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We study the axisymmetric evolution of a liquid film on a solid sphere governed by
gravity, capillarity and viscous forces. The lubrication equations established in spherical
coordinates are numerically solved using finite elements and local similarity solutions are
obtained. Results show that the evolution behaves differently at early and late stages. At
the early stage, the interface evolves in such a way that the capillary effect can be ignored.
At the late stage, there emerge four zones from top to bottom: a thin film, a ridge ring,
a dimple ring and a pendant drop. Each zone is governed by the balance of different
forces, and hence is characterized by an individual physical mechanism. Consequently,
the pendant drop is quasi-static, and the film thicknesses of other regions follow different
scaling laws. The position of the dimple remains unchanged at the late stage.
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1. Introduction

Film evolution on a solid substrate has been studied over the years for its application
in cleaning (Parkin & Palgrave 2005), printing (Kumar 2015) and coating (Weinstein &
Ruschak 2004) processes encountered in natural and industrial settings.

There have been numerous investigations of film evolution on a flat plate, which
especially focused on subjects like dip coating (Blake & Ruschak 1979; Snoeijer et al.
2007; Gao et al. 2016), spin coating (Emslie, Bonner & Peck 1958; Wilson, Hunt & Duffy
2000), drop spreading (Tanner 1979; Hocking 1983) and sliding (Benilov & Benilov 2015).
As a further complexity, the effects of curved substrates (cylinders in particular) have been
included, e.g. coating films outside a horizontal or vertical cylinder (Reisfeld & Bankoff
1992; Quéré 1999), and rimming flows inside or outside a rotating cylinder (Benilov,
Benilov & Kopteva 2008; Lopes, Thiele & Hazel 2018). Models for other geometries
of walls have been established as well (Schwartz & Weidner 1995; Myers, Charpin &
Chapman 2002; Roy, Roberts & Simpson 2002; Howell 2003), including film flows over
topography (Stillwagon & Larson 1988; Kalliadasis, Bielarz & Homsy 2000), lubrication
at a corner (Stocker & Hosoi 2005) and films on a sphere, on which we focus in this paper.

† Email address for correspondence: gaopeng@ustc.edu.cn
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Coating flows on a sphere have intrigued researchers in recent years. The impact of
a droplet on a solid sphere often leads to a liquid film on the sphere, where inertia
dominates the evolution at the early stage and viscosity takes over at the late stage (Bakshi,
Roisman & Tropea 2007). The wetting dynamics accompanied by the advancing contact
line plays an important role in the formation of liquid films (Zhu et al. 2017). In the
condition of continuous liquid supply, Wild & Potter (1972) and Belousov & Belousov
(2010) experimentally measured the film thickness on a sphere. In contrast, for cases
without liquid supply, film evolution was explored more theoretically. Takagi & Huppert
(2010) established a lubrication equation on a spherical surface in the presence of gravity.
Treating the film around the top of the sphere (the ‘north pole’) as a uniform one,
they obtained the film thickness which decreases as t−1/2, where t is time. As for the
non-uniform effect, Lee et al. (2016) derived an asymptotic solution around the north pole,
consistent with their experimental results. Kang, Nadim & Chugunova (2016) considered
centrifugal effects and studied the dynamics of films on a rotating sphere, where they
discovered three different steady states. Then they established a three-dimensional model
to explore the Marangoni effect induced by temperature gradient (Kang, Nadim &
Chugunova 2017). Film evolution on a sphere can also be employed as a model to study
tear film dynamics (Braun et al. 2012). As for the inner surface of a sphere, a model was
built by Balestra, Nguyen & Gallaire (2018) who explored Rayleigh–Taylor instability of
coating films inside a spherical shell.

Even though it is a fundamental problem as to how a film evolves on a sphere, we
point out that there still remain some crucial problems to be solved, including a proper
description of local evolution and a rational physical interpretation. In this work, we focus
on film evolution on a sphere under the influences of gravity, viscous force and capillarity,
and the work is performed under the assumption of axisymmetry. The governing equation
for the present problem is a special case of Kang et al. (2016), under the condition of zero
rotation speed. The difference between Kang et al. (2016) and the present work is that
they mainly focused on the different types of steady states, while we are interested in the
time evolution and scaling laws followed by local interfacial structures. According to our
results, distinct features exist at early and late stages of the evolution. In particular, four
physically different zones emerge at the late stage, where we make a detailed description
and analysis of the results and hope that our work can help understand coating films on
curved substrates.

The paper is organized as follows. In § 2, we present the mathematical description of
our problem, which contains gravity, capillarity and viscous force. In § 3, the problem is
solved both numerically and analytically to illustrate the whole process of film evolution.
We show the behaviour of the film at early and late stages, present distinct regimes and
scaling laws in different regions at the late stage and perform a parametric study. All our
analyses are consistent with the numerical results. In § 4, we provide a conclusion to our
results.

2. Formulation

Consider an axisymmetric liquid film on a sphere (figure 1). Initially, the film has
a uniform thickness h0, which is assumed much smaller than the radius of the solid
sphere R, i.e. δ = h0/R � 1. Gravity is along the symmetric axis, with g the gravitational
acceleration. The liquid density is denoted by ρ, and the viscous and capillary forces are
characterized by the liquid viscosity μ and the surface tension σ , respectively. According
to estimation in Kang et al. (2016), the Reynolds number is Re ∼ O(δ2), meaning that
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Zone 1
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FIGURE 1. Sketch of interface morphology at the late stage of evolution. Zone 1: a thin film;
zone 2: a ridge ring; zone 3: a dimple ring; zone 4: a pendant drop.

inertial effects can be safely ignored in our work. In this way, the evolution of the film
thickness h is dominated by gravity, viscosity and capillarity. We adopt the spherical
coordinate system (r, θ, φ), indicating the radial distance, polar angle and azimuthal angle,
respectively. The curvature of the interface rescaled by h0/R2 can be written as

κ = δ(1 + δH)(∂2H/∂θ 2)− 3δ2(∂H/∂θ)2 − 2(1 + δH)2

δ[(1 + δH)2 + δ2(∂H/∂θ)2]3/2

+ (∂H/∂θ) cot θ
(1 + δH)[(1 + δH)2 + δ2(∂H/∂θ)2]1/2

, (2.1)

where H = h/h0 is the rescaled film thickness. We can expand the curvature in terms of
the small parameter δ,

κ = −2
δ

+ K + O (δ) , (2.2)

where −2/δ denotes the constant part of the curvature, which is equal to that of the solid
sphere and does not drive a flow, and

K = 2H + 1
sin θ

∂

∂θ

(
sin θ

∂H
∂θ

)
(2.3)

is the variable part that generates capillary pressure gradient.
Following Kang et al. (2016), we have the following lubrication equation to describe our

problem:
∂H
∂τ

+ 1
sin θ

∂

∂θ

[
H3 sin θ

(
Bo−1 ∂K

∂θ
+ sin θ

)]
= 0, (2.4)

where

τ = ρgh2
0t

3μR
, Bo = ρgR3

σh0
. (2.5a,b)

Here Bo is the Bond number, representing the ratio of gravity to capillary forces.
The effects of capillarity and gravity are represented, respectively, by the two terms
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within parentheses in equation (2.4). The small parameter δ disappears under lubrication
approximation, and thus the only remaining parameter in our problem is Bo. Note that
only the effect of the tangential gravity component is retained in the lubrication equation,
while the other component perpendicular to the wall has been neglected since it is of O(δ)
(Balestra et al. 2018). We have verified that, for the considered values of Bo, the neglect of
the tangential gravity component as well as higher-order terms of curvature does not show
appreciable differences.

According to symmetry, we have the following boundary conditions:

∂H
∂θ

∣∣∣∣
θ=0

= ∂H
∂θ

∣∣∣∣
θ=π

= 0,

∂K
∂θ

∣∣∣∣
θ=0

= ∂K
∂θ

∣∣∣∣
θ=π

= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

The initial uniform film leads to

H|τ=0 = 1. (2.7)

We employ the finite element method to solve (2.4) together with (2.6) and (2.7). The
weak form is written as

∫ π

0

[
∂H
∂τ

u − H3

(
Bo−1 ∂K

∂θ
+ sin θ

)
∂u
∂θ

]
sin θ dθ = 0,

∫ π

0

[
(K − 2H)v + ∂H

∂θ

∂v

∂θ

]
sin θ dθ = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

where u and v are test functions. The weak form is regular, which means the (sin θ)−1

singularity at both poles in (2.4) is formal and does not really exist. The calculation was
performed using FreeFem++ (Hecht 2012), similar to that employed in Xia, Qin & Gao
(2020a) and Xia, Qin & Mu (2020b). The lubrication equation was solved using the finite
element method. The nonlinear term was handled by Newton’s iteration, and the first-order
implicit scheme was used for time integration. We adopted elements of uniform size and
constant time steps, which were sufficiently small such that the produced results were
converged in a way that the errors cannot be identified by the naked eye. A typical test of
mesh convergence is shown in the inset of figure 2(b). The results presented below were
obtained using 10 000 elements for sufficient accuracy.

The problem can be formally simplified under the transformation

z = cos θ, (2.9)

representing the axis position scaled by R. In particular, at the north pole, we have
θ = 0, z = 1, and the south pole corresponds to θ = π, z = −1. In this way, (2.4) can
be written as

∂H
∂τ

+ ∂

∂z

{
H3

[
Bo−1 ∂F

∂z
− (1 − z2)

]}
= 0,

F = (1 − z2)2
∂2H
∂z2

.

⎫⎪⎪⎬
⎪⎪⎭

(2.10)
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45 60
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(a) (b)

FIGURE 2. Interface evolution for Bo = 24 at τ = 0, 1, 10, 100, 1000. (a) The polar plot, where
the ratio of the radius of the sphere to the film thickness has been multiplied by 2h0/R for a better
view. (b) The Cartesian plot with the film thickness H in logarithmic scale. The inset illustrates
the mesh independence at τ = 100, where the dashed and solid lines correspond to 5000 and
10 000 elements, respectively.

It is trivial by integrating (2.4) and (2.10) to prove that the volume conservation is
satisfied automatically: ∫ π

0
H sin θ dθ =

∫ 1

−1
H dz = 2. (2.11)

Equation (2.10) is more convenient for us to analyse the problem. Not only is the
transformed problem more concise, but also the formal (sin θ)−1 singularity at both poles
in the original equation is resolved. For convenience, we define a function Q(τ, z) to
replace the term within the braces in (2.10):

Q(τ, z) = H3

[
Bo−1 ∂F

∂z
− (1 − z2)

]
. (2.12)

Physically, Q represents the volume flow rate through a cross-section of constant z.

3. Results

3.1. Overview of film evolution
We begin with an overview of film evolution dominated by the combined work of gravity,
capillarity and viscous force. The film evolution is shown in figure 2 for Bo = 24. The
value Bo = 24 is chosen such that the dimple locates at the equator, which is demonstrated
in § 3.3.2. It will be shown that the evolution behaves differently at early and late stages.

At the early stage, the gradient of capillary pressure is weak due to the given initial
condition, and the evolution is primarily driven by gravity and resisted by viscous force.
As time increases to the late stage, the film splits into four distinct zones (figure 1). The
characteristic length of the film varies at each zone, which is consequently governed by
different forces. Figure 2 shows that the liquid always accumulates towards the south pole
under gravity and eventually forms a pendant drop (zone 4), with its shape hardly varying
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0 45 90 135 180
θ (deg.)
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100
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H

Bo = 1
Bo = 10
Bo = 100
Bo = 1000

FIGURE 3. Film thickness for different Bond numbers at τ = 100.

with time. This pendant drop is a reflection of hydrostatics, under the balance between
gravity and capillary force. At the boundary of the pendant drop there is an apparent
contact line, the position of which is constrained by the requirement of a vanishing
apparent contact angle due to the connection with a thin film. The thickness of the thin film
in zone 1 decreases with time and weakly depends on θ . Capillary pressure gradient can
be neglected here due to the small variation of the interfacial curvature, and the viscous
flow is driven primarily by gravity, showing a concise scaling law. The connection between
zone 1 and zone 4 is characterized by a ridge ring (zone 2) and a dimple ring (zone 3). The
dimple ring is formed by capillary force and viscous force, while gravity can be neglected
due to the small length scale. The ridge ring is determined by all three forces. Both zones
2 and 3 become thinner and more localized, and eventually give rise to a singularity in the
capillary pressure gradient as τ → +∞ in zone 3. As presented in the following sections,
while zone 4 is quasi-static, the other three zones follow different scaling laws.

As shown in figure 3, the effects of Bo are mainly on the location of the dimple ring and
the width of the pendant drop. A larger Bo results in a narrower pendant drop and a wider
flat film, whose thickness, however, is almost independent of Bo.

3.2. Early-stage evolution
At the early stage, the interface configuration is close to the initial spherical shape, which
means the curvature barely changes along the interface. We assume Bo−1 is no more than
O(1), then write H = 1 + f1(z)τ + f2(z)τ 2 + O(τ 3) and substitute it into (2.10). Finally we
obtain

H = 1 − 2zτ + 3(3z2 − 1)τ 2 + O(τ 3). (3.1)

This indicates that the early-stage evolution is independent of Bo, which is a manifestation
of the absence of capillary pressure gradient. Figure 4 displays the shape of the interface
at the early stage. The film thickness has been transformed so that the range is of O(1). We
can see that there is almost no difference between (3.1) and the full numerical solution at
the early stage. In figure 5 we display the evolution of the film thickness at the north pole,
where (3.1) is confirmed to be valid at the early stage.
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FIGURE 4. Interface configuration for Bo = 1 at τ = 0.01. Solid line: numerical solution of
(2.4); dashed line: (3.1).

10–2 100 102

τ

10–2

10–1

100

H

FIGURE 5. Film thickness at the north pole for Bo = 24. Solid line: numerical solution of (2.4);
dotted line: early-stage evolution (3.1), where the capillary pressure gradient can be neglected;
dashed line: late-stage evolution (3.7).

3.3. Late-stage evolution: four-zone regime
As discussed in § 3.1, the governing equations can be simplified due to the appropriate
neglecting of capillary or gravitational force. Accordingly, the film evolution in different
zones can be studied in a piecewise way, and may admit local self-similarity solutions and
scaling laws. The exponents of the scaling laws can be obtained by matching the solutions
in different zones.

3.3.1. Zone 1: thin film
From figure 3 we see that the thickness of the film around the north pole only varies

slightly such that capillary forces can be neglected, which will be validated later, and
(2.10) can be written as

∂H
∂τ

− ∂

∂z

[
H3 (

1 − z2)] = 0. (3.2)

This equation has a self-similar solution

H(z, τ ) = η(z)τ−1/2, (3.3)
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−
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FIGURE 6. Rescaled film thickness for Bo = 100 at τ = 10, 100, 1000 (solid lines). The
dashed and dotted lines represent (3.5a,b) and (3.6), respectively.

where η(z) satisfies the following ordinary differential equation:

1
2η + [

η3 (
1 − z2)]′ = 0, (3.4)

where a prime denotes the derivative with respect to z.
Furthermore, the exact solution of (3.4) under the constraint |η′(1)| < +∞ is

η(z) = [ϕ(1)− ϕ(z)]1/2

(
1 − z2

)1/3 , ϕ(z) ≡ z
3 2F1

(
1
3
,

1
2
; 3

2
; z2

)
, (3.5a,b)

where 2F1 is the hypergeometric function. This solution is monotonic in z (dashed line
in figure 6). The monotonic behaviour is a manifestation of the fact that the film drained
by gravity becomes thicker in the flow direction. Similar behaviours occur in falling films
along a vertical wall (de Gennes, Brochard-Wyart & Quéré 2004). The film configuration
was previously described by Lee et al. (2016) and Balestra et al. (2018) as

η(z) = 1
2 + 1

10(1 − z)+ O((1 − z)2), (3.6)

which is a truncated version of (3.5a,b) and is valid for small 1 − z, while (3.5a,b) remains
precise throughout zone 1.

In particular, we have η(1) = 1/2 at the north pole, corresponding to

H|z=1 = 1
2τ

−1/2, τ → +∞. (3.7)

This result has been previously obtained by Takagi & Huppert (2010), and is the same as
the late-stage result of a drop impacting on a sphere (Bakshi et al. 2007).

The statement that capillarity can be neglected is validated by checking the flow rate
(2.12). The capillary flow rate decays as

Bo−1H3 ∂

∂z

[
(1 − z2)2

∂2H
∂z2

]
∝ τ−2, (3.8)

faster than the gravitational flow rate which is H3(1 − z2) ∝ τ−3/2. This means that
capillarity can be neglected in zone 1.
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In figure 6, our theory is compared with numerical solution at three different times at
the late stage. These shapes collapse well throughout this region, confirming the similarity
solution (3.3). As shown in the figure, our prediction of the film configuration (3.5a,b) is
more precise than that in Lee et al. (2016) and Balestra et al. (2018). The profile at lower
position of the sphere cannot be described by the capillarity-free theory, as it serves as a
reflection of capillarity to be discussed below.

3.3.2. Zone 4: pendant drop
At late times of the evolution, the film on the lower body of the sphere is quasi-static,

forming a pendant drop. This zone is essentially the same as the solution of steady states
without rotation, as reported by Kang et al. (2016), but with coefficients not provided
explicitly in their formula. Here we present a fully analytical solution of the pendant drop.
In this region, capillary force is balanced with gravity. Since the flow within the static
pendant drop can be ignored, we set Q = 0 in (2.12) and obtain a third-order ordinary
equation for H(z):

Bo−1 d
dz

[(
1 − z2)2 d2H

dz2

]
− (

1 − z2) = 0. (3.9)

Three boundary conditions are needed. If we use zd to represent the position of the
dimple ring (to be determined in the following), the extremely thin film here is seen as an
apparent contact line, and thus leads to

H(zd) = 0. (3.10)

Since the film here is connected to the film upwards, the apparent contact line should be
accompanied with a vanishing apparent contact angle:

H′(zd) = 0. (3.11)

At the bottom of the pendant drop, we have the third condition from (2.6), which in terms
of z is √

1 − z2H′(z)
∣∣∣
z=−1

= 0. (3.12)

The solution to the problem (3.9)–(3.12) is

H = Bo
3

(
zd

zd − z
1 − zd

+ z ln
1 − zd

1 − z

)
. (3.13)

An extra condition is needed to determine zd. Since the film thickness in zones 1, 2 and 3
tends to vanish as τ → +∞, zone 4 will finally contain the entire liquid, and the volume
conservation (2.11) becomes ∫ zd

−1
H dz = 2, (3.14)

which yields that Bo and zd (or θd) are dependent on each other:

Bo = 24(1 − zd)

(1 + zd)3
= 24(1 − cos θd)

(1 + cos θd)3
. (3.15)

It is trivial to confirm that d2H/dθ 2 is positive at z = zd and negative at z = −1. Therefore,
there must be an inflection point within this region.
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0 45 90 135 180
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H
τ

FIGURE 7. Interface evolution for Bo = 24. Solid lines represent solutions at
τ = 0, 1, 10, 100, 1000. The dashed line displays our analytical solution (3.13).

When time approaches infinity, our numerical result in zone 4 has a limit which is
exactly given by (3.13) (figure 7). Correspondingly, (3.15) predicts the final position of the
dimple ring. Figure 8 shows that this prediction is fairly precise. As we see, the larger the
value of Bo, the lower is the dimple ring. In particular, when Bo = 24, we have zd = 0,
which means the dimple ring is located on the equator of the sphere.

3.3.3. Zone 3: dimple ring
Unlike zone 1 and zone 4, this zone is dominated by capillary and viscous forces, and

gravity is neglected (validated later), similar to the ‘pinch region’ proposed by Lamstaes
& Eggers (2017). The width across the dimple ring is much smaller than the circumference
of the sphere, expressed as |z − zd| � 1. Not only the film thickness but also the width of
the zone is decreasing, and this decreasing is believed to be self-similar since there is no
characteristic length within this region. For our problem, this decreasing can be measured
by flow current. Integrating (2.10) throughout zone 1, i.e. from z = 1 to z = zd, and using
(3.3), we obtain

Q(τ, zd) = −
∫ zd

1

∂H
∂τ

dz = 1
2
τ−3/2

∫ zd

1
η(z) dz. (3.16)

Here we have neglected the flow rate variation in zone 2, which will be estimated as
O(τ−8/5) based on (3.35a,b) and decays faster than (3.16). On the other hand, within
zone 3, the function Q(τ, z) would be

Q(τ, z) = Bo−1H3 ∂

∂z

[(
1 − z2)2 ∂

2H
∂z2

]
, (3.17)

where gravity has been neglected. Since zone 3 is narrow, i.e. z ≈ zd, we have

Q(τ, zd) ≈ Bo−1 (
1 − z2

d

)2
H3 ∂

3H
∂z3

, (3.18)

where the term ∂2H/∂z2 has been neglected since |z − zd| � 1 leads to |∂2H/∂z2| �
|∂3H/∂z3|.
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FIGURE 8. (a) Position of dimple (the first minimum from the bottom of the sphere) at τ = 100.
Circles: numerical solution of (2.4); solid line: (3.15). (b) Effect of Bo on the profile of the
pendant drop.

Combining (3.16) and (3.18), we obtain the well-known ‘current equation’ (valid only
in zone 3):

H3 ∂
3H
∂z3

= J(τ ), (3.19)

where J(τ ) = −Cτ−3/2 and according to (3.15) and (3.16) C is

C = 12
(1 + zd)

5 (1 − zd)
2

∫ 1

zd

η(z) dz. (3.20)

Different forms of J(τ ) have emerged in other problems (Dupont et al. 1993; Lamstaes &
Eggers 2017; van Limbeek et al. 2019).

From (3.20) we see that C is always positive and only depends on zd (or Bo). As shown
in figure 9, C has a minimum Cmin ≈ 1.449 at Bo ≈ 1.644. In addition, for small and large
values of Bo we have

C ∼ 9
16Bo

, Bo → 0+,

C ∼ 4.805
(

Bo
48

)5/3

, Bo → +∞,

⎫⎪⎪⎬
⎪⎪⎭

(3.21)

after analysis.
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FIGURE 9. Relation between C and Bo (solid line). Dashed and dash-dotted lines represent the
asymptotics (3.21).

Now we explore self-similarity of (3.19) by choosing variables

ψ(ξ) = H
τα
, ξ = zd − z

τβ
, (3.22a,b)

where we anticipate both α and β to be negative for the local shrinking behaviour. In this
way, the flow current will be

− Cτ−3/2 = J(τ ) = H3 ∂
3H
∂z3

= −ψ3ψ ′′′τ−4α+3β. (3.23)

The presence of similarity solution requires

− 4α + 3β = − 3
2 , (3.24)

and the self-similar equation becomes

ψ3ψ ′′′ = C. (3.25)

The asymptotic analysis to (3.25) shows ψ ′′(ξ) approaches a non-negative constant when
|ξ | → +∞ (Lamstaes & Eggers 2017). Approaching zone 4 corresponds to taking the
limit ξ → +∞. The slope angle is zero and the curvature is approximately constant when
approaching the apparent contact line, i.e. z → z−

d . The Taylor expansion of (3.13) is

H|z→z−
d

= 4(2 − zd)

(1 + zd)3(1 − zd)
(z − zd)

2 + O((z − zd)
3). (3.26)

Matching between zone 3 and zone 4 requires

d2ψ

dξ 2

∣∣∣∣
ξ→+∞

τα−2β = d2H
dz2

∣∣∣∣
z→z−

d

. (3.27)

This matching condition leads to the second relation between α and β:

α − 2β = 0. (3.28)
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FIGURE 10. Self-similar configuration of the dimple ring. Solid lines represent numerical
solutions of (2.4) at τ = 1, 10, . . . , 105 for Bo = 24, and the dashed line represents the numerical
solution to (3.25) in the limit τ → +∞. The arrow points in the direction of increasing τ .

The result after combining (3.24) with (3.28) is

α = −3/5, β = −3/10. (3.29a,b)

So under the definition of

ψ = H
τ−3/5

, ξ = zd − z
τ−3/10

, (3.30a,b)

the scaled interface profile ψ(ξ) would be approximately unchanged through time when
τ → +∞ (figure 10). Note that the limit configuration is not thought to exist physically
because a circle of contact line will finally emerge.

It can be easily inferred from (3.30a,b) that ∂3H/∂z3 ∝ τ 3/10 and diverges as τ → +∞,
corresponding to a singularity of the capillary pressure gradient; ∂H/∂z and ∂2H/∂z2

remain regular. In particular, we have ∂H/∂z ∝ τ−3/10, indicating that the flow within the
dimple can be treated as a parallel shear flow and lubrication approximation still holds.
Furthermore, according to (3.30a,b), the neglected part of the flow rate generated by
gravity in (2.12) is approximately H3(1 − z2

d) ∝ τ−9/5, which is small compared to the
capillary part Bo−1(1 − z2

d)
2H3(∂3H/∂z3) ∝ τ−3/2, justifying the neglect of gravity at the

beginning of this subsection.
The final shape of the dimple can be obtained by solving (3.25), which is much easier

to solve than the original lubrication equation (2.4). The solution can be determined by
imposing the following constraints:

ψ ′′(+∞) = 8(2 − zd)

(1 + zd)3(1 − zd)
,

ψ ′′(−∞) = 0,

ψ ′(0) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.31)

The first condition is due to (3.27), and the second condition will be checked at the end
of § 3.3.4. The proposal of these two conditions is similar to that of earlier researchers
(Lamstaes & Eggers 2017; van Limbeek et al. 2019). The remaining condition defines the
position of the local minimum. Under these constraints, the solution to (3.25) for Bo = 24
is obtained numerically and displayed as the dashed line in figure 10, where the shape of
the dimple ring approaches the dashed line as τ increases.
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3.3.4. Zone 2: ridge ring
Although the matching of the flow current between zone 1 and zone 3 works, we point

out that the interface configuration does not match because of the different signs of ∂H/∂z
in zone 1 and at the upper part of zone 3, which leads to the existence of zone 2, the
ridge ring. In this narrow transition zone, all three forces are believed to be important. The
position of the ridge ring moves down approaching zone 3, and the local configuration of
the ridge ring keeps narrowing. According to our results, we have zr − zd → 0 as τ →
+∞, where zr is the position of the peak of the ridge. Under the condition |z − zd| � 1,
we have

Bo−1 (
1 − z2

d

)2 ∂
3H
∂z3

= Q(τ ; zd)

H3
+ (

1 − z2
d

)
, (3.32)

according to (2.12). It is confirmed that (3.32) can describe zone 1 by removing the term of
capillarity (left-hand side) and zone 3 by eliminating the term of gravity (last term on the
right-hand side). Similar to the ‘bump’ explored in van Limbeek et al. (2019), the slopes
in zones 2 and 3 should match:

Hr

zr − zd
∼

[
∂H
∂z

]
zone 3

∝ τ−3/10, (3.33)

where Hr is the height of the peak of the ridge. The term Hr/(zr − zd) denotes the
characteristic slope of the ridge, and [∂H/∂z]zone 3 is the slope in zone 3 and can be
estimated according to (3.30a,b).

On the other hand, all three terms in (3.32) should be of the same order in zone 2. The
balance between the first and the third terms yields

Hr

(zr − zd)3
∼

[
∂3H
∂z3

]
zone 2

∝ τ 0. (3.34)

Comparing (3.33) and (3.34), we obtain a self-similar scaling law of the ridge evolution
(figure 11):

zr − zd ∝ τ−3/20, Hr ∝ τ−9/20. (3.35a,b)

In this way, the curvature will be proportional to τ−3/20 and diminish when time approaches
infinity, which justifies the second condition in (3.31).

According to (3.35a,b), the film thickness in zone 2 declines slower than in zone 1 and
zone 3, which reconfirms the ridge ring emerging here. As a transition zone, the ridge ring
makes it possible to match zone 1 and zone 3. The connection between the slowest and
fastest declining rates in zone 2 and zone 3, respectively, forms an evident local fluctuation
between the relatively smooth structures in zone 1 and zone 4.

4. Conclusion and discussion

We have investigated the axisymmetric evolution of gravity-driven films on a solid
sphere. The roles of gravity, capillarity and viscous force have been included and
examined.

Our results show that film evolution displays different features at early and late stages.
At the early stage, the capillary contribution is weak because the film surface is close to a
sphere, as imposed by the initial condition. At the late stage, the film between north and
south poles splits into four zones. At the top of the sphere (zone 1), the evolution is driven
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FIGURE 11. Self-similar evolution of the ridge for Bo = 24. Symbols represent the numerical
solution of (2.4) and lines indicate the scaling law (3.35a,b).

by gravity and resisted by viscosity, forming a thin flat film with a scaling law of H ∝
τ−1/2. At the bottom of the sphere (zone 4), there is a quasi-static pendant drop formed
by the balance of gravity and capillarity. The interface of the pendant drop approaches the
solid wall by a dimple ring (zone 3), or an apparent contact line, with a vanishing apparent
contact angle. As a result, the position of the dimple ring depends on Bo, described by
(3.15). While the dimple ring is thinning at a faster rate than the thin film, the mismatch
between these two regions leads to a local ridge ring, where all three forces are important.
Results show that the ridge ring retains a local maximum film thickness, which decreases
slower than both the thin film and the dimple ring.

Similar connection between a flat film and a quasi-static structure appears in other flow
geometries. In the dip-coating problem (Gao et al. 2016) for example, just above the critical
plate speed of wetting transition, there is a dimple located above the static meniscus with
a zero apparent contact angle (Snoeijer et al. 2008), and the gravity-driven film at the
top meets the dimple with a local ridge (Benilov et al. 2010). Other problems containing
similar order of connection include a thin drop sliding down an inclined plate (Benilov &
Benilov 2015), a gas film below a Leidenfrost drop (van Limbeek et al. 2019), a bubble
rising in a narrow tube (Lamstaes & Eggers 2017), dewetting fronts (Snoeijer & Eggers
2010) and capillary ripples (Jalaal, Seyfert & Snoeijer 2019) in lubrication flows. This
seems to be a general pattern of the distribution of film structures, though the scaling laws
depend on the specific geometry of each problem.

One way to extend our work is to explore the evolution after a contact line (Bonn et al.
2009; Snoeijer & Andreotti 2013) emerges in zone 3, which will lead to film retraction in
both zone 1 and zone 4 for a finite equilibrium contact angle. To simulate this process,
one should introduce models to capture the formation and movement of contact lines,
which can be triggered by van der Waals forces or the presence of roughness when the
film becomes sufficiently thin. These situations are beyond the scope of the present paper.

It is worth noting that the present work suffers from a couple of limitations. First, the
interfacial slopes were assumed small, or the film thickness should be sufficiently thin.
It is not clear to what extent the results produced by lubrication theory are appropriate.
Second, the values of Bo have been set not too large or small such that θd is not too
close to 0 or π (figure 7), which ensures the zones can be well identified. For much larger
values of Bo, our model may lack precision due to the employment of linearized curvature
and the neglect of radial gravity component (Balestra et al. 2018). Furthermore, one may
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expect Rayleigh–Taylor instabilities to occur in the region of the pendant drop (Pitts 1973,
1974). An examination of azimuthal effects based on three-dimensional models may also
be of interest. These topics can be addressed by further experiments or direct numerical
simulations, which will definitely help depict the more complicated film behaviours on
spheres.

As a practical example, the present film configuration can be realized by dip coating
of the sphere away from a liquid reservoir. While the initial film thickness may not be
uniform, the presented features of film evolution at late stages are still helpful since they
are expected to be insensitive to the initial conditions. Moreover, the present work can be
extended to situations where the initial film is thick. The films in zones 1, 2 and 3 will
eventually be sufficiently thin due to drainage and follow the same scaling laws presented
in this work; zone 4 would be characterized by large surface slopes and hence should be
handled by considering the balance between the hydrostatic pressure and the capillary
force retaining the full curvature.
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