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Abstract We introduce a new topology, weaker than the gap topology, on the space of self-adjoint
operators affiliated to a semifinite von Neumann algebra. We define the real-valued spectral flow for a
continuous path of self-adjoint Breuer–Fredholm operators in terms of a generalization of the winding
number. We compare our definition with Phillips’s analytical definition and derive integral formulae for
the spectral flow for certain paths of unbounded operators with common domain, generalizing those
of Carey and Phillips. Furthermore, we prove the homotopy invariance of the real-valued index. As an
example we consider invariant symmetric elliptic differential operators on Galois coverings.
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1. Introduction

Index theory in von Neumann algebras was introduced by Breuer [6,7]. One important
application is to the index theory of elliptic invariant differential operators on Galois
coverings, whose foundations were laid with Atiyah’s L2-index theorem [1]. In the last
10 years much research has been devoted to the real-valued spectral flow in a semifinite
von Neumann algebra, which generalizes the spectral flow introduced in [2]. It began
with a topological definition of the real-valued spectral flow for loops of bounded self-
adjoint Breuer–Fredholm operators due to Perera [20,21]. Phillips presented an analytical
definition [22], which works for general continuous paths of bounded self-adjoint Breuer–
Fredholm operators and which was used in the sequel to prove integral formulae for
the real-valued spectral flow [3,9,10,22]. We refer to [4] for a survey on the analytic
approach, on integral formulae, their applications and for further references.

In parallel, new definitions of the (ordinary) spectral flow for paths of unbounded self-
adjoint Fredholm operators have been given [5,26]. The straightforward way is to define
the spectral flow for unbounded operators as the spectral flow of the bounded transform.
However, it is often difficult to decide whether or not the bounded transform of a given
path depends continuously on the parameter. In [5] the spectral flow was defined for paths
of unbounded self-adjoint Fredholm operators whose resolvents depend continuously on
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the parameter, or equivalently which are continuous in the gap topology. This definition
was further generalized in [26]. In both papers the spectral flow is expressed in terms of
a winding number.

Our first main result in this paper is a new definition of the real-valued spectral flow
in terms of a real-valued winding number. The definition applies to paths (Dt)t∈[0,1] of
unbounded self-adjoint Breuer–Fredholm operators, for which there is ε > 0 such that
φ(Dt) depends continuously on t for all φ ∈ Cc(R) with suppφ ⊂ [−ε, ε]. Our method
is to adapt the strategy of [26] to the semifinite setting. As pointed out in [4, § 7.2] the
approach of Booss-Bavnek, Lesch and Phillips [5] seems not to work in this context.

The second main result is the proof of new integral formulae for operators with compact
resolvents. In contrast to those mentioned above we do not require the path to be a
bounded perturbation of a fixed self-adjoint operator but assume the domain of the
operators to be fixed. For example, our formulae apply to a path of invariant symmetric
elliptic differential operators of positive order on a Galois covering of a closed manifold.
For the (ordinary) spectral flow related formulae were derived in [27].

The paper is organized as follows. In § 2 we define and study a new topology on
the space of self-adjoint unbounded operators affiliated to a semifinite von Neumann
algebra. In § 3 we review the definition of the generalized winding number. In § 4 we use
it to define the real-valued spectral flow for a path of self-adjoint unbounded Breuer–
Fredholm operators that is continuous in this new topology. In § 5 we express the real-
valued index in terms of the real-valued spectral flow. This will imply the homotopy
invariance of the real-valued index. In § 6 we derive integral formulae for the spectral
flow. In § 7 we consider paths of invariant symmetric elliptic differential operators on a
Galois covering. Here we make use of the theory of elliptic operators over C∗-algebras,
which was introduced by Mishchenko and Fomenko [18].

In the following a family or path in a topological space need not be continuous. Pro-
jections are self-adjoint.

2. A new topology on the space of self-adjoint affiliated operators

Let H be a Hilbert space.
We fix a von Neumann algebra N ⊂ B(H) endowed with a faithful normal semifinite

trace τ . By K(N ) we denote the norm-closed two-sided ideal generated by projections
of finite trace and we write Q(N ) = N/K(N ) and let π : N → Q(N ) be the projection.

A closed densely defined operator D on H is affiliated to N if and only if its bounded
transform FD = D(1 + D∗D)−1/2 is in N .

Breuer developed in [6, 7] an index theory in von Neumann algebras. See [23,
Appendix B] and [11, § 3] for further generalizations and modifications as needed here.

An operator D is called a Breuer–Fredholm operator (in N ) if it is closed, densely
defined, affiliated to N and if π(FD) ∈ Q(N ) is invertible. The projection onto the
kernel of a self-adjoint Breuer–Fredholm operator has finite trace. The index of a Breuer–
Fredholm operator D is defined as

indD = τ(1{0}(D∗D)) − τ(1{0}(DD∗)).
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Here 1{0} denotes the characteristic function of {0} ⊂ R. Furthermore, we will write 1�0

for the characteristic function of the set {x � 0} ⊂ R.
We denote the space of self-adjoint operators affiliated to N by AS(N ) and the sub-

space of self-adjoint Breuer–Fredholm operators by ASF(N ). We write AS(N )gap for the
set AS(N ) endowed with the gap topology, which is the weakest topology such that the
map

AS(N ) → N , D �→ (D + i)−1

is continuous, and we write ASF(N )gap for the set ASF(N ) with the subspace topology
of AS(N )gap.

The following well-known property of the gap topology is given here for further refer-
ence.

Lemma 2.1. The map

C0(R) × AS(N )gap → N , (f, D) �→ f(D)

is continuous.
In particular the map

C(R) × N → N , (f, F ) �→ f(F )

is continuous.

Proof. The first statement follows from ‖f(D)‖ � supx∈R |f(x)| and the fact that the
algebra generated by the functions (x ± i)−1 is dense in C0(R). The second statement
follows the continuity of the inclusion N → AS(N )gap. �

Let φ ∈ C∞
c (R) be an even function with suppφ = [−1, 1] and with φ′(x) > 0 for

x ∈ (−1, 0) and define φn ∈ C∞
c (R) by φn(x) := φ(nx) for n ∈ N0. For n ∈ N let ψn ∈

Cc(R) be an odd function with values in [−1, 1] and with ψn(x) = x for x ∈ [−1/n, 1/n].
Furthermore, we assume that ψ1 ∈ C0(R) and

suppψn ⊂
(

− 1
n − 1

,
1

n − 1

)
if n > 1.

Let ψ0(x) = x.
For n ∈ N0 we denote by ASn(N ) the set AS(N ) endowed with the weakest topology

such that the maps

ASn(N ) → K(N ), D �→ (ψn(D) + i)−1K,

ASn(N ) → K(N ), D �→ (ψn(D) − i)−1K,

ASn(N ) → N , D �→ φn(D)

are continuous for all K ∈ K(N ).
Note that for n = 0 the last condition is trivial.
Compare this with the definition in [26]: if H is a separable Hilbert space and

N = B(H) with the standard trace, then the first two conditions are equivalent to the
continuity of D �→ (ψn(D) ± i)−1x for all x ∈ H. Hence in this case Sn(H) → ASn(N )
is continuous, with Sn(H) as defined in [26].

https://doi.org/10.1017/S147474800800008X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800800008X


592 C. Wahl

Lemma 2.2. For f ∈ C0(R) the map

AS0(N ) × K(N ) → K(N ), (D, K) �→ f(D)K

is continuous.

Proof. If f(x) = (x ± i)−1, the assertion follows from the definition of AS0(N ) and
from

‖f(D)K − f(D′)K ′‖ = ‖(f(D) − f(D′))K + f(D′)(K − K ′)‖
� ‖(f(D) − f(D′))K‖ + ‖f(D′)‖ ‖K − K ′‖.

The general case follows from the previous one since K(N ) is an ideal and since the
algebra generated by the functions (x + i)−1 and (x − i)−1 is dense in C0(R). �

Lemma 2.3. Let n ∈ N. For f ∈ Cc(R) with supp f ⊂ (−1/n, 1/n) the map

ASn(N ) × K(N ) → K(N ), (D, K) �→ f(D)K

is continuous. If f is even, then the map

ASn(N ) → N , D �→ f(D)

is continuous.

Proof. For any f ∈ Cc(R) with supp f ⊂ (−1/n, 1/n) there is g ∈ Cc(R) such that
f = (g ◦ ψn)φn. Furthermore, ASn(N ) → AS0(N ), D �→ ψn(D) is continuous. Now the
first assertion follows from the previous lemma.

If f ∈ Cc(R) is an even function with supp f ⊂ (−1/n, 1/n), then there is g ∈ Cc(R)
such that f = g ◦ φn. Hence, by Lemma 2.1, the map ASn → N , D �→ (g ◦ φn)(D) is
continuous. �

It follows that the identity induces continuous maps ASm(N ) → ASn(N ) for m, n ∈
N, m � n. Let AS(N ) be the set AS(N ) endowed with the direct limit topology. The
previous lemma also implies that the topology on AS(N ) does not depend on the choice
of the functions φ and ψn.

For n ∈ N we define

ASFn(N ) := {D ∈ ASF(N ) | φn(D) ∈ K(N )}

and denote by ASFn(N ) the set ASFn(N ) endowed with the subspace topology of
ASn(N ).

Furthermore, we define

ASK(N ) := {D ∈ AS(N ) | (1 + D2)−1 ∈ K(N )} ⊂ ASF(N )

and we will denote by ASK(N ) the set ASK(N ) endowed with the subspace topol-
ogy of AS(N )gap. If D ∈ ASK(N ), then the resolvents of D are in K(N ): from
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(1 + D2)−1 ∈ K(N ) it follows that (1 + D2)−1/2 ∈ K(N ), thus (D ± i)−1 ∈ K(N )
since (D ± i)−1(1 + D2)1/2 ∈ N .

There is a continuous inclusion ASK(N ) → ASFn(N ).
Let ASF(N ) be the inductive limit of the spaces ASFn(N ). Since D ∈ AS(N ) is

Breuer–Fredholm if and only if φn(D) ∈ K(N ) for n big enough, the underlying set of
ASF(N ) is ASF(N ).

Lemma 2.4.

(1) For f ∈ C0(R) the map

ASK(N ) → K(N ), D �→ f(D)

is continuous.

(2) Let n ∈ N. For f ∈ C0(R) with supp f ⊂ (−1/n, 1/n) the map

ASFn(N ) → K(N ), D �→ f(D)

is continuous.

Proof. (1) Since the algebra generated by the functions (x ± i)−1 is dense in C0(R), we
have that f(D) in K(N ) if (D ± i)−1 ∈ K(N ). The continuity follows from Lemma 2.1.

(2) For n > 0 there is g ∈ Cc(R) with supp g ⊂ (−1/n, 1/n) such that f = gφn. Since
ASFn(N ) → K(N ), D �→ φn(D) is continuous, the assertion follows from the previous
lemma. �

Definition 2.5.

(1) A normalizing function for ASK(N ) is an odd non-decreasing function χ ∈ C(R)
with limx→∞ χ(x) = 1 and χ−1(0) = {0}.

(2) A normalizing function for ASFn(N ) is an odd non-decreasing function χ ∈ C(R)
such that limx→∞ χ(x) = 1, furthermore χ−1(0) = {0} and supp(χ2 − 1) ⊂
(−1/n, 1/n).

If χ is a normalizing function for ASK(N ), then

ASK(N ) → K(N ), D �→ χ(D)2 − 1

is well defined and continuous by the previous corollary. More generally, for any f ∈
C([−1, 1]) with f(−1) = f(1) = 1 we have that f ◦ χ − 1 ∈ C0(R), hence

ASK(N ) → K(N ), D �→ f(χ(D)) − 1

is continuous. The analogous statements for ASFn(N ) also hold.
Let B be a compact space. If (Db)b∈B is a continuous family in ASF(N ), then we say

that χ is a normalizing function for (Db)b∈B if χ is a normalizing function for ASFn(N )
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with n such that (Db)b∈B is a continuous family in ASFn(N ). Here we allow n = 0 by
setting ASF0(N ) = ASK(N ).

In the following we establish further useful properties of ASF(N ), similar to those
studied in [26].

If f : R → R is an odd non-decreasing continuous function with f−1(0) = {0}, then
f : AS(N ) → AS(N ) can be shown, by using Lemma 2.3, to be continuous.

Furthermore, if (Db)b∈B is a continuous family in ASF(N ) and (Ub)b∈B is a family of
unitaries in N such that (UbK)b∈B is continuous for each K ∈ K(N ), then (UbDbU

∗
b )b∈B

is a continuous family in ASF(N ).
Sometimes we have to vary the function. Then the argument will be similar to the

following. If f0, f1 are odd non-decreasing continuous function with f−1
i (0) = {0}, i =

0, 1, and if we set ft = (1 − t)f0 + tf1 for t ∈ (0, 1), then for D ∈ ASF(N )

[0, 1] → ASF(N ), t �→ ft(D)

is continuous: for n large enough we have that ψn(D) ∈ K(N ) and for g ∈ Cc(R) with
support small enough we have that g(ft(ψn(D))) = g(ft(D)). By Lemma 2.1 the operator
g(ft(ψn(D))) depends continuously on t. Hence for m big φm(ft(D)) and (ψm(ft(D)) ±
i)−1 depend continuously on t.

Compare the following proposition with [26, Proposition 1.7]. The proof here is analo-
gous. It is given for completeness.

Proposition 2.6.

(1) The identity induces a continuous map from AS(N )gap to AS(N ).

(2) The set ASF(N ) is open in AS(N ).

(3) The identity induces a homeomorphism from AS(N ) ∩ ASF(N ) to ASF(N ).

Proof. Part (1) follows from Lemma 2.1.

(2) Let D0 ∈ ASFn(N ) and let χ be a normalizing function for ASFn(N ). Then χ(D0)2

is invertible in Q(N ). Since

ASn(N ) → N , D �→ χ(D)2 − 1

is continuous by Lemma 2.3, the map ASn(N ) → Q(N ), D �→ χ(D)2 is continuous as
well. Hence there is an open neighbourhood U of D0 in ASn(N ) such that χ(D)2 is
invertible in Q(N ) for all D ∈ U . This implies that U ⊂ ASF(N ).

Part (3) is clear. �

The previous constructions generalize to (not necessarily self-adjoint) affiliated opera-
tors as follows.

We fix the trace Tr ⊗τ on the semifinite von Neumann algebra Mn(N ) = Mn(C)⊗N .
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We denote by A(N ) the space of closed densely defined operators affiliated to N , which
we consider as a subspace of AS(M2(N )) via the map

G : A(N ) → AS(M2(N )), D �→
(

0 D∗

D 0

)
.

Furthermore, AF(N ) means the subspace of Breuer–Fredholm operators. We write

AFn(N ) := AF(N ) ∩ ASFn(M2(N )).

Let AFn(N ), respectively AF(N ), be the space AFn(N ), respectively AF(N ), with the
subspace topology of ASFn(M2(N )), respectively ASF(M2(N )).

We say that χ is a normalizing function for AFn(N ) if χ is a normalizing function for
ASFn(M2(N )) and then define χ(D), χ(D∗) ∈ N for D ∈ AFn(N ) by

χ(G(D)) =

(
0 χ(D∗)

χ(D) 0

)
.

Remark. In the following we point out one crucial difference between the situation
considered here and the special case N = B(H) for a separable Hilbert space H, which
was studied in [26]. In the case N = B(H) we have that K(N ) = K(H). If (Tb)b∈B is a
uniformly bounded family in B(H), then the map

B → K(H), b �→ TbK

is continuous for all K ∈ K(H) if and only if

B → H, b �→ Tbx

is continuous for all x ∈ H. Hence if B is compact and (Db)b∈B is a continuous family
in AS0(B(H)), then for f ∈ C(R) the map

B → K(H), b �→ f(Db)K

is continuous for all K ∈ K(H). The last statement does not generalize to an arbitrary
semifinite von Neumann algebra N . (By Lemma 2.2 it generalizes if we assume that
f ∈ C0(R).) The standard proof (see, for example, [26, Proposition 1.1]) does not work
here since an element D ∈ AS(N ) is not necessarily densely defined as an operator on
the Banach space K(N ). Differently put, (D + i)−1K(N ) need not be dense in K(N ).
This will be demonstrated in the first part of the following example. In the second part
we construct a continuous family (Db)b∈B in AS0(N ) and give a K ∈ K(N ) such that
B → K(N ), b �→ Db(1 + D2

b )−1/2K is not continuous.

Example. Let N = L∞(R) act on H = L2(R) by multiplication. Define the trace

τ(f) =
∫ ∞

−∞
f(x) dx for f ∈ L∞(R) ∩ L1(R).
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Take g(x) = (1/|x|)+1. Clearly, g ∈ AS(L∞(R)). Since L∞(R) ∩ L1(R) is dense in K(N ),
the set g−1(L∞(R) ∩ L1(R)) is dense in the domain of g as an operator on K(N ). It is
a subset of L∞(R) ∩ L1(R), which is not dense with respect to the L∞-norm, hence g is
not densely defined as an operator on K(N ).

Let B = N ∪ {∞} be the one point compactification of N ⊂ R. For n ∈ N we define
gn ∈ L∞(R) as follows. We set

gn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if |x| >
1
n

and |x| ∈
]

1
2k + 1

,
1
2k

]
for k ∈ N,

−k if |x| >
1
n

and |x| ∈
]

1
2k

,
1

2k − 1

]
for k ∈ N,

n for |x| ∈
]
0,

1
n

]
,

0 otherwise.

We define g∞ as the pointwise limit of the functions gn. Then (gn + i)−1 converges in
L∞(R) to (g∞ + i)−1 for n → ∞, hence the family (gn)n∈B is continuous in AS0(N )
(even in AS(N )gap). However for f(x) = x(1 + x2)−1/2 and 1[−1,1] ∈ K(N ) the function
(f ◦ gn)1[−1,1] does not converge to (f ◦ g∞)1[−1,1] in L∞(R) for n → ∞.

3. Real-valued winding number

The definition of the winding number and its properties, which we discuss in this section,
are well known at least in closely related contexts. The winding number is discussed for
Banach algebras with trace in [13, § 1] and appears also in [12, Appendix § 4]. We give
the proofs for completeness.

We write l1(N ) for the ideal of operators A ∈ N such that τ(|A|) < ∞. Endowed with
the norm ‖A‖1 := ‖A‖ + τ(|A|) it is a Banach space (see [8, Proposition A.1]) and it
holds

‖SAT‖1 � ‖S‖ ‖A‖1 ‖T‖

for S, T ∈ N and A ∈ l1(N ). Moreover, l1(N ) is dense in K(N ).
As mentioned before, the projection onto the kernel of a self-adjoint Breuer–Fredholm

operator is in l1(N ). This implies that any projection P ∈ K(N ) is in l1(N ) since the
operator (1−P ) is Breuer–Fredholm by π(1−P ) = π(1) ∈ Q(N ). We will need this fact
later on.

Let Gl(N ) ⊂ N be the group of invertible elements and let

GlK(N ) = {1 + K ∈ Gl(N ) | K ∈ K(N )}.

Furthermore, U(N ) ⊂ N denotes the unitary group and

UK(N ) := U(N ) ∩ GlK(N ).

We endow these groups with the subspace topology.
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We define for s : [a, b] → GlK(N ) with s − 1 ∈ C1([a, b], l1(N ))

w(s) :=
1

2πi

∫ b

a

τ(s(x)−1s′(x)) dx ∈ R.

For U ∈ GlK(N ) ∩ (1 + l1(N ))

w(sU) = w(Us) = w(s),

and for U ∈ Gl(N )
w(U−1sU) = w(s).

The following lemma is used to prove homotopy invariance of w.

Lemma 3.1. If h : [a, b] × [c, d] → GlK(N ) such that h − 1 ∈ C1([a, b] × [c, d], l1(N )),
then

w(h(· , c)) + w(h(b, ·)) − w(h(a, ·)) − w(h(· , d)) = 0.

Proof. We can subdivide the rectangle [a, b] × [c, d] into smaller rectangles and add
up the contributions of the pieces without changing the value of the left-hand side.
Therefore, and by compactness it is enough to prove the assertion for h such that in
C1([a, b] × [c, d], l1(N ))

‖h − h(a, a)‖C1 < ‖h(a, a)−1‖−1.

We set g(x, y) = h(x, y)h(a, a)−1. It is enough to show the assertion for g. Since ‖g −
1‖C1 < 1 in C1([a, b] × [c, d], l1(N )), the logarithm f(x, y) = log(g(x, y)) is well defined
in C1([a, b] × [c, d], l1(N )). We have that

w(g(· , c)) =
1

2πi

∫ b

a

τ(∂xf(x, c)) dx

=
1

2πi

∫ b

a

∂xτ(f(x, c)) dx

=
1

2πi
(τ(f(b, c)) − τ(f(a, c))).

Similar equations hold for the other three terms. Inserting them implies the claim. �

We consider a function on S1 as a function on [0, 1] whose values at the endpoints
coincide. We denote by π1(UK(N )) the free first homotopy group of UK(N ).

Proposition 3.2. The winding number extends to a homomorphism

w : π1(UK(N )) → R.

Proof. Since C1(S1, l1(N )) is dense in C(S1, K(N )), for any loop s in UK(N ) there
is a loop s̃ homotopic to s in GlK(N ) such that 1 − s̃ ∈ C1(S1, l1(N )). We define
w(s) := w(s̃). This is well defined: If there is a homotopy in GlK(N ) between two loops s̃1

and s̃2 with s̃i − 1 ∈ C1(S1, l1(N )), i = 1, 2, then there is a homotopy h between s̃1 and s̃2

in GlK(N ) with h−1 ∈ C1(S1×[0, 1], l1(N )). By the previous lemma w(s̃1) = w(s̃2). �
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The definition of the winding number extends to matrices in a straightforward way. The
integral formula holds also for s with (s − 1) ∈ C1

pw(S1, l1(N )). Here C1
pw(S1, l1(N )) ⊂

C(S1, l1(N )) denotes the space of continuous piecewise differentiable functions with
piecewise continuous derivative.

In the following we sketch a more abstract way via K-theory of defining the winding
number.

First note that l1(N ) is closed under holomorphic functional calculus in K(N ): if
T ∈ l1(N ), λ ∈ C

∗ and C ∈ C + K(N ) are such that (λ + T )C = 1, then C =
λ−1(1 − TC) ∈ C + l1(N ).

Since furthermore l1(N ) is dense in K(N ), we have that K∗(K(N )) ∼= K∗(l1(N )).
Hence the trace induces a homomorphism τ : K0(K(N )) → R. Furthermore, there is a
homomorphism

π1(UK(N )) → K1(C(S1, K(N )))
∼= K1(K(N )) ⊕ K1(C0((0, 1), K(N )))

→ K1(C0((0, 1), K(N )))
∼= K0(K(N )),

where the third map is defined by mapping K1(K(N )) to zero and the last map is given
by Bott periodicity. It can be checked that the composition of this map with τ agrees
with w.

The motivation for introducing the concrete definition of the real-valued winding num-
ber in terms of the integral formula is that it can be used to derive new integral formulae
for the spectral flow (see § 6). (See also [27] for the case N = B(H) for a separable
Hilbert space H.)

4. Real-valued spectral flow

Before defining the real-valued spectral flow in terms of the winding number we review
Phillips’s analytic definition of the real-valued spectral flow in a semifinite von Neu-
mann algebra, which we call analytic spectral flow, denoted by sfa, for the moment.
It applies to any path (Dt)t∈[0,1] in ASF(N ) such that the bounded transform FDt

depends continuously on t. Let Pt := 1�0(Dt). Recall the projection π : N → Q(N ). If
‖π(Ps) − π(Pt)‖ < 1

2 for all s, t ∈ [0, 1], then

sfa((Dt)t∈[0,1]) := ind(P0P1).

The right-hand side is well defined since P0P1 is Breuer–Fredholm in P0NP1. The general
case can be reduced to this case by cutting the path into small enough pieces and adding
up the contributions of the pieces. Here we use that π(Pt) depends continuously on t.
Let χ be a normalizing function of the path (Dt)t∈[0,1]. Then π(Pt) = π( 1

2 (χ(Dt) + 1)).
Continuity of the bounded transform implies that χ(Dt) depends continuously on t, hence
also π(Pt).
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Definition 4.1. Let (Dt)t∈[0,1] be a continuous path in ASF(N ) with invertible end-
points. Let χ ∈ C(R) be a normalizing function of (Dt)t∈[0,1] such that χ(D0) and χ(D1)
are involutions. Then we define

sf((Dt)t∈[0,1]) := w((eπi(χ(Dt)+1))t∈[0,1]) ∈ R.

The right-hand side is well defined since eπi(χ(Dt)+1) ∈ C(S1,UK(N )) by the remark
after Definition 2.5. The homotopy invariance of the winding number implies that the
definition does not depend on the choice of the normalizing function: for two normalizing
functions χ0, χ1 the interpolation χs = sχ1 + (1 − s)χ0 is also a normalizing function
and eπi(χs(Dt)+1) depends continuously on s and t.

In a similar way the spectral flow can be defined in a C∗-algebraic setting as studied
in [19]. Instead of operators affiliated to a von Neumann algebra one would have to
consider regular unbounded multipliers on the ideal that plays the role of K(N ). Note
that elements of AS(N ) may fail to be regular as unbounded multipliers on K(N ) since
they need not be densely defined (see the remark at the end of § 2).

Some properties are in order.

• If each Dt has a bounded inverse, then sf((Dt)t∈[0,1]) = 0.

There is ε > 0 such that (−ε, ε) is a subset of the resolvent set of Dt for all t ∈ [0, 1].
Hence for a normalizing function χ of (Dt)t∈[0,1] with supp(χ2 − 1) ⊂ (−ε, ε) we
have that eπi(χ(Dt)+1) = 1. Thus

w((eπi(χ(Dt)+1))t∈[0,1]) = 0.

• Let (Ut)t∈[0,1] be a path of unitaries in N such that [0, 1] → K(N ), t �→ UtK is
continuous for each K ∈ K(N ). Then

sf((UtDtU
∗
t )t∈[0,1]) = sf((Dt)t∈[0,1]).

Since
[0, 1] × S1 → UK(N ), (s, t) �→ Usteπi(χ(Dt)+1)U∗

st

is continuous, homotopy invariance of the winding number implies that

w((Uteπi(χ(Dt)+1)U∗
t )t∈[0,1]) = w((U0eπi(χ(Dt)+1)U∗

0 )t∈[0,1])

= w((eπi(χ(Dt)+1))t∈[0,1]).

• The spectral flow is homotopy invariant; i.e. if (Dst)(s,t)∈[0,1]×[0,1] is a continuous
family in ASF(N ) and Ds0, Ds1 are invertible for each s ∈ [0, 1], then

sf((D0t)t∈[0,1]) = sf((D1t)t∈[0,1]).

The definition of the real-valued spectral flow generalizes to paths with not necessarily
invertible endpoints as follows.
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If, for example, D0 is not invertible, then let ε ∈ (0, 1) be such that Q = 1[−ε,ε](D0) ∈
K(N ). Since D0 + Q is invertible, we can define

sf((Dt)t∈[0,1]) := sf((Dt + (1 − t)Q0)t∈[0,1]) − sfa((D0 + (1 − t)Q0)t∈[0,1]).

The definition in the case where D1 is not invertible, respectively D0, D1 are both not
invertible, is similar.

By using reparametrization the spectral flow can be defined also for compact intervals
different from [0, 1]. It is additive with respect to concatenation of paths.

The (analytic) spectral flow will sometimes be taken in subalgebras of N without
change of notation.

The following technical lemma is needed in the proof of the subsequent proposition.

Lemma 4.2. If F ∈ N is a bounded self-adjoint operator such that π(F 2) = 1 ∈ Q(N ),
then F + A is a Breuer–Fredholm operator for any self-adjoint A ∈ N with ‖π(A)‖ < 1.

Furthermore, for ‖π(A)‖ < 1
2 ,

‖π(1�0(F + A)) − π(1�0(F ))‖ < 2‖π(A)‖.

Proof. Since the spectrum of π(F ) is a subset of {−1, 1} and ‖π(A)‖ < 1, the spectrum
of π(F + A) does not contain zero. This proves the first assertion.

Now let Γ = {|λ − 1| = 1} ⊂ C with anticlockwise orientation. Then

‖π(1�0(F + A)) − π(1�0(F ))‖ �
∥∥∥∥ 1

2πi

∫
Γ

(π(F + A) − λ)−1 − (π(F ) − λ)−1 dλ

∥∥∥∥
=

∥∥∥∥ −1
2πi

∫
Γ

(π(F + A) − λ)−1π(A)(π(F ) − λ)−1 dλ

∥∥∥∥
� ‖π(A)‖ sup

λ∈Γ
(‖(π(F + A) − λ)−1‖ ‖(π(F ) − λ)−1‖)

< 2‖π(A)‖.

�

Proposition 4.3. Let (Dt)t∈[0,1] be a path in ASF(N ) such that (FDt)t∈[0,1] is a con-
tinuous path in N .

Then
sfa((Dt)t∈[0,1]) = sf((Dt)t∈[0,1]).

Proof. Without loss of generality (by cutting the path into small enough pieces) we may
assume that ‖π(P0) − π(Pt)‖ < 1

16 for all t ∈ [0, 1], where Pt = 1�0(Dt). Furthermore, it
is enough to consider the case where D0, D1 are invertible. Define Bt := (1 − t)(2P0 −
1) + t(2P1 − 1). Then Pi = 1�0(Bi), i = 0, 1. Since

‖π(Bt − B0)‖ = ‖π(2t(P1 − P0))‖ < 1
8 ,

by the previous lemma
‖π(1�0(Bt)) − π(P0)‖ < 1

4 .
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Thus for all s, t ∈ [0, 1]

‖π(1�0(Bs)) − π(1�0(Bt))‖ � ‖π(1�0(Bs)) − π(P0)‖ + ‖π(P0) − π(1�0(Bt))‖
< 1

2 .

By the definition of the analytic spectral flow

sfa((Dt)t∈[0,1]) = ind(P0P1) = sfa((Bt)t∈[0,1]).

Let χ be a normalizing function of (Dt)t∈[0,1]. The map

[0, 1] × [0, 1] → ASF(N ), (s, t) → (1 − s)Dt + sχ(Dt)

is continuous, hence by homotopy invariance

sf((Dt)t∈[0,1]) = sf((χ(Dt))t∈[0,1]).

By the previous lemma the map

[0, 1] × [0, 1] → ASF(N ), (s, t) → (1 − s)χ(Dt) + sBt

is well defined since

(1 − s)χ(Dt) + sBt = χ(Dt) + s(Bt − χ(Dt))

and
‖π(Bt − χ(Dt))‖ � ‖π(Bt − B0)‖ + ‖π(2P0 − 1) − π(2Pt − 1)‖ < 1.

Furthermore, the map is continuous.
Again by homotopy invariance this implies that

sf((χ(Dt))t∈[0,1]) = sf((Bt)t∈[0,1]).

We will use an idea of [4, § 5], where the spectral flow of a path between involutions is
discussed, in order to show that

sf((Bt)t∈[0,1]) = sfa((Bt)t∈[0,1]).

Then the assertion follows.
The operator Bt is invertible for t 
= 1

2 . Choose r > 0 such that P := 1[0,r](B2
1/2) ∈

l1(N ). This is possible since B2
1/2 is a self-adjoint Breuer–Fredholm operator. Since

B2
1/2Bt = BtB

2
1/2 for all t ∈ [0, 1], we have that [P, Bt] = 0. Hence Bt = (1 − P )Bt(1 −

P ) + PBtP . It is clear that sfa and sf are additive with respect to direct sums. Since
(1 − P )Bt(1 − P ) is invertible for any t ∈ [0, 1], the contribution of (1 − P )N (1 − P ) to
sfa((Bt)t∈[0,1]), respectively sf((Bt)t∈[0,1]), vanishes. We calculate the contribution of the
finite von Neumann algebra PNP : By [4, § 5.1]

sfa((PBtP )t∈[0,1]) = 1
2τ(PB1P − PB0P ) = 1

2

∫ 1

0
τ

(
d
dt

PBtP

)
.
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By the integral formula for the winding number

sf((PBtP )t∈[0,1]) =
1

2πi

∫ 1

0
τ

(
e−πi(PBtP+1) d

dt
eπi(PBtP+1)

)
dt

= 1
2

∫ 1

0
τ

(
d
dt

PBtP

)
dt.

The last equality can be proven for example by slightly modifying the proof of [15, § I.6.11,
Lemma 3], which uses the Cauchy formula. It also follows from the results in § 6.

An alternative proof of the last part would be to consider the limit r → 0; compare
with the proof of Proposition 5.1. �

5. Real-valued spectral flow and index

The real-valued spectral flow and the real-valued index are related as follows.

Proposition 5.1. Let D ∈ AF(N ). Then

sf

( (
t − 1

2 D∗

D 1
2 − t

)
t∈[0,1]

)
= ind(D).

Proof. Let

D̃t :=

(
t − 1

2 D∗

D 1
2 − t

)
.

From

D̃2
t =

(
(t − 1

2 )2 + D∗D 0
0 (t − 1

2 )2 + DD∗

)

it follows that D̃t is invertible for t 
= 1
2 . We define the Breuer–Fredholm operator

Bt := D̃t|D̃0|−1.

Since D̃2
0 = D̃2

1, the operators B0 and B1 are involutions. By D̃t = (1 − t)D̃0 + tD̃1 we
have that

Bt = (1 − t)B0 + tB1.

Furthermore, (s, t) �→ sD̃t(1 + D̃2
t )−1/2 + (1 − s)Bt is a homotopy in ASF(N ) between

(Bt)t∈[0,1] and the bounded transform of (D̃t)t∈[0,1]. Thus

sf((D̃t)t∈[0,1]) = sf((Bt)t∈[0,1]).

The following argumentation is essentially as in [4, Proof of Proposition 5.3]; compare
also with the last part of the proof of Proposition 4.3.

There is r0 > 0 such that for all 0 � r < r0

Pr := 1[0,r](B2
1/2) ∈ l1(N ).
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Furthermore, [Pr, Bt] = 0. Since Pr converges strongly to P0 for r → 0, the trace τ(Pr)
converges to τ(P0). Let r ∈ (0, r0). The spectral flow of (Bt)t∈[0,1] in N equals the sum
of the spectral flow of ((1 − Pr)Bt(1 − Pr))t∈[0,1] in (1 − Pr)N (1 − Pr), the spectral
flow of ((Pr − P0)Bt(Pr − P0))t∈[0,1] in (Pr − P0)N (Pr − P0) and the spectral flow of
(P0BtP0)t∈[0,1] in P0NP0. The contribution of (1 − Pr)N (1 − Pr) vanishes since (1 −
Pr)Bt(1 − Pr) is invertible for all t ∈ [0, 1].

From

sf(((Pr − P0)Bt(Pr − P0))t∈[0,1]) = 1
2τ((Pr − P0)(B1 − B0)(Pr − P0))

(see the formula at the end of the proof of Proposition 4.3), it follows that

|sf(((Pr − P0)Bt(Pr − P0))t∈[0,1])| � τ(Pr − P0).

Hence the contribution of (Pr − P0)N (Pr − P0) converges to zero for r → 0.
Furthermore,

Ran P0 = Ker D̃2
1/2 = Ker D ⊕ Ker D∗

and with respect to this decomposition

P0BtP0 = (t − 1
2 ) ⊕ ( 1

2 − t).

Hence sf((P0BtP0)t∈[0,1]) = ind(D). �

Proposition 5.2. The index
ind : AF(N ) → R

is homotopy invariant.

Proof. If (Dt)t∈[0,1] is a continuous path in AF(N ), then

[0, 1] × [0, 1] → ASF(M2(N )), (s, t) �→
(

t − 1
2 D∗

s

Ds
1
2 − t

)

is continuous. Now the assertion follows from the previous proposition and the homotopy
invariance of the spectral flow. �

6. Integral formulae

In this section we derive integral formulae for the spectral flow in the spirit of those
proven in [9,10]. For simplicity we restrict to paths with invertible endpoints. Formulae
for paths whose endpoints are not both invertible can then be obtained by using the
definition of the spectral flow in § 4.

We begin by studying how a path of operators (Ft)t∈[0,1] in N with ‖Ft‖ � 1 and such
that (t �→ FtK) ∈ C1([0, 1], l1(N )) for K ∈ l1(N ) behaves under functional calculus.

Since, as an operator on l1(N ), the derivative (d/dt)Ft is the strong limit of the
bounded operators (1/h)(Ft+h − Ft) for h → 0, it is a bounded operator on l1(N ).
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Lemma 6.1. Let (Ft)t∈[0,1] be a path of self-adjoint operators in N with ‖Ft‖ � 1 for
all t ∈ [0, 1] and such that (t �→ FtK) ∈ C1([0, 1], l1(N )) for all K ∈ l1(N ).

Let g be a holomorphic function defined on a neighbourhood of [−1, 1]. Then for all
K ∈ l1(N )

(t �→ g(Ft)K) ∈ C1([0, 1], l1(N ))

and
d
dt

g(Ft)K = −
∫

Γ

g(λ)(Ft − λ)−1
(

d
dt

Ft

)
(Ft − λ)−1K dλ,

where Γ is a closed curve in the domain of g, not intersecting [−1, 1] and with winding
number 1 with respect to the origin.

Proof. By

((Ft+h − λ)−1 − (Ft − µ)−1)K = −(Ft+h − λ)−1(Ft+h − Ft − λ + µ)(Ft − µ)−1K,

the function
(C \ [−1, 1]) × [0, 1] → l1(N ), (λ, t) �→ (Ft − λ)−1K

is continuous. Hence the Cauchy formula implies that (t �→ g(Ft)K) ∈ C([0, 1], l1(N )).
The assertion on the derivative follows from the Cauchy formula and

d
dt

(Ft − λ)−1K = (Ft − λ)−1
(

d
dt

Ft

)
(Ft − λ)−1K.

�

Proposition 6.2. Let (Ft)t∈[0,1] be a path of self-adjoint operators in N with ‖Ft‖ � 1
for all t ∈ [0, 1] and such that (t �→ FtK) ∈ C1([0, 1], l1(N )) for all K ∈ l1(N ). Let
g ∈ C2

c (R).
Then for all K ∈ l1(N )

(t �→ g(Ft)K) ∈ C1([0, 1], l1(N ))

and
d
dt

g(Ft)K =
∫ ∞

−∞

∫ 1

0
iλĝ(λ)ei(1−u)λFt

(
d
dt

Ft

)
eiuλFtK du dλ,

where ĝ ∈ L1(R) is defined via Fourier transform such that

g(x) =
∫ ∞

−∞
ĝ(λ)eiλx dλ.

The integral converges in l1(N ).

Proof. Since the Fourier transform maps C1
c (R) to L1(R), it holds that λĝ(λ) ∈ L1(R).

We have that

g(Ft) =
∫ ∞

−∞
ĝ(λ)eiλFt dλ.
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By the previous lemma
(t �→ eiλFtK) ∈ C1([0, 1], l1(N ))

for any K ∈ l1(N ). The expression depends also continuously on λ. Hence (t �→
g(Ft)K) ∈ C([0, 1], l1(N )).

Let Gs := sFt+h + (1 − s)Ft. We have that

eiλFt+h − eiλFt =
∫ 1

0

d
ds

eiλGs ds

= iλ
∫ 1

0

∫ 1

0
ei(1−u)λGs(Ft+h − Ft)eiuλGs ds du.

Thus for K ∈ l1(N )

d
dt

eiλFtK = lim
h→0

1
h

(eiλFt+h − eiλFt)K

= lim
h→0

iλ
h

∫ 1

0

∫ 1

0
ei(1−u)λGs(Ft+h − Ft)eiuλGsK ds du

= iλ
∫ 1

0
ei(1−u)λFt

(
d
dt

Ft

)
eiuλFtK du.

�

Lemma 6.3. Let (Ft)t∈[0,1] be a path of self-adjoint operators in N with ‖Ft‖ � 1 for
all t ∈ [0, 1] and such that (t �→ FtK) ∈ C1([0, 1], l1(N )) for all K ∈ l1(N ), furthermore
such that (t �→ (1 − F 2

t )) ∈ C1([0, 1], l1(N )). If f is a holomorphic function defined on a
neighbourhood of [−1, 1] with f(−1) = f(1) = 0, then (t �→ f(Ft)) ∈ C1([0, 1], l1(N )).

Proof. We apply Lemma 6.1. The function g(z) = f(z)/(z2 − 1) is holomorphic on the
domain of f . Hence f(Ft) = g(Ft)(F 2

t − 1) ∈ C([0, 1], l1(N )) and

d
dt

f(Ft) =
(

d
dt

g(Ft)
)

(F 2
t − 1) + g(Ft)

d
dt

(F 2
t − 1) ∈ C([0, 1], l1(N )).

�

In the following let χ ∈ C2
c (R) be an odd function such that χ(1) = 1 and χ′(0) > 0

and such that χ|[−1,1] is non-decreasing. Note that χ(x/(x2 + 1)1/2) is a normalizing
function for ASK(N ).

In the proof of the theorem we will use that if D ∈ ASK(N ), then φ(D) ∈ l1(N ) for
all φ ∈ Cc(R). This can be seen as follows. Let n ∈ N be such that suppφ ⊂ [−n, n] and
let ψ ∈ Cc(R) be such that ψ|[−n,n] = 1. Since ψ(D) ∈ K(N ) (this is a special case of
Lemma 2.4), also 1[−n,n](D) = 1[−n,n](D)ψ(D) ∈ K(N ), thus 1[−n,n](D) ∈ l1(N ). Hence
φ(D) = 1[−n,n](D)φ(D) ∈ l1(N ).
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Theorem 6.4. Let (Ft)t∈[0,1] be a path of self-adjoint Breuer–Fredholm operators in
N such that Ft is the bounded transform of an element of ASK(N ) for each t ∈ [0, 1].
Assume that (t �→ FtK) ∈ C1([0, 1], l1(N )) for all K ∈ l1(N ), furthermore that (t �→
χ′(Ft)) ∈ C([0, 1], l1(N )) and that (t �→ (χ(Ft)2 − 1)) ∈ C1([0, 1], l1(N )). Let F0, F1 be
invertible.

Then

sf((Ft)t∈[0,1]) = 1
2

∫ 1

0
τ

((
d
dt

Ft

)
χ′(Ft)

)
dt

+ 1
2τ(2P1 − 1 − χ(F1)) − 1

2τ(2P0 − 1 − χ(F0)),

where Pi = 1�0(Fi).

Proof. Since (2Pi − 1) − χ(Fi) = ((2Pi − 1) + χ(Fi))−1(1 − χ(Fi)2) ∈ l1(N ), the last
two terms on the right-hand side are well defined.

The operators Gt := (1 − t)(2P0 − 1) + tχ(F0) and Ht := (1 − t)χ(F1) + t(2P1 − 1) are
invertible for each t ∈ [0, 1], hence

sf((Gt)t∈[0,1]) = sf((Ht)t∈[0,1]) = 0.

From

G2
t − 1 = ((2P0 − 1) + t(χ(F0) − (2P0 − 1)))2 − 1

= t2(χ(F0) − (2P0 − 1))2 + 2t(2P0 − 1)(χ(F0) − (2P0 − 1))

we see that (t �→ (G2
t − 1)) ∈ C1([0, 1], l1(N )). Analogously (t �→ (H2

t − 1)) ∈
C1([0, 1], l1(N )).

Define (Qt)t∈[−1,2] by Qt := χ(Ft) for t ∈ [0, 1] and Qt := Gt+1 for t ∈ [−1, 0] and
Qt := Ht−1 for t ∈ [1, 2]. Then Q−1, Q2 are involutions.

By the previous lemma (t �→ (eπi(Qt+1) − 1)) ∈ C1
pw([−1, 2], l1(N )).

Set

L =
1

2πi

∫ 1

0
τ

(
e−πi(Gt+1) d

dt
eπi(Gt+1)

)
dt +

1
2πi

∫ 1

0
τ

(
e−πi(Ht+1) d

dt
eπi(Ht+1)

)
dt.

The definition of the spectral flow and the integral formula for the winding number
imply that

sf((Ft)t∈[0,1]) = sf((Qt)t∈[−1,2])

=
1

2πi

∫ 1

0
τ

(
e−πi(χ(Ft)+1) d

dt
eπi(χ(Ft)+1)

)
dt + L.

We calculate the first term in the last line.
Let (φn)n∈N be an increasing sequence of smooth functions from [−1, 1] to [0, 1] with

φ(x) = 1 for x ∈ [−1 + (2/n), 1 − (2/n)] and φ(x) = 0 for |x| � 1 − (1/n). Then
(φn(Ft))n∈N is uniformly bounded and converges strongly to the identity for n → ∞.
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Furthermore, φn(Ft) ∈ l1(N ) for t ∈ [0, 1]. (Here is where we need the assumption that
Ft is the bounded transform of a self-adjoint operator with resolvents in K(N ).)

With f := eπi(χ+1) − 1

τ

(
e−πi(χ(Ft)+1) d

dt
f(Ft)

)
= lim

n→∞
τ

(
e−πi(χ(Ft)+1)

(
d
dt

f(Ft)
)

φn(Ft)
)

.

We use Lemma 6.2 and get

τ

(
e−πi(χ(Ft)+1)

(
d
dt

f(Ft)
)

φn(Ft)
)

= τ

(
e−πi(χ(Ft)+1)

∫ ∞

−∞

∫ 1

0
iλf̂(λ)eiuλFt

(
d
dt

Ft

)
ei(1−u)λFtφn(Ft) du dλ

)

= τ

((
d
dt

Ft

)
f ′(Ft)e−πi(χ(Ft)+1)φn(Ft)

)

= iπτ

((
d
dt

Ft

)
χ′(Ft)φn(Ft)

)
.

In the limit n → ∞ we obtain that

τ

(
e−πi(χ(Ft)+1) d

dt
f(Ft)

)
= iπτ

((
d
dt

Ft

)
χ′(Ft)

)
.

Hence

sf((Ft)t∈[0,1]) − L = 1
2

∫ 1

0
τ

((
d
dt

Ft

)
χ′(Ft)

)
dt.

We evaluate L. We have that

1
2πi

∫ 1

0
τ

(
e−πi(Gt+1) d

dt
eπi(Gt+1)

)
dt = 1

2

∫ 1

0
τ

(
d
dt

Gt

)
dt

= − 1
2τ((2P0 − 1) − χ(F0)).

Analogously,

1
2πi

∫ 1

0
τ

(
e−πi(Ht+1) d

dt
eπi(Ht+1)

)
dt = 1

2τ((2P1 − 1) − χ(F1)).

Thus
L = 1

2τ((2P1 − 1) − χ(F1)) − 1
2τ((2P0 − 1) − χ(F0)).

�

In the following we derive a variation of the above theorem for paths of unbounded
operators with common domain. Such a situation arises naturally in geometric examples
(see § 7).

For a closed operator D on H we denote by H(D) the Hilbert space whose underlying
vector space is dom D and whose scalar product is given by

〈x, y〉D := 〈x, y〉 + 〈Dx, Dy〉.
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By B(H(D), H) we mean the space of bounded operators from H(D) to H endowed with
the operator norm.

Let (Dt)t∈[0,1] be a path of operators in ASF(N ) with common domain.
If (t �→ Dt) ∈ C([0, 1], B(H(D0), H)), then by [17, Proposition 2.2] the bounded

transform Ft = Dt(1 + D2
t )−1/2 depends continuously on t. However it is not clear to

the author whether or not (t �→ Dt) ∈ C1([0, 1], B(H(D0), H)) implies that (t �→ Ft) ∈
C1([0, 1],N ), or at least (t �→ FtK) ∈ C1([0, 1], l1(N )) for K ∈ l1(N ). Therefore, we will
modify the previous theorem.

Before doing so we discuss some technical points, which will be used in the following
without further notice.

If D, D′ ∈ AS(N ) and D′ ∈ B(H(D), H), then D′(1 + D2)−1/2 ∈ N . This holds since
fn(D′)D′(1 + D2)−1/2 ∈ N converges strongly to D′(1 + D2)−1/2, if fn is defined as
fn(x) := f(x/n) for some f ∈ Cc(R) with f |[−1,1] = 1.

Let (t �→ Dt) ∈ C1([0, 1], B(H(D0), H)). Then (1/h)(Dt+h − Dt)(Dt − λ)−1 ∈ N for
h > 0 and λ /∈ R. It follows that(

d
dt

Dt

)
(Dt − λ)−1 ∈ N .

Furthermore, (t �→ (Dt − λ)−1) ∈ C1([0, 1], B(H, H(D0))) for λ /∈ R and

d
dt

(Dt − λ)−1 = −(Dt − λ)−1
(

d
dt

Dt

)
(Dt − λ)−1.

We denote by l1(D0) the Banach space (D0 + i)−1l1(N ) with norm ‖T‖D0 =
‖(D0 + i)T‖1. Then the map (D0 + i) : l1(D0) → l1(N ) and its inverse are continu-
ous.

In the statement of the following theorem χ is as defined before Theorem 6.4.

Theorem 6.5. Let (Dt)t∈[0,1] be a path of operators in ASK(N ) with common domain
such that (t �→ Dt) ∈ C1([0, 1], B(H(D0), H)). Let Ft := Dt(1 + D2

t )−1/2. Assume
that (t �→ χ′(Ft)) ∈ C([0, 1], l1(D0)) and (t �→ (χ(Ft)2 − 1)) ∈ C1([0, 1], l1(N )) ∩
C([0, 1], l1(D0)). Furthermore, let F0, F1 be invertible.

Then

sf((Dt)t∈[0,1]) = 1
2

∫ 1

0
τ

((
d
dt

Ft

)
χ′(Ft)

)
dt

+ 1
2τ(2P1 − 1 − χ(F1)) − 1

2τ(2P0 − 1 − χ(F0)),

where Pi = 1�0(Fi).

Proof. First we adapt Lemma 6.1, Proposition 6.2 and Lemma 6.3 to the present situ-
ation.

Let g ∈ C(R). From (t �→ Ft) ∈ C([0, 1],N ) it follows that (t �→ g(Ft)) ∈ C([0, 1],N ).
Since (Dt +i)(D0+i)−1 as well as its inverse depend continuously on t in N , the operator

(D0 + i)g(Ft)(D0 + i)−1 = (D0 + i)(Dt + i)−1g(Ft)(Dt + i)(D0 + i)−1
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depends continuously on t as well. Hence for K ∈ l1(D0)

(t �→ g(Ft)K) ∈ C([0, 1], l1(D0)).

For K ∈ l1(D0)

FtK =
2
π

∫ ∞

0
(D2

t + 1 + λ2)−1DtK dλ.

Using
(D2

t + 1 + λ2)−1 = (Dt + i
√

1 + λ2)−1(Dt − i
√

1 + λ2)−1

we get that

d
dt

FtK =
2
π

∫ ∞

0
(D2

t + 1 + λ2)−1 d
dt

DtK dλ

− 2
π

∫ ∞

0
(D2

t + 1 + λ2)−1
(

d
dt

Dt

)
(Dt − i

√
1 + λ2)−1DtK dλ

− 2
π

∫ ∞

0
(Dt + i

√
1 + λ2)−1

(
d
dt

Dt

)
(D2

t + 1 + λ2)−1DtK dλ.

The integral converges in l1(N ). Hence for K ∈ l1(D0)

(t �→ FtK) ∈ C1([0, 1], l1(N )).

The proof of Lemma 6.1 modifies showing that for any holomorphic function g defined
in a neighbourhood of [−1, 1] and any K ∈ l1(D0)

(t �→ g(Ft)K) ∈ C1([0, 1], l1(N )).

By adapting the proof of Proposition 6.2 one obtains that for any g ∈ C2
c (R) and

K ∈ l1(D0)
(t �→ g(Ft)K) ∈ C1([0, 1], l1(N ))

and that the formula for the derivative from Proposition 6.2 holds in this situation.
The function (eπi(z+1) − 1)/(z2 − 1) extends to an entire function g. Hence

eπi(χ(Ft)+1) − 1 = g(χ(Ft))(χ(Ft)2 − 1) ∈ C1([0, 1], l1(N )).

Using these modifications the proof of the theorem proceeds as the proof of the previous
theorem. �

For the ordinary spectral flow a similar formula was derived in [27].
In the following we derive generalizations of some of the integral formulae proven

by Carey and Phillips [9, 10] for bounded perturbations of a fixed operator. We use
their method of relating integral formulae for a path of unbounded operators to integral
formulae for the path of bounded transforms.
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Lemma 6.6. Let f be a holomorphic function defined on {x+iy | (x, y) ∈ R × ]−ε, ε[ } ⊂
C} for some ε > 0 and assume that there are C, c > 0 such that

|f(λ)| � C(1 + |λ|)−c−1.

Let (Dt)t∈[0,1] be a path of operators in AS(N ) with common domain such that (t �→
Dt) ∈ C1([0, 1], B(H(D0), H)). Let Γ = (R − 1

2εi) ∪ (R + 1
2εi), where we endow R − 1

2εi
with the standard orientation and R + 1

2εi with the reversed orientation. Then (t �→
f(Dt)) ∈ C1([0, 1],N ) and

d
dt

f(Dt) = − 1
2πi

∫
Γ

f(λ)(Dt − λ)−1
(

d
dt

Dt

)
(Dt − λ)−1 dλ.

Proof. The assertion follows from the Cauchy formula

f(Dt) =
1

2πi

∫
Γ

f(λ)(Dt − λ)−1 dλ.

�

Proposition 6.7. Let (Dt)t∈[0,1] be a path of operators in ASK(N ) with common
domain such that (t �→ Dt) ∈ C1([0, 1], B(H(D0), H)). We assume that there is δ ∈ (0, 1

2 )
such that e−δD2

t ∈ l1(N ) for all t ∈ [0, 1] and C > 0 such that ‖e−δD2
t ‖1 < C for all

t ∈ [0, 1]. Furthermore, let D0, D1 be invertible and set Pi = 1�0(Di).
Let Ft = Dt(1 + D2

t )−1/2.
Let

χe(x) =
1
C

∫ x

0
(1 − y2)−3/2e(1−(1/(1−y2))) dy

with

C =
∫ 1

0
(1 − y2)−3/2e(1−(1/(1−y2))) dy = 1

2

√
π.

Then

sf((Dt)t∈[0,1]) =
1√
π

∫ 1

0
τ

((
d
dt

Dt

)
e−D2

t

)
dt

+ 1
2τ(2P1 − 1 − χe(F1)) − 1

2τ(2P0 − 1 − χe(F0)).

Proof. Let (1 − ε) > 2δ. First we show that

(t �→ e−(1−ε)D2
t ) ∈ C1([0, 1], l1(N )).

Lemma 6.6 implies that (t �→ e−sD2
t ) ∈ C1([0, 1],N ) for s > 0. We have that

e−(1−ε)D2
t+h − e−(1−ε)D2

t = e−δD2
t+h(e−(1−ε−δ)D2

t+h − e−(1−ε−δ)D2
t )

+ (e−δD2
t+h − e−δD2

t )e−(1−ε−δ)D2
t .
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Since ‖e−δD2
t ‖1 is uniformly bounded, the right-hand side converges in l1(N ) to zero for

h → 0, thus
(t �→ e−(1−ε)D2

t ) ∈ C([0, 1], l1(N )).

Using this it also follows that the limit for h → 0 of the right-hand side divided by h

exists. Thus
(t �→ e−(1−ε)D2

t ) ∈ C1([0, 1], l1(N )).

Now let χ ∈ C2
c (R) be a function that equals χe in a neighbourhood of [−1, 1].

We have that 1 − F 2
t = (1 + D2

t )−1, hence

(1 − F 2
t )−3/2e(1−(1/(1−F 2

t ))) = (1 + D2
t )3/2e−D2

t .

From (t �→ (D0 + i)(1 + D2
t )3/2e−εD2

t ) ∈ C([0, 1],N ) it follows that (t �→ χ′(Ft)) ∈
C([0, 1], l1(D0)).

The function

ψ(x) := (1 − χ(x)2) exp
[

−
(

1 − 2ε

3

)(
1 − 1

1 − x2

)]
,

defined on (−1, 1), extends to an element in C2
c (R). Thus, by the modification of Propo-

sition 6.2 formulated in the proof of the previous theorem, for K ∈ l1(D0)

(t �→ ψ(Ft)K) ∈ C([0, 1], l1(D0)) ∩ C1([0, 1], l1(N )).

From
(1 − χ(Ft)2) = ψ(Ft)e−(1−(2ε/3))D2

t

it follows that

(t �→ (1 − χ(Ft)2)) ∈ C([0, 1], l1(D0)) ∩ C1([0, 1], l1(N )).

Hence we can apply the previous theorem and get

sf((Dt)t∈[0,1]) =
1

2C

∫ 1

0
τ

((
d
dt

Ft

)
(1 + D2

t )3/2e−D2
t

)
dt

+ 1
2τ(2P1 − 1 − χ(F1)) − 1

2τ(2P0 − 1 − χ(F0)).

The equality

τ

((
d
dt

Ft

)
(1 + D2

t )3/2e−D2
t

)
= τ

((
d
dt

Dt

)
e−D2

t

)

can be shown in a straightforward way as follows. One expresses the right-hand side of(
d
dt

Ft

)
(1 + D2

t )3/2e−D2
t =

d
dt

(Ft(1 + D2
t )3/2e−D2

t ) − Ft
d
dt

((1 + D2
t )3/2e−D2

t )

in terms of Dt and (d/dt)Dt by applying Lemma 6.6 and then one uses an approximation
procedure and the cyclicity of the trace as in the proof of Theorem 6.4. �
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In the following lemma we give a different expression for the contributions from the
endpoints, which will be needed in the proof of the subsequent proposition.

Lemma 6.8. Let D ∈ ASK(N ) be invertible and let χ ∈ C1(R) be a normalizing function
for D such that χ(D)2−1 ∈ l1(N ) and such that (t �→ χ′(

√
tD)) is an integrable function

in C([0,∞), l1(D)). Then with P = 1�0(D)

τ(2P − 1 − χ(D)) = 1
2

∫ ∞

1
t−1/2τ(Dχ′(

√
tD)) dt.

Proof. The right-hand side of the equation is well defined since

(2P − 1) − χ(D) = ((2P − 1) + χ(D))−1(1 − χ(D)2) ∈ l1(N ).

For x 
= 0

sign(x) − χ(x) = 1
2

∫ ∞

1
t−1/2xχ′(

√
tx) dt.

This proves that

2P − 1 − χ(D) = 1
2

∫ ∞

1
t−1/2Dχ′(

√
tD) dt.

The assertion follows since the integral converges in l1(N ). �

For invertible D such that e−(1−ε)D2 ∈ l1(N ) for some ε > 0 the truncated η-invariant
(see [10, § 8]) is defined by

η1(D) =
1√
π

∫ ∞

1
t−1/2τ(De−tD2

) dt.

The previous lemma applied to χ(x) = χe(x(1 + x2)−1/2) shows that

τ(2P − 1 − χe(FD)) = η1(D).

We define for p > 1 the ideal

lp(N ) = {A ∈ N | |A|p ∈ l1(N )}

with norm ‖A‖p = τ(|A|p)1/p + ‖A‖. For A ∈ lp(N ) and S, T ∈ N

‖SAT‖p � ‖S‖ ‖A‖p ‖T‖.

We refer to [14] for proofs of these facts. By [8, Proposition A.1] the space lp(N ) is a
Banach space.

Proposition 6.9. Let (Dt)t∈[0,1] be a path of operators in ASK(N ) with common
domain such that (t �→ Dt) ∈ C1([0, 1], B(H(D0), H)). Furthermore, assume that D0,
D1 are invertible and set Pi = 1�0(D). We also assume that there is p ∈ [1,∞) such that
(1 + D2

0)
−p/2 ∈ l1(N ).
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We write Ft := Dt(D + D2
t )−1/2.

Define

χp(x) =
1

Cp

∫ x

0
(1 − y2)(p−2)/2 dy with Cp =

∫ 1

0
(1 − y2)(p−2)/2 dy.

Then

sf((Dt)t∈[0,1]) =
1

2Cp

∫ 1

0
τ

((
d
dt

Dt

)
(1 + D2

t )−(p+1)/2
)

dt

+ 1
2τ(2P1 − 1 − χp(F1)) − 1

2τ(2P0 − 1 − χp(F0)).

Proof. We use the method of [10, § 9]. Some of the following arguments can be found
there in more detail.

First we prove that τ(2Pi − 1 − χp(Fi)) is well defined. Using l’Hôpital’s rule it can
be checked that (χp(x)2 − 1)(1 − x2)−p/2 extends to a bounded continuous function on
[−1, 1], hence (χp(Fi)2 − 1)(1 − F 2

i )−p/2 ∈ N . From (1 − F 2
i )p/2 = (1 + D2

i )−p/2 ∈ l1(N )
it follows that (χp(Fi)2 − 1) ∈ l1(N ).

Since (Dt ± i)−1(D0 + i) depends continuously on t in N and (D0 + i)−1 ∈ lp(N ), we
have that (Dt ± i)−1 depends continuously on t in lp(N ) and hence that τ((1+D2

t )−p/2)
depends continuously on t. By

e−sD2
t = e−sD2

t (1 + D2
t )p/2(1 + D2

t )−p/2,

it follows that ‖e−sD2
t ‖1 is uniformly bounded in t for s > 0 fixed. Thus for s > 0 by

Corollary 6.7

sf((Dt)t∈[0,1]) = sf((
√

sDt)t∈[0,1]) =
√

s

π

∫ 1

0
τ

((
d
dt

Dt

)
e−sD2

t

)
dt.

Using ∫ ∞

0
s(p−2)/2e−s ds = Γ ( 1

2p),

where Γ denotes the Gamma-function, we get that

sf((Dt)t∈[0,1]) =
1

Γ ( 1
2p)

∫ ∞

0

[
s(p−1)/2 1√

π

∫ 1

0
τ

((
d
dt

Dt

)
e−s(1+D2

t )
)

dt

+ 1
2s(p−2)/2e−s(η1(

√
sD1) − η1(

√
sD0))

]
ds.

We study the right-hand side.
For q � 0 ∫ ∞

0
sq(1 + D2

t )1/2e−s(1+D2
t ) ds = Γ (q + 1)(1 + D2

t )−q−(1/2),
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where the integral converges in the operator norm. Let q � 1
2 (p − 1). Since we have that

sq(1 + D2
t )1/2e−s(1+D2

t ) is positive and in l1(N ) for s ∈ (0,∞) and since the right-hand
side is in l1(N ), the integral converges also in l1(N ). Hence

(s �→ sqe−s(1+D2
t )) ∈ L1(R+, l1(D0)).

Using Fubini’s theorem we can also conclude that

((s, t) �→ sqτ((1 + D2
t )1/2e−s(1+D2

t ))) ∈ L1(R+ × [0, 1]).

By ∣∣∣∣τ
((

d
dt

Dt

)
e−s(1+D2

t )
)∣∣∣∣ �

∥∥∥∥
(

d
dt

Dt

)
(1 + D2

t )−1/2
∥∥∥∥τ((1 + D2

t )1/2e−s(1+D2
t ))

this implies that

(s, t) �→ sqτ

((
d
dt

Dt

)
e−s(1+D2

t )
)

∈ L1(R+ × [0, 1]).

Thus

1
Γ ( 1

2p)
√

π

∫ ∞

0

∫ 1

0
s(p−1)/2τ

((
d
dt

Dt

)
e−s(1+D2

t )
)

dt ds

=
1

Γ ( 1
2p)

√
π

∫ 1

0
τ

((
d
dt

Dt

) ∫ ∞

0
s(p−1)/2e−s(1+D2

t ) ds

)
dt

=
Γ ( 1

2 (p + 1))
Γ ( 1

2p)
√

π

∫ 1

0
τ

((
d
dt

Dt

)
(1 + D2

t )−(p+1)/2
)

dt.

Now consider the contributions of the endpoints. Let i = 0, 1.
Since Di is invertible,

((s, t) �→ s(p−1)/2t−1/2Die−s(1+tD2
i )) ∈ L1(R+ × [1,∞), l1(N )).

We evaluate

1
2Γ ( 1

2p)

∫ ∞

0
s(p−2)/2e−sη1(

√
sDi) ds

=
1

2Γ ( 1
2p)

√
π

∫ ∞

0

∫ ∞

1
s(p−1)/2t−1/2τ(Die−s(1+tD2

i )) dt ds

=
Γ ( 1

2 (p + 1))
2Γ ( 1

2p)
√

π

∫ ∞

1
t−1/2τ(Di(1 + tD2

i )−(p+1)/2) dt.

Now we apply the previous lemma to the normalizing function χ(x) := χp(x(1+x2)−1/2)
of D. Since χ′(x) = (1/Cp)(1 + x2)−(p+1)/2, the last line equals

CpΓ ( 1
2 (p + 1))

2Γ ( 1
2p)

√
π

∫ ∞

1
t−1/2τ(Diχ

′(
√

tDi)) dt =
CpΓ ( 1

2 (p + 1))
Γ ( 1

2p)
√

π
τ(2Pi − 1 − χp(Fi)).
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The assertion follows from

Γ ( 1
2p)

√
π

Γ ( 1
2 (p + 1))

=
∫ 1

0
x(p−2)/2(1 − x)−1/2 dx = 2Cp,

where the first equality follows from the properties of the Beta-function and the last
equality is obtained from the change of variable x = (1 − y2). �

7. L2-index theory

In this section we will show that the integral formulae of Propositions 6.7 and 6.9 apply
to paths of invariant symmetric elliptic differential operators on a Galois covering. The
proofs rely on the theory of regular operators on Hilbert C∗-modules, for which we
refer to [16], and the theory of pseudodifferential operators over C∗-algebras, which was
developed in [18]. Most of the material assembled in this section is well known at least
to experts.

Lemma 7.1. Let A, B be C∗-algebras and H1, respectively H2, a Hilbert A-module,
respectively Hilbert B-module. Let ρ : A → B(H2) be a C∗-homomorphism and let D1

be a regular self-adjoint operator on H1.

(1) There is an induced regular self-adjoint operator D on H1 ⊗ρ H2 such that the
homomorphism ρ∗ : B(H1) → B(H1 ⊗ρ H2), T �→ T ⊗ 1 maps f(D1) to f(D) for
all f ∈ C(R) for which limx→∞ f(x) and limx→−∞ f(x) exist.

(2) Let S be a core of D1. Then the algebraic span of the set {x ⊗ y ∈ H1 ⊗ρ H2 |
x ∈ S, y ∈ H2} is a core of D, and D acts on it by D(x ⊗ y) = (D1x) ⊗ y.

(3) Denote by H(D1) the Hilbert A-module whose underlying A-module is dom D1

and whose A-valued scalar product is given by

〈x, y〉D1 := 〈x, y〉 + 〈D1x, D1y〉.

Define analogously H(D).

The map H(D1) ⊗ρ H2 → H(D) that maps x⊗ y, x ∈ S, y ∈ H2 to x⊗ y ∈ dom D

is an isomorphism.

Proof. As usual let FD1 = D1(1 + D2
1)

−1/2. Since Ran(1 − F 2
D1

) = Ran((1 + D2
1)

−1) is
dense in H1, the range of ρ∗(1 − F 2

D1
) is dense in H1 ⊗ρ H2. By [16, Theorem 10.4] it

follows that ρ∗(FD1) is the bounded transform of a regular self-adjoint operator D on
H1 ⊗ρ H2. This shows (1).

Since D1 and D are regular, the operators (D1 + i) ⊗ 1 : H(D1) ⊗ρ H2 → H1 ⊗ρ H2

and D+i : H(D) → H1 ⊗ρ H2 are isomorphisms. The isomorphism U := (D+i)−1(D1 ⊗
1 + i) : H(D1) ⊗ρ H2 → H(D) is given by v ⊗ w �→ v ⊗ w. Hence (3) follows.

The operator D1 ⊗ 1+ i is determined by its action on the set {x⊗ y | x ∈ S, y ∈ H2}.
By (D + i) = (D1 ⊗ 1 + i)U−1 and since U preserves this set, the operator D is also
determined by its action on this set. �
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Let M be a closed Riemannian manifold and let p : M̃ → M be a Galois covering of
M with deck transformation group Γ . The manifold M̃ inherits an invariant Riemannian
metric from M . Let E be a hermitian vector bundle on M and let Ẽ = p∗E be endowed
with the invariant hermitian structure induced by E. We denote its dual by E∗.

In the following we recall the construction of the correspondence of invariant differential
operators on C∞

c (M̃, Ẽ) and differential operators on C∞(M, E ⊗ P), where P is the
Mishchenko–Fomenko vector bundle. More details on the following discussion can be
found, for example, in [25, § 3] and [24, § E.3].

Let C∗
r Γ be the reduced group C∗-algebra. Recall that P is the C∗

r Γ -vector bundle
M̃ ×Γ C∗

r Γ and let Palg = M̃ ×Γ CΓ . The right Γ -action R on Ẽ induces a right Γ -action

Γ × C∞
c (M̃, Ẽ) → C∞

c (M̃, Ẽ), (g, s) �→ R∗
g−1s

with (R∗
g−1s)(x) := Rg(s(xg−1)).

Furthermore, there are a left and a right Γ -action

Γ × C∞(M̃, Ẽ ⊗ CΓ ) → C∞(M̃, Ẽ ⊗ CΓ ).

The left Γ -action is given by (
h,

∑
g∈Γ

sgg

)
�→

∑
g∈Γ

(R∗
hsg)hg

and the right Γ -action by (
h,

∑
g∈Γ

sgg

)
�→

∑
g∈Γ

sggh.

The invariant subspace C∞(M̃, Ẽ ⊗ CΓ )Γ with respect to the left Γ -action is isomorphic
to C∞(M, E⊗Palg). The isomorphism is Γ -equivariant with respect to the right Γ -action.
Moreover, the map

C∞
c (M̃, Ẽ) → C∞(M̃, Ẽ ⊗ CΓ )Γ , s �→

∑
g∈Γ

(R∗
gs)g

is a Γ -equivariant isomorphism. Hence there is a Γ -equivariant isomorphism

C∞
c (M̃, Ẽ) ∼= C∞(M, E ⊗ Palg).

Let D : C∞
c (M̃, Ẽ) → C∞

c (M̃, Ẽ) be an invariant symmetric elliptic differential opera-
tor. We denote its closure as an unbounded operator on L2(M̃, Ẽ) by D as well. Via the
previous isomorphism the operator D induces an elliptic symmetric differential opera-
tor D : C∞(M, E ⊗ Palg) → C∞(M, E ⊗ Palg). Its closure on the Hilbert C∗

r Γ -module
L2(M, E ⊗ P), denoted by D as well, is a regular self-adjoint operator. We define
ρ : C∗

r Γ → B(l2(Γ )) to be the inclusion. By applying the previous lemma we get a
self-adjoint operator D′ = D ⊗ 1 on the Hilbert space L2(M, E ⊗ P) ⊗ρ l2(Γ ).

The Γ -equivariant isomorphism

C∞(M, E ⊗ Palg) ⊗CΓ CΓ ∼= C∞(M, E ⊗ Palg) ∼= C∞
c (M̃, Ẽ)
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extends to a Γ -equivariant isometry

L2(M, E ⊗ P) ⊗ρ l2(Γ ) ∼= L2(M̃, Ẽ),

which intertwines D with D′.
By the previous lemma, one can use information on D in order to gain knowledge

about D (see also [24, Proposition E.6]).

Proposition 7.2. Let (Dt)t∈[0,1] be a path of invariant self-adjoint elliptic differential
operators of order k > 0 on H = L2(M̃, Ẽ) with coefficients that are of class C1 in t.
Then dom Dt = dom D0 for all t ∈ [0, 1] and (t �→ Dt) ∈ C1([0, 1], B(H(D0), H)).

Proof. Let (Dt)t∈[0,1] be the corresponding family of elliptic differential operators on
L2(M, E ⊗ P). The coefficients of Dt are of class C1 in t as well. Furthermore, H(D0)
equals the kth Sobolev space Hk(M, E ⊗ P). Hence

(t �→ Dt) ∈ C1([0, 1], B(H(D0), L2(M, E ⊗ P))).

By the first statement of the previous lemma this implies that

(t �→ Dt) ∈ C1([0, 1], B(H(D0) ⊗ρ l2(Γ ), L2(M̃, Ẽ))).

Since H(D0) ⊗ρ l2(Γ ) can be identified with H(D0) by the third statement of the previous
lemma, this implies the assertion. �

In the following let (Dt)t∈[0,1] be as in the statement of the proposition.
We denote by N the von Neumann algebra of Γ -equivariant operators in B(L2(M̃, Ẽ)).

Since Dt commutes with the Γ -action, it is affiliated to N .
Recall that the vector bundle E � E∗ on M × M has fibre (E � E∗)(x,y) = Ex ⊗ E∗

y .
We consider P as isometrically embedded into M × (C∗

r Γ )n for suitable n.
The homomorphism ρ induces

ρ∗ : B(L2(M, E ⊗ (C∗
r Γ )n)) → M := B(L2(M, E) ⊗ l2(Γ )n)Γ .

We have that N ⊂ M.
Let trΓ : Ex ⊗ E∗

x ⊗ Mn(C∗
r Γ ) → C be the trace induced by the trace

C∗
r Γ → C,

∑
g∈Γ

sgg �→ se

and the standard trace on Ex ⊗ E∗
x ⊗ Mn(C).

Let
K : C(M × M, (E � E∗) ⊗ Mn(C∗

r Γ )) → B(L2(M, E ⊗ (C∗
r Γ )n))

be the map that associates to an integral kernel the corresponding integral operator.
The trace of an operator ρ∗K(k) ∈ M with k ∈ C(M ×M, (E �E∗)⊗Mn(C∗

r Γ )) such
that K(k) = K(k1)K(k2) for some k1, k2 ∈ C(M × M, (E � E∗) ⊗ Mn(C∗

r Γ )) is defined
by

τ(ρ∗K(k)) =
∫

M

trΓ k(x, x) dx.
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It extends to a semifinite normal faithful trace on M, which restricts to a semifinite
normal faithful trace on N . (This well-known fact can be shown by using the concept of
Hilbert algebras [15, §§ I.5, I.6.2].)

In particular we get an induced continuous map

ρ∗ ◦ K : C(M × M, (E � E∗) ⊗ Mn(C∗
r Γ )) → l2(M).

Furthermore, the map ρ∗ maps ordinary trace class operators on L2(M, E) tensored
with the identity on Mn(C∗

r Γ ) to l1(M).

Proposition 7.3. For pk > dim M

(1 + D2
0)

−p/2 ∈ l1(N ).

Proof. Let P : M × (C∗
r Γ )n → P be the orthogonal projection. Choose an elliptic

symmetric pseudodifferential operator R of order k on C∞(M, E). By tensoring with
the identity on (C∗

r Γ )n it defines a continuous operator from to Hk(M, E ⊗ (C∗
r Γ )n) to

L2(M, E ⊗ (C∗
r Γ )n). Set

T := (P (1 + D2
0)

−p/2P + (1 − P )(1 + R2)−p/2(1 − P ))(1 + R2)p/2.

Since T is a pseudodifferential operator of order zero, the operator ρ∗(T ) is an element
in M. Furthermore, (1 + R2)−p/2 is a trace class operator on L2(M, E), hence its image
under ρ∗ is in l1(M). It follows that the image of

PT (1 + R2)−p/2P = (1 + D2
0)

−p/2

under ρ∗ is in l1(N ). �
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