structure after a fixed
number of iterations was reported by Al-Fawzan and Al-Sul-
tan (2003) to perform better than a probabilistic criterion (i.e.,
choosing the neighborhood structure in each step, according
to a certain probability distribution). No aspiration criterion
is used in this algorithm.

3.3. A population-based attack to the ToSP

Unlike LS methods, population-based techniques maintain
a pool of candidate solutions, which are used to generate
new candidate solutions, not just by neighborhood search
but by using other higher-arity procedures such as recombina-
tion (i.e., two or more solutions, appropriately termed parents)
are combined to create new solutions (Bäck, 1996). Although
the relevance of recombination versus neighborhood search
has been always debated (Reeves, 1994), a common criticism
is that unless adequately crafted to the problem at hand, recom-
bination may reduce to pure macromutation (Jones, 1995), it is
widely accepted that recombination can play a crucial role in
information mixing, as well as in the balance between exploi-
tation and exploration (Prügel-Bennett, 2010).

The first population-based approach considered is a steady-
state GA: a single solution is generated in each generation,
and inserted in the population replacing the worst individual.
Selection is done by binary tournament. As to recombination,
there are many possibilities defined in the literature (among
others, check Oliver et al., 1987; Starkweather et al., 1991;
Cotta & Troya, 1998; Larrañaga et al., 1999). We have opted
in this work for using uniform cycle crossover (Cotta &
Troya, 1998), an operator based on the manipulation of posi-
tional information. To be precise, it is a generalization of cycle
crossover in which all cycles are first identified and subse-
quently mixed at random. Notice that this operator ensures
the new solution contains no exogenous positional informa-
tion (each position is taken from one of the parents). As to mu-
tation, we have considered the use of random block swap
moves, as described in Section 3.1.

On the basis of this GA, we have defined a number of
MAs. MAs are hybrid methods based on the synergistic com-
bination of ideas from different search techniques, most prom-
inently from LS and population-based search. The term
memetic stems from the notion of meme, a concept coined
by Dawkins (1976) to denote an analogous of the gene in
the context of cultural evolution. Indeed, information manip-
ulation is much more flexible in MAs, thanks to the usage of
algorithmic add-ons such as LS, exact techniques, and so
forth. It must be noted that although the connection to cultural
evolution is sometimes overstressed in the literature, it is use-
ful to depart from biologically constrained thinking that turns
out to be very restrictive at times. As a matter of fact, the in-
itial developments in MAs done by Moscato (1989) did not
emanate from a biological metaphor, but from the idea of
maintaining a population of cooperating/competing search
agents, for which a combination of evolutionary algorithms
and LS was just a convenient instantiation (LS for encapsulat-

ing search agents, and an evolutionary algorithm for encapsu-
lating cooperation, via recombination, and competition, via se-
lection and replacement). Check Moscato and Cotta (2010) for
a recent up to date overview of these techniques.

The MAs considered in this work have been built by endow-
ing the GAwith each of the LS schemes previously defined. To
be precise, we have used each of the algorithms (i.e., HC, SA,
TS) defined in Section 3.2. Although in some early MAs LS
was performed on every generated individual, this is not nec-
essarily the best choice (Sudholt, 2009). Indeed, partial La-
marckianism (Houck et al., 1997), namely, applying LS only
to a fraction of individuals, can result in better performance.
These individuals to which LS will be applied can be selected
in many different ways (Nguyen et al., 2007). We have consid-
ered a simple approach in which LS is applied to any individ-
ual with a probability pLS; in case of application, the improve-
ment uses up a number of LSevals evaluations (or in the case of
HC until it stagnates, whatever comes first; see Algorithm 1 in
Appendix A).

The underlying idea of this MA is to combine the intensi-
fying capabilities of the embedded LS method with the diver-
sifying features of population-based search, that is, the popu-
lation will spread over the search space providing starting
points for a deeper local exploration. As generations go by,
promising regions will start to be spotted, and the search
will concentrate on them. Ideally, this combination should
be synergistic (this will depend on the particulars of the com-
bination, such as the intensity, frequency, and depth of LS and
its interplay with the underlying evolutionary dynamics; Sud-
holt, 2009), providing better results that either the GA or the
LS techniques by themselves. Empirical evidence of this will
be provided in next section.

4. EXPERIMENTAL RESULTS

The experiments have been performed considering five dif-
ferent basic algorithms: BS presented by Zhou et al. (2005),
three LS methods (HC, TS, and SA), and a GA. From these,
a wide number of algorithms were devised and tested. For in-
stance, in the case of BS, five different values from 1 up to 5
were considered for the beamwidth. Finally, memetic ap-
proaches based on the combination of the GA with each of
the LS methods have been considered.

Regarding LS methods, we consider HC, TS, and three
variants of SA with arithmetic cooling (SAA), geometric
cooling (SAG), and adaptive cooling and reheating (SAR),
respectively. Note also that the exploration of the whole
neighborhood becomes more and more costly as the number
of jobs increases, for example, for 50 jobs, the number of
swap neighbors for a given candidate is 1225, not to mention
the even higher number of block neighbors. In a fixed com-
putational budget scenario, this implies the allocated compu-
tational effort can be quickly consumed. For this reason, we
have opted for also taking into account LS versions in which
a partial exploration of the neighborhood is done by obtaining
a fixed-size random sample. To be precise, the size of this

Solving the ToSP with memetic algorithms 227

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

sample has been chosen to be an, that is, proportional to the
number of jobs (the value a¼ 4 has been used). The notation
HCP and HCF (respectively, TSP and TSF) is used to indicate
the HC variant (respectively TS variant) in which the neigh-
borhood is partially or fully explored respectively (in the case
of TS, the full exploration refers just to the swap neighbor-
hood, because the block neighborhood has a huge size).
Other details of each particular LS method are as follows.
In the case of HC, the search is restarted from a different in-
itial point if stagnation takes place before consuming the al-
lotted number of evaluations. As to SA, the initial temperature
T0 has been chosen so that the initial acceptance rate is ap-
proximately 50% (this has been done by obtaining offine a
small sample of random solutions to measure the average fit-
ness difference u, and taking T0 ¼ 1.44u). The cooling pa-
rameter (either geometric and arithmetic) has been chosen
so that a final temperature Tk ¼ 0.1 is reached in the number
of evaluations allocated to the corresponding instance. As for
adaptive cooling and reheating, we use h ¼ 1024, n ¼ 0.95,
k¼ T0/f (where f0 is the mean cost of random solutions), and
ni ¼ 20. Finally, regarding TS, the tabu tenure is 5, and the
number of iterations on each neighborhood for performing
strategic oscillation is 3. This corresponds to the setting
used by Al-Fawzan and Al-Sultan (2003).

As to the GA (and subsequently to the MA), an elitist gen-
erational model replacing the worst individual of the popula-
tion (popsize¼ 30, pX ¼ 1.0, pM ¼ 1/n, where n is the number
of jobs, that is, number of genes per individual) with binary
tournament selection has been utilized. As mentioned in Sec-
tion 3.3, mutation is done by applying a random block swap,
and recombination uses uniform cycle crossover. Finally, re-
garding the MAs, we conducted preliminary experiments con-
sidering PLS [f0.001, 0.01, 0.1, 1.0g and LSevals [f100,
200, . . . , 1000g to analyze parameter sensitivity; the best re-
sults were obtained for values of LSevals equal to 200 and
1000, and for PLS ¼ 0.01, and thus our MAs were run consid-
ering these values. Overall, this means 12 different versions of
MAs, that is, those resulting from the hybridization of the GA
with each of the six LS schemes pointed out above and fixing
LSevals to the two values mentioned before. The notation
MAxxyy is used, where xx stands for a particular LS technique,
and yy [{02, 10} indicate LSevals ¼ 200 and LSevals ¼
1000, respectively.

As far as we know, no standard benchmark exists for this
problem (at least publicly available). For this reason, we
have selected a wide set of problem instances that were con-
sidered in the literature (Bard, 1988; Hertz et al., 1998; Al-
Fawzan & Al-Sultan, 2003; Zhou et al., 2005); to be precise,
16 instances have been selected, with number of jobs, number
of tools, and machine capacity ranging in [10, 50], [9, 60] and
[4, 30], respectively. Table 2 shows the different problem in-
stances chosen for the experimental evaluation where a spe-
cific instance with n jobs, m tools, and machine capacity C
is labeled as Czm

n .
Five different data sets (all data sets are available at http://

www.unet.edu.ve/jedgar/ToSP/ToSP.htm; i.e., tool require-

ment matrices) were generated randomly per instance. Each
data set was generated with the constraint, already imposed
in previous works such as Hertz et al. (1998), that no job is
covered by any other job in the sense that for no two different
jobs i and j, T ðJiÞ # T ðJjÞ. Were this the case, job i could be re-
moved from the problem instance, because scheduling it im-
mediately after job j would result in no tool switching. This
consideration has been also taken into account by Bard
(1988) and Zhou et al. (2005).

All algorithms (except BS, see below) have been run 10
times per data set (i.e., 50 runs per problem instance), for a
maximum of maxevals ¼ wn(m 2 C) evaluations2 per run
(with w . 0). Preliminary experiments on the value of w

proved that w ¼ 100 is an appropriate value that allows to
keep an acceptable relation between solution quality and
computational cost. Regarding the BS algorithm, because
of its deterministic nature, just one run per data set (and per
value of beamwidth) has been done. The algorithm was
allowed to run till exhaustion of the search tree. Table 3 and
Table 4 show the obtained results, grouped by problem instance.

A first consideration regarding the results is the fact that
TSP performs better than remaining nonhybrid techniques.
In addition, HCF performs better on average than BS versions
in most of the instances (i.e., exactly in 13 out of 16 in-
stances). However, HCP is not as competitive as its full-ex-
ploration counterpart. Note, for example, that the perfor-
mance of HCP degrades when the instance is larger. This is
not surprising, because such larger instances are likely to ex-
hibit a much more rugged multimodal landscape, and basic
LS schemes suffer in these scenarios. In this case, BS is capa-
ble of adjusting better than HCP to this curse of dimensional-
ity, given its pseudopopulation-based functioning (it is not
truly population based in the sense that no set of multiple
full solutions is maintained, although it does indeed keep a
population of constructive paths), which modulates the greed-
iness of the branch selection mechanism. Observe that, in
general, BS exhibits a very robust behavior in all its versions
and shows a competitive performance with respect to the rest
of the techniques (especially in larger instances of the prob-
lem, i.e., for C � 15). SA, with adaptive cooling and reheat-
ing, significantly improves the performance of SAA and SAG
(which do not generally provide competitive results with re-
spect to the rest of techniques). These comparatively better re-
sults of SAR with respect to SAA and SAG, as well as the bet-
ter results of TSP with respect to the remaining LS-based
techniques and to the GA, highlight the need of adaptive strat-
egies to traverse the search space of the ToSP effectively. As
to the GA, it offers a robust performance given the fact that
rather standard parameters have been used. It actually pro-
vides very good results especially in the smaller instances
of the problem (i.e., for C , 10), and exhibits a good overall

2 Observe that the number of evaluations increases with the number of
jobs and tools (assumed to be directly related with problem difficulty) and
decreases when the magazine capacity increases (thus making the decision
problem less tight).

J.E. Amaya et al.228

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

performance (very competitive with respect to HC, SA, and
BS, as well as TSF). The GA shows an irregular performance
in some instances though; in particular, its performance wors-
ens when the number of jobs increases (i.e., n � 40). This
scaling difficulty in the case of the GA reflects the intricacy
of the search landscape of the ToSP, and the problem it poses

for a pure population-based approach in order to fine tune
good solutions for larger sizes. Althoough the GA can be
good at jumping among different basins of attraction, identi-
fying the corresponding local optima requires stronger in-
tensification of the search. Such an intensification capability
can be provided via the integration of a LS method and a

Table 2. Problem instances considered in the experimental evaluation

4z9
10 4z10

10 6z15
10 6z12

15 6z20
15 8z15

20 8z16
20 10z20

20

Min. 9 9 11 4 6 6 7 9
Max. 24 24 30 10 15 15 20 20
Source 2, 4 1, 3 4 2, 4 3 1 2, 4 2, 4

10z25
30 15z40

30 15z30
40 20z60

40 24z30
20 24z36

20 25z40
50 30z40

20

Min. 4 6 6 7 9 9 9 11
Max. 10 15 15 20 24 24 20 30
Source 1 3 1 3 2, 4 2, 4 1 4

Note: The minimum and maximum of tools required for all jobs is indicated, as well as the works from which the problem instance was
obtained: 1, Al-Fawzan and Al-Sultan (2003); 2, Bard (1988); 3, Hertz et al. (1998); 4, Zhou et al. (2005).

Table 3. Results of genetic algorithm (GA), beam search (BSb) considering several values (1� i� 5) for the beam width b, and
different versions of hill climbing (HC), tabu search (TS), and simulated annealing (SA)

GA HCP HCF SAA SAG SAR TSP TSF BS1 BS2 BS3 BS4 BS5

4z9
10 Av 7.98 8.40 8.40 10.46 10.14 8.58 8.08 8.12 8.40 8.40 8.40 8.40 8.40

SD 0.71 1.00 1.11 2.19 1.72 1.13 0.74 0.77 0.49 0.49 0.49 0.49 0.49
4z10

10 Av 8.72 9.60 9.34 11.54 11.74 9.38 8.80 9.06 10.00 9.80 9.60 9.60 9.60
SD 1.58 1.57 1.56 2.17 2.08 1.66 1.61 1.58 2.10 1.83 2.06 2.06 2.06

6z15
10 Av 13.78 14.7 14.38 17.6 16.96 14.32 13.68 13.82 15.20 14.80 14.80 14.80 14.80

SD 2.02 2.25 2.22 2.43 2.55 2.09 2.10 2.00 1.47 1.47 1.47 1.47 1.47
6z12

15 Av 16.18 20.10 18.32 23.32 24.06 19.12 16.46 17.08 18.20 17.60 17.60 17.40 17.40
SD 1.92 2.05 1.71 2.92 3.24 2.76 1.93 2.09 0.75 1.02 1.02 1.20 1.20

6z20
15 Av 23.36 26.54 24.76 30.54 30.56 23.78 23.02 23.40 26.20 25.80 25.20 25.20 25.20

SD 2.06 2.40 2.35 3.18 3.33 2.27 2.00 1.97 2.32 2.14 1.60 1.60 1.60
8z15

20 Av 24.3 28.9 24.46 34.66 34.30 28.72 23.62 24.3 27.0 26.00 25.60 25.20 25.20
SD 3.51 4.17 3.29 5.05 4.36 4.60 3.63 3.79 3.95 4.05 4.27 4.12 4.12

8z16
20 Av 28.58 33.78 28.76 39.28 40.54 32.22 27.92 28.76 29.4 29.40 29.40 29.40 29.40

SD 2.14 2.48 1.49 3.34 4.45 3.96 2.13 2.07 1.62 1.62 1.62 1.62 1.62
10z20

20 Av 31.86 37.46 34.40 43.72 44.16 36.32 30.72 31.78 34.20 33.60 33.40 33.40 33.40
SD 2.53 2.88 1.64 3.98 3.47 4.61 2.50 2.46 3.19 2.87 2.80 2.80 2.80

10z25
30 Av 74.94 85.46 69.6 96.20 96.48 80.86 67.72 85.34 73.6 70.80 70.8 70.80 70.60

SD 2.70 2.97 1.02 4.51 3.92 8.34 1.52 12.72 1.02 1.47 1.47 1.47 1.50
15z40

30 Av 111.06 121.2 103.00 134.54 134.48 114.58 101.72 104.28 111.60 110.00 109.20 107.80 107.80
SD 13.41 14.61 14.03 16.69 15.89 13.99 13.07 13.44 15.19 13.55 13.41 13.26 13.26

15z30
40 Av 114.54 127.54 100.34 142.46 142.12 126.08 101.9 130.5 105.20 103.20 102.80 102.80 102.40

SD 8.96 9.51 8.84 10.91 10.59 11.94 8.14 17.39 8.52 9.58 9.74 9.74 9.97
20z60

40 Av 233.64 248.7 214.42 269.76 269.86 240.48 213.74 255.80 221.80 220.00 218.80 218.60 218.60
SD 8.84 10.17 9.88 12.80 12.25 21.04 8.38 39.84 7.03 6.16 5.71 5.82 5.82

24z30
20 Av 25.54 30.24 25.80 34.18 35.14 29.82 25.04 25.72 33.00 32.60 32.40 32.40 32.40

SD 3.23 3.69 2.71 3.90 4.23 4.70 3.02 3.33 4.43 4.50 4.63 4.63 4.63
24z36

20 Av 47.14 53.24 48.48 59.40 60.60 50.36 45.9 47.04 54.00 54.00 53.80 53.80 53.40
SD 8.62 9.33 8.69 11.11 11.33 9.79 8.98 8.84 8.20 8.20 8.33 8.33 7.61

25z40
50 Av 174.64 191.02 150.88 210.12 209.22 190.78 153.58 196.28 167.2 164.00 162.80 162.80 161.80

SD 13.64 13.36 15.29 16.44 14.02 18.12 12.89 31.63 12.91 12.55 12.34 12.34 12.16
30z40

20 Av 42.82 49.12 44.40 55.68 56.1 46.50 42.12 42.82 52.20 50.20 50.20 50.20 50.20
SD 4.81 5.29 5.78 6.65 7.11 5.85 4.34 4.68 6.24 7.03 7.03 7.03 7.03

Note: Best results (in terms of the best solution average) are underlined and in boldface. Av, solution average; SD, standard deviation.

Solving the ToSP with memetic algorithms 229

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

Table 4. Results of the variants of memetic algorithm (MA) considered

MAHCP02 MAHCP10 MAHCF02 MAHCF10 MASAA02 MASAA10 MASAG02 MASAG10 MASAR02 MASAR10 MATSP02 MATSP10 MATSF02 MATSF10

4z9
10 Av 7.84 7.88 7.88 7.88 7.98 8.32 8.04 8.42 8.10 8.12 8.08 8.46 8.08 8.40

SD 0.73 0.71 0.71 0.71 0.73 1.03 0.69 1.10 0.78 0.86 0.74 1.00 0.74 1.00
4z10

10 Av 8.60 8.62 8.60 8.62 8.74 9.24 8.76 9.24 8.96 8.96 8.78 9.20 8.78 9.50
SD 1.62 1.62 1.62 1.65 1.65 1.63 1.67 1.68 1.66 1.60 1.69 1.70 1.57 1.63

6z15
10 Av 13.62 13.66 13.6 13.62 13.8 14.18 13.78 14.20 13.92 13.98 13.78 14.12 13.78 14.30

SD 2.14 2.12 2.15 2.14 2.10 2.13 2.06 2.20 2.06 2.07 2.03 2.09 2.11 2.04
6z12

15 Av 15.64 15.50 15.86 15.52 16.40 18.30 16.36 18.24 16.32 16.50 17.04 18.86 17.72 19.04
SD 1.89 1.80 1.89 1.69 1.92 2.36 1.95 2.07 1.93 2.06 2.28 2.45 2.16 2.62

6z20
15 Av 22.16 22.16 22.40 22.22 22.98 24.06 23.12 23.76 23.38 23.26 23.28 23.92 23.40 24.28

SD 1.82 1.75 1.92 1.87 2.08 2.21 2.04 2.29 2.16 1.98 1.98 2.19 2.15 2.27
8z15

20 Av 22.36 22.20 23.06 22.8 24.24 26.94 24.10 27.12 22.94 23.32 25.3 27.26 27.24 27.24
SD 3.51 3.49 3.91 3.64 3.50 3.57 3.21 4.02 3.61 3.55 3.56 4.12 3.59 3.72

8z16
20 Av 26.70 26.58 27.52 26.96 28.34 31.30 28.12 31.24 26.96 27.30 29.58 31.16 31.54 32.22

SD 2.06 1.98 2.44 1.98 2.30 2.23 2.21 2.74 2.13 1.96 2.56 2.39 2.63 2.48
10z20

20 Av 29.50 29.24 29.94 29.88 31.34 33.78 31.44 33.44 30.38 30.80 31.98 33.70 33.64 34.16
SD 2.59 2.51 2.50 2.60 2.71 3.14 2.79 3.35 2.43 2.41 2.96 3.04 3.14 3.14

10z25
30 Av 63.70 64.96 67.76 71.84 71.14 76.42 71.14 76.70 64.20 65.30 74.44 78.84 82.00 82.36

SD 2.11 1.95 2.86 3.21 2.87 3.14 2.96 3.01 2.43 2.41 2.92 3.00 2.85 2.43
15z40

30 Av 97.38 97.62 99.50 102.02 104.7 107.80 104.50 109.14 99.14 99.22 107.3 110.4 114.06 113.68
SD 12.59 13.19 13.23 14.45 13.25 13.75 13.83 13.69 13.08 13.11 12.95 15.09 14.1 15.16

15z30
40 Av 95.18 100.50 104.12 114.66 108.42 114.18 108.90 115.18 95.94 96.72 115.12 114.72 127.04 125.98

SD 7.51 9.28 10.50 10.57 9.03 10.12 8.30 9.72 7.97 7.52 9.67 9.76 9.54 9.55
20z60

40 Av 203.24 207.08 207.30 209.04 218.50 226.18 219.10 225.34 203.88 205.40 225.12 226.52 238.70 240.04
SD 8.32 9.52 8.40 8.56 9.55 9.15 10.01 9.66 8.23 8.39 10.93 9.57 8.74 11.33

24z30
20 Av 24.10 24.00 24.88 24.38 25.48 28.62 25.48 28.5 24.62 24.98 26.68 28.66 28.52 28.60

SD 3.22 3.03 3.65 3.02 3.21 3.70 3.34 3.84 3.21 3.10 3.50 3.54 4.18 3.65
24z36

20 Av 43.74 43.62 44.46 44.44 46.58 49.08 46.46 49.12 45.48 45.94 47.06 49.14 49.50 49.44
SD 8.27 8.36 8.30 8.34 9.01 9.23 8.84 9.13 8.36 8.27 9.09 9.58 9.58 9.69

25z40
50 Av 146.00 160.44 171.58 174.44 165.52 176.56 165.76 175.14 144.04 146.38 176.18 176.98 190.66 191.0

SD 12.66 14.65 15.64 16.76 14.32 14.87 13.16 13.97 12.65 12.31 13.25 13.93 14.46 14.12
30z40

20 Av 39.98 40.02 40.68 40.76 42.40 45.64 42.60 45.0 41.16 41.82 43.24 45.16 45.68 45.34
SD 4.37 4.32 4.60 4.57 4.68 5.12 4.71 5.00 4.26 4.67 4.79 4.92 5.20 5.06

Note: Best results (in terms of the best solution average) are underlined and in boldface. Av, solution average; SD, standard deviation.

https://doi.org/10.1017/S089006041100014X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S089006041100014X

population-based technique, using the memetic approaches
defined above.

Inspecting the results of the hybrid local/population-based
techniques (i.e., the memetic approaches) shown in Table 4, it
can be seen that these often provide better results than their
constituent parts (with the exception of the MATS* versions).
For instance, notice that despite the poor performance of SAA
and SAG, MASAA/MASAG variants are still capable of per-
forming better than most LS techniques, although the combi-
nation does not reach synergistic value, because the results are
comparable to those of the GA alone. A similar consideration
can be done with respect to MATS* variants, although in this
case its performance drops below that of the constituent parts.
This may be because the increased computational cost of a
potentially larger search trajectory does not pay off (in other
words, the TS schema has good diversification characteristics
that results in good performance as a stand-alone technique,
but does not contribute enough intensification in order to
be effective within a MA). Finally, observe that the hybridi-
zation of GA with HCP (i.e., MAHCP*) provides the best
overall results, even better than the combination of GA with
HCF, despite the fact that HCF performs much better than
HCP as stand-alone technique. The reason may be that,
when used as local improvement, the full exploration scheme
in hill climbing demands a higher computational cost to pro-
duce a move in the search space.

In order to analyze the significance of the results and obtain
a global perspective on how they compare to each other, we
have used a rank-based approach. To do so, we have com-
puted the rank r i

j of each algorithm j on each instance i
(rank 1 for the best, and rank k for the worst, where k ¼ 27
is the number of algorithms; in case of ties, an average rank
is awarded). The distribution of these ranks is shown in Fig-
ure 2. Next, we have used two well-known nonparametric sta-
tistical tests (Lehmann & D’Abrera, 1998) to compare ranks:

† Friedman test (Friedman, 1937): we compute Friedman
statistic value as

x2
F ¼

12N

k(k þ 1)

Xk

j¼1
Rj �

k þ 1
2

� �2

,

where Rj is the mean rank of algorithm j across all N in-
stances. The result is compared with the x2 distribution
with k 2 1 degrees of freedom.

† Iman–Davenport test (Iman & Davenport, 1980): a less
conservative test based on Friedman statistic value as
follows:

FF ¼
(N � 1)x2

F

N(k � 1)� x2
F

:

Fig. 2. The rank distribution of each algorithm across all instances. As usual, each box comprises the second and third quartiles of the
distribution, the median is marked with a vertical line, whiskers span 1.5 times the interquartile range, and outliers are indicated with a
plus sign. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Solving the ToSP with memetic algorithms 231

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

In this case, the result is compared with the F distribution
with k 2 1 and (k 2 1)(N 2 1) degrees of freedom.

The results are shown in Table 5. As seen in the first row,
the statistic values obtained are clearly higher than the critical
values, and therefore the null hypothesis, namely, that all al-
gorithms are equivalent, can be rejected. Because there are al-
gorithms with markedly poor performance, we have repeated
the test with the top seven algorithms (i.e., the MAs incorpo-
rating HC and SAR, and TSP), whose performance places
them in a separate cluster from the remaining algorithms
(cf. Fig. 2). Again, it can be seen that the statistical test is
passed, thus indicating significant differences in their ranks
at a ¼ 0.01 level.

Subsequently, we have focused in these top seven algo-
rithms, and performed Holm’s test (Holm, 1979) in order to
determine whether significant differences exist with respect
to a control algorithm (in this case MAHCP02, the algorithm
with the best mean rank). To do so, we compute the following
z statistic for the ith algorithm:

z ¼ (Ri � R0)

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k þ 1)

6N

r
:

Then, we determine the corresponding p value for a normal
distribution, and sort the algorithms for increasing p values.
Finally, these p values are compared with and adjusted critical
p value a/i, where a is the significance level and i is the algo-
rithm’s position (1 for the lowest p value, k 2 1 for the highest
p value; recall that one algorithm is used as control, and hence
there are only k 2 1 slots). Tests are sequentially done for in-
creasing p values until the null hypothesis cannot be rejected
at a certain i. In that case, the null hypothesis is retained for
every j� i, that is, algorithms with larger p values. The results
are shown in Table 6. Note that, with the exception of

MAHCP10, for which statistical significance can only be es-
tablished at 82% level, the test is passed at 99% confidence
level for all algorithms with respect to MAHCP02. This is a
robust result that indicates a clear trend of superiority of
MAHCP02 over the remaining approaches.

5. CONCLUSIONS AND FUTURE WORK

We have tackled the uniform ToSP with different techniques,
and showed how metaheuristics can be very adequate to solve
the problem. To be precise, we have conducted an extensive
empirical evaluation of three different LS heuristics (hill
climbing, SA, TS), GAs, and MAs. The experimentation
has included the BS method described in Zhou et al.
(2005), because it was demonstrated to be especially effective
compared to other techniques previously published. The re-
sults show that metaheuristics provide encouraging results,
and are capable of improving the results obtained by BS.

Starting on a general note, one of the main conclusions to
be extracted from the results is the versatileness and effective-
ness of MAs as a search paradigm. They constitute a natural
framework in which different heuristics can be seamlessly in-
tegrated into a single optimization engine. Thus, MAs should
not be regarded as competitors for existing approaches; on the
contrary, it is much more appropriate to regard them as inte-
grators: whenever single metaheuristics start to reach their
limits, the use of MAs is in order to overcome these limita-
tions.

Focusing now on each of the techniques considered, the ex-
perimental results indicate that TS is the most effective LS
technique among the proposals considered. Its ability to tra-
verse the search space escaping from local optima, and the en-
hanced exploration capabilities provided by the use of a stra-
tegic oscillation mechanism are crucial for this. Regarding the
GA, the particular recombination operator utilized—uniform
cycle crossover—has shown the relevance of processing
structural positional information to create new tentative se-
quences. A similar consideration can be made with respect
to the choice of both LS technique to be embedded in the
MA and its neighborhood exploration policy. Regarding the
first issue, the MA endowed with HC has yielded the best re-
sults, improving both the GA and the remaining LS tech-
niques as stand-alone techniques, and thus providing evi-
dence of the synergy of the combination. The reason why
MAHC* behaves better than MATS* can be found in the bet-
ter trade-off between search intensification and computational
cost provided by the former. Although TS can provide im-
proved solutions with respect to HC, its role when embedded
within an MA is different, because it has to share exploration
duties with the underlying GA. Hence, the savings in compu-
tational effort obtained by removing some of this diversifica-
tion capability from the local searcher (which can thus focus
on intensifying the search in promising regions) results in a
net gain for the hybrid approach. This guideline seems gener-
alizable to other related engineering problems (e.g., single
machine total weighted tardiness; Maheswaran et al., 2005;

Table 5. Results of Friedman and Iman–Davenport tests
for a ¼ 0.01

Friedman
Value

Critical
x2 Value

Iman–Davenport
Value

Critical FF

Value

All 320.30 45.64 50.20 1.80
Top 7 47.10 16.81 14.45 3.01

Table 6. Results of Holm’s test using memetic algorithm
MAHCP02 as the control algorithm (a ¼ 0.01)

i Algorithm z p a/i

1 MAHCP10 0.941065 0.173335 0.010000
2 MAHCF10 3.314184 0.000397 0.005000
3 MASAR02 3.355100 0.000460 0.003333
4 MAHCF02 3.436932 0.000294 0.002500
5 MASAR10 4.991734 ,0.000001 0.002000
6 TSP 5.441809 ,0.000001 0.001667

J.E. Amaya et al.232

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

see also Cotta & Fernández, 2007) in which simple and more
intensive local improvement strategies perform adequately.

Regarding the choice of the scheme for exploring the neigh-
borhood in the process of local improvement embedded in an
MA, the less computationally demanding option considering
a sample instead of the whole neighborhood produces better
results to solve the ToSP. Again, this is due to the balance be-
tween the computational cost of LS and the potentially attain-
able gain in solution quality. The interplay between the LS and
population-based component of the MA demands the former
is applied at a low rate, and with a moderate intensity.

In connection to this last issue, and as an avenue for further
research, it would be interesting to explore in more detail the
intensification/diversification balance within the MA. In this
work we have leaned toward a more explorative combination,
by using a blind recombination operator in the GA. It would
be worth exploring other models though, for example, by in-
corporating an intense exploration of the dynastic potential
(i.e., set of possible children) of the solutions being recom-
bined. Ideas from local branching (Fischetti & Lodi, 2003)
or from dynastically optimal recombination (Cotta & Troya,
2003; Gallardo et al., 2007) could be used here. We also plan
to analyze new instances and variants of the problem (Kash-
yap & Khator, 1994; Błażewicz & Finke, 1994; Hong-Bae
et al., 1999) in the future.

ACKNOWLEDGMENTS

We thank the reviewers for their useful comments. The second and
third authors are partially supported by Spanish MCINN under pro-
ject NEMESIS (TIN2008-05941) and Junta de Andalucı́a under pro-
ject TIC-6083.

REFERENCES

Al-Fawzan, M., & Al-Sultan, K. (2003). A tabu search based algorithm for
minimizing the number of tool switches on a flexible machine. Compu-
ters & Industrial Engineering 44(1), 35–47.

Amaya, J., Cotta, C., & Fernández, A. (2008). A memetic algorithm for the
tool switching problem. In Hybrid Metaheuristics 2008 (Blesa, M.,
Blum, C., Cotta, C., Fernández Leiva, A.J., Gallardo Ruiz, J.E., Roli,
A., & Sampels, M., Eds.), LNCS, Vol. 5296, pp. 190–202. Málaga:
Springer–Verlag.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. New York:
Oxford University Press.

Bard, J.F. (1988). A heuristic for minimizing the number of tool switches on a
flexible machine. IIE Transactions 20(4), 382–391.

Belady, L. (1966). A study of replacement algorithms for virtual storage com-
puters. IBM Systems Journal 5, 78–101.

Błażewicz, J., & Finke, G. (1994). Scheduling with resource management in
manufacturing systems. European Journal of Operational Research 76,
1–14.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:
overview and conceptual comparison. ACM Computing Surveys 35(3),
268–308.

Cotta, C., & Fernández, A. (2007). Memetic algorithms in planning, schedul-
ing and timetabling. In Evolutionary Scheduling (Dahal, K., Tan, K.-C.,
& Cowling, P., Eds.), pp. 1–30. Berlin: Springer–Verlag.

Cotta, C., & Troya, J. (1998). Genetic forma recombination in permutation
flowshop problems. Evolutionary Computation 6(1), 25–44.

Cotta, C., & Troya, J. (2003). Embedding branch and bound within evolu-
tionary algorithms. Applied Intelligence 18(2), 137–153.

Crama, Y., Kolen, A., Oerlemans, A., & Spieksma, F. (1994). Minimizing the
number of tool switches on a flexible machine. International Journal of
Flexible Manufacturing Systems 6, 33–54.

Crama, Y., Moonen, L., Spieksma, F., & Talloen, E. (2007). The tool switch-
ing problem revisited. European Journal of Operational Research 182(2),
952–957.

Dawkins, R. (1976). The Selfish Gene. Oxford: Clarendon Press.
Diekmann, R., Lüling, R., & Simon, J. (1993). Problem independent distrib-

uted simulated annealing and its applications. In Applied Simulated
Annealing (Vidal, R., Ed.), LNEMS, Vol. 3962, pp. 17–44. Berlin:
Springer–Verlag.

ElMaraghy, H. (1985). Automated tool management in flexible manufactur-
ing. Journal of Manufacturing Systems 4(1), 1–14.

Elmohamed, M.A.S., Coddington, P.D., & Fox, G. (1998). A comparison of
annealing techniques for academic course scheduling. In Practice and
Theory of Automated Timetabling II (Burke, E., & Carter, M., Eds.),
LCS, Vol. 1498, pp. 92–112. Berlin: Springer–Verlag.

Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Program-
ming B 98, 23–47.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association 32(200), 675–701.

Gallardo, J., Cotta, C., & Fernández, A. (2007). On the hybridization of
memetic algorithms with branch-and-bound techniques. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B 37(1), 77–83.

Ghiani, G., Grieco, A., & Guerriero, E. (2007). An exact solution to the TLP
problem in an NC machine. Robotics and Computer-Integrated Manufac-
turing 23(6), 645–649.

Glover, F. (1989a). Tabu search—part I. ORSA Journal of Computing 1(3),
190–206.

Glover, F. (1989b). Tabu search—part II. ORSA Journal of Computing 2(1),
4–31.

Hertz, A., Laporte, G., Mittaz, M., & Stecke, K. (1998). Heuristics for mini-
mizing tool switches when scheduling part types on a flexible machine.
IIE Transactions 30, 689–694.

Hertz, A., & Widmer, M. (1993). An improved tabu search approach for solv-
ing the job shop scheduling problem with tooling constraints. Discrete
Applied Mathematics 65, 319–345.

Holm, S. (1979). A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics 6, 65–70.

Hong-Bae, J., Yeong-Dae, K., & Suh, S.H.-W. (1999). Heuristics for a tool
provisioning problem in a flexible manufacturing system with an auto-
matic tool transporter. IEEE Transactions on Robotics and Automation
15(3), 488–496.

Hop, N.V. (2005). The tool-switching problem with magazine capacity and
tool size constraints. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part A: Systems and Humans 38(5), 617–628.

Houck, C., Joines, J., Kay, M., & Wilson, J. (1997). Empirical investigation
of the benefits of partial Lamarckianism. Evolutionary Computation 5(1),
31–60.

Huang, M., Romeo, F., & Sangiovanni-Vincentelli, A. (1986). An efficient
general cooling schedule for simulated annealing. Proc. 1986 IEEE Int.
Conf. Computer Aided Design (ICCAD), pp. 381–384. Santa Clara,
CA: IEEE Press.

Iman, R., & Davenport, J. (1980). Approximations of the critical region of the
Friedman statistic. Communications in Statistics 9, 571–595.

Jones, T. (1995). Evolutionary algorithms, fitness landscapes and search.
PhD Thesis. University of New Mexico.

Kashyap, A., & Khator, S. (1994). Modeling of a tool shared flexible manu-
facturing system. Proc. 26th Simulation Conf. Int. Society for Computer
Simulation, pp. 986–993, San Diego, CA.

Keung, K.W., Ip, W.H., & Lee, T.C. (2001). A genetic algorithm approach to
the multiple machine tool selection problem. Journal of Intelligent Man-
ufacturing 12(4), 331–342.

Kiran, A., & Krason, R. (1988). Automated tooling in a flexible manufactur-
ing system. Industrial Engineering 20, 52–57.

Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by simu-
lated annealing. Science 4598, 671–680.

Krasnogor, N., & Smith, J. (2005). A tutorial for competent memetic algo-
rithms: model, taxonomy, and design issues. IEEE Transactions on Evo-
lutionary Computation 9(5), 474–488.

Laporte, G., Salazar-González, J., & Semet, F. (2004). Exact algorithms for
the job sequencing and tool switching problem. IIE Transactions 36(1),
37–45.

Solving the ToSP with memetic algorithms 233

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., & Dizdarevic, S. (1999). Ge-
netic algorithms for the travelling salesman problem: a review of repre-
sentations and operators. Artificial Intelligence Review 13, 129–170.

Lehmann, E., & D’Abrera, H. (1998). Nonparametrics: Statistical Methods
Based on Ranks. Englewood Cliffs, NJ: Prentice–Hall.

Maheswaran, R., Ponnambalam, S., & Aranvidan, C. (2005). A meta-heuris-
tic approach to single machine scheduling problems. International Jour-
nal of Advanced Manufacturing Technology 25, 772–776.

Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms, Caltech Concurrent
Computation Program Technical Report 826. Pasadena, CA: California
Institute of Technology.

Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algo-
rithms. In Handbook of Metaheuristics (Glover, F.W., & Kochenberger,
G.A., Eds.), pp. 105–144. Boston: Kluwer Academic.

Moscato, P., & Cotta, C. (2007). Memetic algorithms. In Handbook of Ap-
proximation Algorithms and Metaheuristics (González, T., Ed.), Chap. 27.
New York: Chapman & Hall/CRC Press.

Moscato, P., & Cotta, C. (2010). A modern introduction to memetic algo-
rithms. In Handbook of Metaheuristics (Gendrau, M., & Potvin, J.-Y.,
Eds.), Vol. 146, 2nd ed., pp. 141–183. New York: Springer–Verlag.

Nguyen, Q.H., Ong, Y.-S., & Krasnogor, N. (2007). A study on the design
issues of memetic algorithm. Proc. 2007 IEEE Congress on Evolutionary
Computation (Srinivasan, D., & Wang, L., Eds.), pp. 2390–2397. Singa-
pore: IEEE Press.

Oerlemans, A. (1992). Production planning for flexible manufacturing sys-
tems. PhD Thesis. University of Limburg. Maastricht.

Oliver, I., Smith, D., & Holland, J. (1987). A study of permutation crossover
operators on the traveling salesman problem. Proc. 2nd Int. Conf. Genetic
Algorithms (Grefenstette, J., Ed.), pp. 224–230. Hillsdale, NJ: Erlbaum.

Otten, R., & van Ginneken, L. (1989). The Annealing Algorithm. New York:
Kluwer Academic.

Privault, C., & Finke, G. (1995). Modelling a tool switching problem on a
single NC-machine. Journal of Intelligent Manufacturing 6(2), 87–94.

Prügel-Bennett, A. (2010). Benefits of a population: five mechanisms that ad-
vantage population-based algorithms. IEEE Transactions on Evolution-
ary Computation 14(4), 500–517.

Reeves, C. (1994). Genetic algorithms and neighbourhood search. In Evolu-
tionary Computing (Fogarty, T., Ed.), LNCS, Vol. 865, pp. 115–130.
Berlin: Springer–Verlag.

Shirazi, R., & Frizelle, G. (2001). Minimizing the number of tool switches on
a flexible machine: an empirical study. International Journal of Produc-
tion Research 39(15), 3547–3560.

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., & Whitley, C.
(1991). A comparison of genetic sequencing operators. Proc. 4th Int.
Conf. Genetic Algorithms (Belew, R., & Booker, L., Eds.), pp. 69–76.
San Mateo CA: Morgan Kauffman.

Sudholt, D. (2009). The impact of parametrization in memetic evolutionary
algorithms. Theoretical Computer Science 410(26), 2511–2528.

Tang, C., & Denardo, E. (1988). Models arising from a flexible manufactur-
ing machine, part I: minimization of the number of tool switches. Opera-
tions Research 36(5), 767–777.

Tzur, M., & Altman, A. (2004). Minimization of tool switches for a flexible
manufacturing machine with slot assignment of different tool sizes. IIE
Transactions 36(2), 95–110.

Zhou, B.-H., Xi, L.-F., & Cao, Y.-S. (2005). A beam-search-based algorithm
for the tool switching problem on a flexible machine. International Jour-
nal of Advanced Manufacturing Technology 25(9–10), 876–882.

Jhon Edgar Amaya is currently a PhD student in computer
science at the University of Málaga under the supervision of
Dr. Carlos Cotta and Dr. Antonio J. Fernández-Leiva. He is
also a member of the High Performance Computing Labora-
tory of the Universidad Nacional Experimental del Tachira.
He received an electronic engineer degree in 1997 from the
Universidad Nacional Experimental del Tachira and an MS
degree in computation in 2003 from the Universidad de Los
Andes. Jhon’s research interests are evolutionary computa-
tion and applications of artificial intelligence to practical
problems.

Carlos Cotta is an Associate Professor in the School of Com-
puter Science at the University of Málaga. He received MS
and PhD degrees in computer science from the University
of Málaga in 1994 and 1998, respectively. His research inter-
ests comprise areas such as metaheuristics (in particular evo-
lutionary computation), combinatorial optimization, and
bioinformatics. Dr. Cotta is involved in the technical organi-
zation and program committees of major conferences in the
field of evolutionary computation and has coedited several
books on knowledge-driven computing, adaptive metaheuris-
tics, and evolutionary combinatorial optimization.

Antonio J. Fernández-Leiva is an Associate Professor in the
School of Computer Science at the University of Málaga. He
received BS and MS degrees in computer science from the
University of Málaga in 1991 and 1995, respectively. In
2002, he obtained his PhD degree from the University of Má-
laga under the supervision of Dr. Patricia M. Hill at Leeds
University, where he spent long periods of time over 4 years.
His area of research comprises areas such as the implementa-
tion of constraint programming languages and the attainment
of hybrid optimization techniques that involve evolutionary
algorithms.

J.E. Amaya et al.234

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

APPENDIX A

Algorithm 1: Pseudocode of a basic MA based on a local search LS

1 for i [Nm do
2 pop[i] RANDOM-SOLUTION();
3 LOCAL-IMPROVEMENT (pop[i]);
4 end for
5 i 0;
6 while i , MaxEvals do
7 RANK-POPULATION (pop); // sort population according to fitness
8 parent1 SELECT (pop);
9 if Rand[0, 1] , pX then // recombination is done

10 parent2 SELECT (pop);
11 child RECOMBINE (parent1, parent2);
12 else
13 child parent1;
14 end if
15 child MUTATE (child; pM); // pM is the mutation probability per gene
16 if Rand[0, 1] , pLS then // LS is applied
17 LOCAL-IMPROVEMENT (child); // Local Improvement
18 end if
19 pop[m] child; // replace worst
20 end while
21 return best solution in pop;

Solving the ToSP with memetic algorithms 235

https://doi.org/10.1017/S089006041100014X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041100014X

