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A look back at a long-forgotten trigonometric
function: the versine function and its inverse

SEÁN M. STEWART

Ask anyone who has studied mathematics to a moderate level how
many trigonometric functions there are and one is likely to be presented
with a range of answers depending on what the person being asked is most
likely to remember. Perhaps the ‘calculator button’ three of sine, cosine, and
tangent will come to mind as these are the three trigonometric functions
found on any standard scientific calculator. At a stretch, perhaps the names
for their respective reciprocals, cosecant, secant and cotangent, will be
recalled. Beyond the modern standard six, looking at calculus or
trigonometric texts published prior to 1900 one soon discovers others going
by strange names such as versine, haversine, or coversine (see, for example,
[1, pp. 53, 63]). There are at least six others with as many as perhaps ten to
twelve having received a name at one time or another. Today all these
additional trigonometric functions considered important enough to grace the
pages of texts in centuries past have fallen by the wayside, to be largely
forgotten in favour of the modern standard six. Of course the pedant
amongst us would say there is only one trigonometric function, the sine
function, which currently stands as the preferred fundamental trigonometric
entity, with all others being simple variations of this function, and they
would not be incorrect in asserting this. But having the current standard six
seems about the right balance between the minimalistic on the one hand and
convenience on the other hand.

In this paper we intend to look back at one of the forgotten trigonometric
functions, the versed sine function, or versine for short, together with its
associated inverse.  By focusing on series expansions for the inverse versine
function and other closely related functions, we shall see how this can
provide a slightly different perspective on a range of interesting infinite sums
containing the central binomial coefficients in its summand. Recall that a
central binomial coefficient is a binomial coefficient given by

( ) =
(2n)!
(n!)2

,2n
n

where  is a non-negative integer. They are the centrally located binomial
coefficients in the even numbered rows of Pascal's triangle. Sums of such
coefficients are particularly interesting and were the subject of a paper
written in 1985 by the American mathematician Derrick H. Lehmer (1905-
1991) which today has become a cause célèbre [2]. Here Lehmer defines a
series to be interesting if its sum can be expressed in closed form in terms of
well-known constants.

n

Until about the beginning the eighteenth century, as hard as it is to
believe today, after the sine function the versine function was considered the
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THE VERSINE FUNCTION AND ITS INVERSE 85

next most important of the trigonometric functions. Historically, one of the
primary applications of trigonometry was in the fields of astronomy and
later in navigation. To help aid astronomers and navigators, many tables
containing incremented functional values for various trigonometric
functions were compiled. This importance meant the versine appeared in
some of the earliest trigonometric tables. In fact the earliest surviving
trigonometric tables are those for sine and versine where values at
intervals from  and  to an accuracy of four decimal places are given [3,
p. 215]. Found in the astronomical treatise Aryabhatiya they were compiled
around the beginning of the sixth century by the Indian mathematician and
astronomer Aryabhata (476–550).

3.75°
0° 90°

The versine function and its inverse
To understand the origin of versine, which we will denote by , we

would do well to remember how historically sine was defined. If a vertical
chord is drawn in a unit circle (  in Figure 1) the sine of the angle  was
defined as half the length of this chord (the distance  in the figure). The
versine of the angle  was therefore defined as the length of the line segment
from the centre of the chord to the centre of the arc subtended by the chord
(the distance  in the figure). Defining cosine of the angle  as the
distance of the line segment from the centre of the circle to the centre of the
chord (the distance  in the figure) we see that the sum of  and
corresponds to the radius of the circle. On the unit circle this means

vers x

AB x
AC

x

CD x

OC cos x vers x

vers x = 1 − cos x.
Viewed geometrically in the context of the unit circle both sine and versine
are distances from the centre of the chord to the edge of the circle with
‘versed sine’ being just sine but turned through an angle of . Here the
term ‘versed’ comes from the Latin versus, meaning turned. In making the
turn observe that each distance remains within the confines of the unit circle.
Of course today the trigonometric functions at the most elementary level are
usually defined in terms of the ratio between two lengths found in a right-
angled triangle instead of chords and lengths of line segments found in a
circle, making sine, cosine, and tangent the more natural choice for the
trigonometric functions compared to the versine function and its other long
lost cousins.

90°

From properties of the half angle formula for sine we see that

vers x = 1 − cos x = 2 sin2 x
2

. (1)

It is immediate that the domain and codomain for  arevers x

dom (vers x) = � and  codom (vers x) = 0 ≤ vers x ≤ 2.
In the definition for the versine function given in (1), and in its codomain,
the historical significance of the function is brought to the fore. Firstly, as
the value of  is always positive (when it is equal to zero, in calculating
nothing further needs to be done) its logarithm could always be taken. This

vers x
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was particularly important in the days when everything had to be calculated
by hand and took appreciable effort, as was the case in navigation.
Secondly, versine could save one the computational expense of having to
calculate the square of a sine, a particularly common task in the field of
navigation.

vers xcos x

sin x

x

A

O C D

B

FIGURE 1: Unit circle showing sine, versine and cosine

As we have alluded to, the importance of mathematics in the task of
navigation cannot be overstated. A frequent undertaking involves finding
the shortest distance between two points on the surface of a sphere. It
requires the latitude and longitude at each point on the surface being known.
Here the so-called ‘haversine’ formula is used, the haversine function, ,
being half or ‘ha’ the versine function. If  is the radius of a sphere and  the
shortest distance between two points on its surface the central angle
subtended between these points is given by the arc-length formula

. Finding the central angle  is more difficult. Given two points
 and  on the sphere, where  denotes the latitude and

denotes the longitude of each point, the central angle can be found by
applying the haversine formula given by [4]

hav x
r �

θ

θ = � / r θ
(ϕ1, ψ1) (ϕ2, ψ2) ϕ ψ

hav (θ) = hav (ϕ2 − ϕ1) + cos (ϕ1) cos (ϕ2) hav (ψ2 − ψ1) ,
a result that comes from spherical trigonometry. Since , in
terms of versine the haversine formula can be written as

2 hav x = vers x

vers (θ) = vers (ϕ2 − ϕ1) + cos (ϕ1) cos (ϕ2) vers (ψ2 − ψ1) .
From this result we see that working directly with versine immediately
saved navigators the expense of having to calculate two sine-squared terms
in each calculation made for the central angle. Not only was this a major
saving in terms of time, it also made such calculations less prone to error.

Of course all the properties for the versine function follow immediately
from corresponding properties of the cosine function, or the square of the
half argument sine function if you prefer, and is no doubt the reason why the
versine function has all but been forgotten today. For example, its derivative
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and Maclaurin series expansion follow directly from (1) using known
properties for the cosine function. Thus

d
dx

vers x = sin x and  vers x = ∑
∞

n = 1

(−1)n + 1 x2n

(2n)!
, x ∈ �.

The occasional modern reference to the versine function and at least some of
its other long lost counterparts can be found, for example, in [5, p. 78,
Eq. 4.3.147], [6, p. 322, Eq. 32.13.4] or [7, pp. 167-168, Ex. 19], though
these are quite atypical among present-day texts.

On the interval  an inverse to the versine function can be defined.
Taken as the principal branch for the inverse function it is denoted by

. The versine function and its inverse are plotted in Figure 2. Some
special values for the versine function and its inverse are immediate. These
are

[0, π]

vers−1 x

vers (0) = 0,  vers−1 (0) = 0,

vers (π
3 ) =

1
2

,  vers−1 (1
2) =

π
3

,

vers (π
2 ) = 1,  vers−1 (1) =

π
2

,

vers (2π
3 ) =

3
2

,  vers−1 (3
2) =

2π
3

,

vers (π) = 2,  vers−1 (2) = π.

These values for the inverse will be used extensively when it comes to
finding values for various infinite sums.

To find the derivative for the inverse versine function we start by setting
.  Since , differentiating implicitly with respect to

gives
y = vers−1 x x = vers y x

dy
dx

=
1

sin y
.

As , we see that  giving .
Here the positive square root is selected since  for .
Thus

vers y = x = 1 − cosy cosy = 1 − x siny = 2x − x2

vers−1 x ≥ 0 x ∈ [0, π]

d
dx

(vers−1 x) =
1

2x − x2
. (2)

An integral representation for the inverse versine function follows
immediately from (2). It is

vers−1 x = ∫
 x

0

dt
2t − t2

. (3)

Alternatively, the integral found in (3) can be evaluated by completing the
square of the quadratic found in the denominator of the integrand before
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integrating. Doing so we find

vers−1 x = ∫
 x

0

dt
1 − (1 − t)2

= ∫
 1

1 − x

du
1 − u2

= cos−1 (1 − x) ,

after making the substitution . Finally, directly from (1) one can
find an expression for the inverse of the versine function in terms of the
inverse for the sine function. Putting this all together we have

u = 1 − t

vers−1 x = cos−1 (1 − x) = 2 sin1 ( x
2) . (4)

1

2

3

1 2 3 4
x

y

vers x

vers−1 x y = x

FIGURE 2: Plot of  and its inverse vers x vers−1 x

It is the inverse of the versine function and series expansions for it and
other closely related functions that we shall focus on for the remainder of
the paper. In view of (4) it should come as no surprise to see how the inverse
versine function parallels closely with the inverse sine function. By taking a
look back at this forgotten function, what it provides is an interesting
alternative perspective to the standard approach encountered when the
inverse sine function is used. At times it may be slightly simpler compared
to the standard approach using the inverse sine function. At other times it is
just different, but at all times we hope to reveal the hidden beauty of this
long-forgotten function.

Series expansions for  and related functionsvers−1 x
In this section we find a number of series expansions related to the

inverse versine function. We start by recalling the well-known result for the
generating function for the central binomial coefficients:

∑
∞

n = 0
( ) x2n =

1
1 − 4x

,  | x | <
1
4

.2n
n
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This result follows directly from the generalised binomial theorem.
Replacing  with  givesx 1

8x

∑
∞

n = 0
( ) xn

23n =
1

1 − 1
2x

,  | x | < 2. (5)2n
n

From the integral representation for the inverse versine function given in
(3), after substituting (5) for the reciprocal of the square root term and
interchanging the order of the integration with the summation, which is
permissible due to Tonelli's theorem [8, p. 138] as all term involved are
positive, one has

vers−1x = ∫
 x

0

dt
2t − t2

= ∫
 x

0

dt
2t 1 − 1

2t
=

1
2 ∑

∞

n= 0
( ) 1

23n ∫
 x

0
tn− 1/2dt2n

n

= 2x ∑
∞

n= 0
( ) xn

23n(2n + 1)
,2n

n
yielding

vers−1 x
2x

= ∑
∞

n = 0
( ) xn

23n (2n + 1)
,  0 ≤ x ≤ 2. (6)2n

n
The series found in (6) is thought to have been given first by Isaac Newton
in a letter sent by his colleague the English mathematician John Collins
(1625-1683) on behalf of Newton to the Scottish mathematician and
astronomer James Gregory (1638-1675) in December 1670 [9, p. 43]. Here
Newton gave it as a corollary to the series expansion he had just found for
the inverse sine function. It is important to note that (6) represents a
Maclaurin series expansion for the function  rather than a
Maclaurin series expansion for the inverse versine function itself. Indeed, no
Maclaurin series expansion for the inverse versine function exists. Moving
the  term to the right-hand side of (6) we see the series expansion that
results contains half-order powers of  and is what is technically referred to
as a Puiseux series [10, p. 2407]. Setting , and 2 in (6) we
immediately obtain the following sums involving the central binomial
coefficients

vers−1 x / 2x

2x
x

x = 1
2, 1, 3

2

∑
∞

n = 0
( ) 1

24n (2n + 1)
=

π
3

,2n
n ∑

∞

n = 0
( ) 1

23n (2n + 1)
=

π
2 2

,2n
n

∑
∞

n = 0
( ) 3n

24n (2n + 1)
=

2π
3 3

,2n
n ∑

∞

n = 0
( ) 1

22n (2n + 1)
=

π
2

.2n
n

Sums of this type can be found in [2].
Other series involving the inverse versine function can now be readily

found from (6). Replacing  with  in (6) before integrating with respect to
from 0 to  one finds

x t t
x

∑
∞

n = 0
( ) xn + 1

23n (n + 1) (2n + 1)
= ∫

 x

0

vers−1 t
2t

 dt.2n
n
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The integral that has appeared can be found by integrating by parts. Doing
so we find

∑
∞

n = 0
( ) xn + 1

23n (n + 1) (2n + 1)
= 2x vers−1 x − 2 ∫

 x

0

dt
2 − t

,2n
n

or

∑
∞

n = 0
( ) xn + 1

23n (n + 1) (2n + 1)
= 2x vers−1 x + 2 4 − x − 4,2n

n

and is valid for . Setting , and 2 in (7) yields the
rather interesting sums

0 ≤ x ≤ 2 x = 1
2, 1, 3

2

∑
∞

n = 0
( ) 1

24n (n + 1) (2n + 1)
=

2π
3

+ 4 3 − 8,2n
n

∑
∞

n = 0
( ) 1

23n (n + 1) (2n + 1)
=

π
2

+ 2 2 − 4,2n
n

∑
∞

n = 0
( ) 1

22n (n + 1) (2n + 1)
= π − 2,2n

n

∑
∞

n = 0
( ) 3n

24n (n + 1) (2n + 1)
=

4π
3 3

−
4
3

.2n
n

It is worth noting the four sums just given are in fact related to the Catalan
numbers. Recall the  Catalan number  is defined recursively by n th Cn

Cn = ∑
n − 1

k = 0

CkCn − k − 1,  C0 = 1.

An explicit expression for  is known. From [11, p. 4, Eq. 1.6] it isCn

Cn =
1

n + 1 ( ) .2n
n

Thus rewritten in terms of a summand containing the Catalan numbers the
above four sums become

∑
∞

n= 0
( ) Cn

24n(2n + 1)
=

2π
3

+ 4 3 − 8,2n
n ∑

∞

n= 0
( ) Cn

23n(2n + 1)
=

π
2

+ 2 2 − 4,2n
n

∑
∞

n= 0
( ) Cn

22n(2n + 1)
= π − 2,2n

n ∑
∞

n= 0
( ) 3nCn

24n(2n + 1)
=

4π
3 3

−
4
3

.2n
n

Another related series expansion from (7) can be found by employing a
partial fraction decomposition. As

1
(2n + 1) (n + 1)

=
2

2n + 1
−

1
n + 1

,
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the series in (7) can be expressed as

2x vers−1x + 2 4 − 2x − 4 = 2x ∑
∞

n= 0
( ) xn

23n(2n + 1)
− x ∑

∞

n= 0
( ) xn

23n(n + 1)
,2n

n
2n
n

or

∑
∞

n = 0
( ) xn

23n (n + 1)
=

4 − 2 4 − 2x
x

,  0 ≤ x ≤ 2, (8)2n
n

after the series expansion given in (6) has been used. It is a series expansion
that does not involve the inverse versine function. Setting , and 2
into (8) yields the interesting sums

x = 1
2, 1, 3

2

∑
∞

n= 0
( ) 1

24n(n + 1)
= 8 − 4 3,2n

n ∑
∞

n= 0
( ) 1

23n(n + 1)
= 4 − 2 2,2n

n

∑
∞

n= 0
( ) 3n

24n(2n + 1)
=

4
3

,2n
n ∑

∞

n= 0
( ) 1

22n(2n + 1)
= 2.2n

n

Finding still other series expansions, dividing both sides of (7) by
before replacing  with  then integrating again with respect to  from 0 to
gives

x
x t t x

∑
∞

n= 0
( ) xn+ 1

23n(n + 1)2(2n + 1)
= 2 ∫

 x

0

vers−1t
2t

 dt + 2 ∫
 x

0

4 − 2t − 2
t

 dt,2n
n

or

∑
∞

n = 0
( ) xn + 1

23n (n + 1)2 (2n + 1)
= 2 2x vers−1 x + 8 4 − 2x + 16 log 22n

n

−8 log ( 4 − 2x + 2) − 16, (9)
and is valid for . Here the first of the integrals was found by
parts when the expression for the series in (7) was obtained while the second
of the integrals is elementary. Setting once more , and 2 in (9)
yields the interesting sums

0 ≤ x ≤ 2

x = 1
2, 1, 3

2

∑
∞

n= 0
( ) 1

24n(n + 1)2(2n + 1)
=

4π
3

+ 16 3 − 32 + 16 log(8 − 4 3),2n
n

∑
∞

n= 0
( ) 1

23n(n + 1)2(2n + 1)
= π 2 + 8 2 − 16 + 8 log(4 − 2 2),2n

n

∑
∞

n= 0
( ) 1

22n(n + 1)2(2n + 1)
= 2π − 8 + 4 log2,2n

n

∑
∞

n= 0
( ) 3n

24n(n + 1)2(2n + 1)
=

8π
3 3

−
16
3

+
16
3

log
4
3

.2n
n
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If instead we multiply both sides of (6) by  before replacing  with ,
then integrating with respect to  from 0 to  we obtain

x x t
t x

∑
∞

n = 0
( ) xn + 2

23n (n + 2) (2n + 1)
=

1
2 ∫

 x

0
t vers−1 t dt,2n

n

or after integrating by parts

∑
∞

n = 0
( ) xn + 2

23n (n + 2) (2n + 1)
=

2
3

x x vers−1 x −
2
3 ∫

 x

0

t
2 − t

 dt.2n
n

Performing the final integration, which is elementary, one is left with

∑
∞

n= 0
( ) xn+ 2

23n(n + 2)(2n + 1)
=

1
3

x 2x vers−1x +
2
9

4 − 2x(x + 4) −
16
9

,   (10)2n
n

a result valid for . Setting once more , and 2, this
time in (10), yields the interesting sums

0 ≤ x ≤ 2 x = 1
2, 1, 3

2

∑
∞

n = 0
( ) 1

24n (n + 2) (2n + 1)
=

2π
9

+ 4 3 −
64
9

,2n
n

∑
∞

n = 0
( ) 1

23n (n + 2) (2n + 1)
=

π
3 2

+
20

9 2
−

16
9

,2n
n

∑
∞

n = 0
( ) 1

22n (n + 2) (2n + 1)
=

π
3

−
4
9

,2n
n

∑
∞

n = 0
( ) 3n

24n (n + 2) (2n + 1)
=

4π
9 3

−
20
81

.2n
n

One can obviously keep continuing in this manner, provided the
integrals that result can be found, generating new and interesting sums
containing the central binomial coefficients but we shall stop here and move
on to some series expansions containing central binomial coefficients and
the Fibonacci numbers.

Some series containing the Fibonacci numbers
A number of series containing products of Fibonacci numbers and

central binomial coefficients can be found from the various series
expansions involving the inverse versine function that have been given.
Recall that the  Fibonacci number  is defined by the recurrence relation

 for  with  and .
n th Fn

Fn = Fn − 1 + Fn − 2 n ≥ 2 F0 = 0 F1 = 1
Note that when  and , where  denotes the golden

ratio , we have
x = 1

2ϕ2 x = 1 / (2ϕ2) ϕ
(1 + 5) / 2

vers−1 (ϕ2

2 ) = cos−1 (1 −
ϕ2

2 ) = cos−1 (1 − 5
4 ) =

3π
5

,
and

vers−1 ( 1
2ϕ2) = cos−1 (1 −

1
2ϕ2) = cos−1 (1 + 5

4 ) =
π
5

.
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These two special values for  are key to finding some interesting
series containing products between the central binomial coefficients and the
Fibonacci numbers.

vers−1 x

From Binet's formula [12, p. 90], namely

Fn =
1
5 (ϕn −

(−1)n

ϕn ) ,

replacing  with  yieldsn 2n

F2n =
1
5 (ϕ2n −

1
ϕ2n) . (11)

Setting  followed by  in the various series expansions
that have been found, taking their difference before dividing throughout by

, from (11) series containing the term  can be found. Doing so for
series (6), (7), and (8) containing the central binomial coefficient we obtain
the intriguing results of

x = 1
2ϕ2 x = 1 / (2ϕ2)

5 F2n

∑
∞

n = 1
( ) F2n

24n (2n + 1)
=

π
25

(5 − 2 5) ,2n
n

∑
∞

n = 1
( ) F2n

24n (n + 1) (2n + 1)
=

2π
25

(5 − 2 5) −
4
5

125 − 10 5 + 8,2n
n

∑
∞

n = 1
( ) F2n

24n (n + 1)
=

4
5

125 − 10 5 − 8.2n
n

Conclusion
By taking a look back at one particular long-lost trigonometric function

we have seen how it allows one to retrace and navigate what is familiar
mathematical terrain from a slightly different point of view. This
simulacrum of moving between the strangely recognisable yet unfamiliar
world of the versine was shown to provide alternative pathways to some
classic results concerning sums containing central binomial coefficients.
Perhaps at times simpler, perhaps at other times just different, we hope to
have shown while versine may be lost to the modern reader it is by no
means forgotten.
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