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Abstract

A hybrid asymptotic-numerical method is developed to approximate the mean first

passage time (MFPT) and the splitting probability for a Brownian particle in a bounded

two-dimensional (2D) domain that contains absorbing disks, referred to as “traps”,

of asymptotically small radii. In contrast to previous studies that required traps to be

spatially well separated, we show how to readily incorporate the effect of a cluster of

closely spaced traps by adapting a recently formulated least-squares approach in order

to numerically solve certain local problems for the Laplacian near the cluster. We also

provide new asymptotic formulae for the MFPT in 2D spatially periodic domains where

a trap cluster is centred at the lattice points of an oblique Bravais lattice. Over all such

lattices with fixed area for the primitive cell, and for each specific trap set, the average

MFPT is smallest for a hexagonal lattice of traps.

2020 Mathematics subject classification: primary 35B25; secondary 35C20, 35J05,

35J08.

Keywords and phrases: trap cluster, logarithmic capacitance, mean first passage time,

splitting probability, Green’s function..

1. Introduction

Narrow capture problems are first passage time problems that predict the expected

time it takes for a Brownian particle to become absorbed by a set of small measure.

Narrow capture problems arise in various applications, such as determining the time

it takes for a receptor to reach a specific small binding site, the time it takes for a

diffusing surface-bound receptor to reach a small target site on the cell membrane, or

the time it takes for a predator to locate its prey [1, 5, 8, 11, 12, 15]. An overview of

applications of narrow capture and escape problems with biophysical applications is

given by Holcman and Schuss [7]. More recently, extended narrow capture problems
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FIGURE 1. Schematic diagram of a Brownian particle in a disk that contains a hexagonal cluster of

circular traps (blue disks) of a common radius ε. (Colour available online.)

involving stochastic search processes in finite domains with small traps have been

analysed by Bressloff in three-dimensional (3D) [3] and in two-dimensional (2D) [2]

domains.

In a 2D bounded domain Ω, a narrow capture problem is of singular perturbation

type, characterized by the O(1) spatial scale of the confining domain and an O(ε) ≪ 1

scale for the multiply connected absorbing trap set, which is modelled by a collection

of absorbing nonoverlapping disks of radii O(ε), referred to as “traps”. In the limit

ε→ 0 of small trap radius, strong localized perturbation theory, originated by Ward

et al. [19] and Ward and Keller [20] (see also the survey paper by Ward [18]), was

extended by Kurella et al. [11] to derive linear algebraic systems that asymptotically

predict the mean first passage time (MFPT) and the splitting probability for this 2D

narrow capture problem with an error smaller than any power of −1/ log ε. Here the

splitting probability is defined as the probability for a Brownian particle, which starts

from some point in the 2D domain, to be captured by a specific target trap before

becoming absorbed by any of the other traps in the domain. However, a key limitation

of the analysis of Kurella et al. [11] is that the disk-shaped traps were assumed to be

well separated in the sense that their centre-to-centre separation was O(1) as ε→ 0.

This restriction precluded studying the effect of a cluster of closely spaced traps, such

as shown schematically in Figure 1.

One goal of this paper is to combine the recent simple series-based numerical

method of Trefethon [17] for Laplace’s equation on unbounded domains with the

strong localized asymptotic framework of Kurella et al. [11] in order to calculate the

MFPT and splitting probability when the 2D confining domain contains a localized

cluster of closely spaced circular traps (see Figure 1). The numerical approach of Tre-

fethon [17] is reformulated, as an alternative to a more involved and computationally

intensive boundary integral numerical approach, to calculate solutions to two different

“local” or inner problems involving Laplace’s equation on a locally unbounded domain
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[3] Asymptotics for the MFPT with a trap cluster 3

that are needed in the linear algebraic systems of Kurella et al. [11] so as to determine

the asymptotic MFPT and splitting probability with an error smaller than any power of

−1/ log ε. In particular, for the MFPT calculation in Section 2 we extend the approach

of Trefethon [17] to readily compute the logarithmic capacitance of the cluster of traps,

as specified below by the constant term in the far-field behaviour in (2.4), from the

solution to Laplace’s equation defined locally near the trap cluster. The logarithmic

capacitance is available analytically only for a few specific trap shapes [13]. For the

splitting probability application in Section 3, we modify the approach of Trefethon

[17] so as to compute a harmonic measure and a dipole moment of the clustered

trap set. We then extend the analytical theory of Kurella et al. [11] for the splitting

probability to one higher order so as to include the effect of the dipole of the clustered

trap set. Our strategy of combining the strong localized perturbation approach in

Kurella et al. [11] with the simple numerical procedure of Trefethon [17], which

readily solves certain key local problems, is illustrated for a few specific narrow

capture problems that have clear qualitative interpretations. Results from our hybrid

asymptotic-numerical approach are favourably compared with corresponding results

obtained from full partial differential equation (PDE) numerical simulations using

FlexPDE [6].

The second goal of this paper, as undertaken in Section 4, is to use strong localized

perturbation theory to provide new asymptotic formulae for the MFPT in a spatially

periodic 2D domain where a trap cluster is centred at the lattice points of an arbitrary

oblique Bravais lattice as defined below by (4.1). The average MFPT, accurate to all

orders in O(−1/ log ε), is shown to depend on the regular part of the source-neutral

Green’s function defined on the fundamental Wigner–Sietz (WS) cell for the lattice.

An explicit formula for this regular part was derived previously by Chen and Oshita

[4] in their study of the stability of small droplet patterns in the reaction–diffusion

modelling of diblock copolymers. Our asymptotic result shows that, among all 2D

Bravais lattices with fixed area for the primitive cell, the average MFPT is smallest for

a hexagonal arrangement of traps. For the special case of a square lattice, our result for

the average MFPT agrees with that of Torney and Goldstein [16].

2. Mean first passage time with a trap cluster

The MFPT for a Brownian particle, with diffusivity D, that starts at a point xxx ∈
Ω ⊂ R2 to be absorbed by a collection of traps in a domain with a reflecting boundary

satisfies [14]

∆T = − 1

D
, xxx ∈ Ω \ ∪N

j=1Ω
ε
j with Ωε1 ≡ ∪m

i=1Ω
ε
1,i ,

T = 0 , xxx ∈ ∂Ωεj , j = 1, . . . , N ; ∂nT = 0 , xxx ∈ ∂Ω .

(2.1)

We will assume that the well-separated trapsΩε
j

for j = 2, . . . , N are disks of a common

radius ε ≪ 1. However, the possibly multiply connected trap set Ωε
1
, centred at some

xxx1 ∈ Ω, is composed of m ≥ 1 nonoverlapping disks Ωε
1,i

of a common radius ε ≪ 1
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for i = 1, . . . , m. Since the distance between Ωε
1,i

and Ωε
1,k

for i , k is assumed to

be O(ε), we will refer to Ωε
1

as a clustered trap set. In the limit ε→ 0, strong

localized perturbation theory [18, 19] can be used as in Kurella et al. [11] to derive

the following asymptotic approximation for T and the average MFPT T̄ given by

T̄ ∼ |Ω|−1
∫

Ω
T(xxx) dxxx.

PRINCIPAL RESULT 1. For ε→ 0, the asymptotic solution for the MFPT (2.1) in the

outer region, defined by |xxx − xxxj| ≫ O(ε) for j = 1, . . . , N, is

T ∼ −2π

N
∑

j=1

AjG(xxx;xxxj) + T̄ , (2.2a)

where Aj, for j = 1, . . . , N, and T̄ are the solution to the linear system

Aj

νj
+ 2πRjAj + 2π

N
∑

k,j

AkGjk = T̄ , j = 1, . . . , N ;

N
∑

k=1

Ak =
|Ω|

2πD
, (2.2b)

where Rj ≡ R(xxxj) and Gjk ≡ G(xxxj;xxxk). Here νj ≡ −1/ log ε for j = 2, . . . , N for the

isolated circular traps, while ν1 ≡ −1/ log(εd1c) for the clustered trap set with d1c

defined by the PDE (2.4). In (2.2), G(xxx;ξξξ) is the unique Neumann Green’s function

for Ω with regular part R(ξξξ) satisfying

∆G(xxx;ξξξ) =
1

|Ω| − δ(xxx − ξξξ) , xxx ∈ Ω ; ∂nG = 0 , xxx ∈ ∂Ω ,

G ∼ − 1

2π
log |xxx − ξξξ| + R(ξξξ) + o(1) as xxx→ ξξξ ;

∫

Ω

G dxxx = 0 .

(2.3)

The central new feature for (2.2b) is that d1c is the logarithmic capacitance for

the clustered trap set Ωε
1
. It is defined by the following local problem, written in

terms of the stretched coordinate yyy = ε−1(xxx − xxx1) and subdomains Ω1,i ≡ ε−1
Ω
ε
1,i

, for

i = 1, . . . , m, comprising the trap cluster:

∆yyyvc = 0 , yyy < ∪m
i=1Ω1,i ; vc = 0 , yyy ∈ ∂Ω1,i , i = 1, . . . , m , (2.4a)

vc ∼ log |yyy| − log d1c +
pppc·yyy
|yyy|2 + · · · as |yyy| → ∞ . (2.4b)

Here pppc is the dipole vector for the cluster. For this exterior problem in potential

theory, the key quantity to be determined in the MFPT analysis is d1c, representing the

logarithmic capacitance of the cluster. In general, d1c must be computed numerically.

In Figure 2, we show the local geometry associated with (2.4) for a two-trap cluster

with m = 2 (left-hand panel) and for a hexagonal trap cluster with m = 7 (right-hand

panel).

2.1. Computing the logarithmic capacitance d1c Although in general d1c must

be computed numerically from (2.4), it can be determined analytically for the special

case where two disks, each of radius one (measured in the inner coordinate), have a
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FIGURE 2. Left-hand panel: two circular traps each of unit radius in the inner region with centre-to-centre

separation lc. Right-hand panel: a hexagonal arrangement of traps with a centre trap at a distance lc.

centre-to-centre separation lc, such as shown in the left-hand panel of Figure 2. For

this geometry, (2.4) can be solved analytically using bipolar coordinates. This leads to

the following explicit result for d1c (see Appendix A of Kurella et al. [11]):

log d1c =
1

2
log(l2c − 4) − β

2
+

∞
∑

k=1

e−kβ

k cosh(kβ)
, β ≡ cosh−1(lc/2). (2.5)

We now show how to reformulate the simple numerical approach introduced

by Trefethon [17], based on a series solution to Laplace’s equation coupled to a

least-squares fitting of the boundary condition in (2.4), in order to numerically

compute d1c for a cluster of disks. We will illustrate our approach for the hexagonal

array of traps shown in the right-hand panel of Figure 2. By reformulating this

series-based method, we obtain from equations (3.1) and (3.2) of Trefethon [17] that

vc must have the form

vc(z) = − log d1c +

m
∑

j=1

ej log |z − cj|

+

m
∑

j=1

n
∑

k=1

(ajk Re(z − cj)
−k
+ bjk Im(z − cj)

−k), (2.6)

together with the condition that
∑m

j=1 ej = 1. Here z ∈ C is equivalent to the point

yyy in complex coordinates, cj ∈ C is the centre of the jth trap in the cluster, and

m is the number of traps in the cluster. The real-valued constants log d1c, ej, ajk,

and bjk for j = 1, . . . , m and k = 1, . . . , n are determined such that vc = 0 is satisfied

in the least-squares sense on the boundary of each trap. By using the fact that

log |z − cj| ≃ log |z| − o(1) as |z| → ∞, it can easily be verified that (2.6) satisfies the

far-field behaviour of vc as |yyy| → ∞ specified in (2.4). To fit the boundary condition on

each trap, we impose that vc(z) = 0 at 3n uniformly spaced points on the boundary

of each trap. This leads to a (3nm + 1)-dimensional algebraic system of equations

with (2nm + m + 1) unknowns. This system was then solved in the least-squares sense

using the backslash command in MATLAB. Choosing n = 10, for the two-trap cluster

(left-hand panel of Figure 2), this corresponds to 61 algebraic equations with 43

unknowns, while for the hexagonal cluster (right-hand panel of Figure 2), we have

211 equations and 148 unknowns.
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FIGURE 3. Left-hand panel: logarithmic capacitance d1c versus the inter-trap separation lc > 2 (see

Figure 2) for a two-trap cluster from the explicit formula (2.5) (solid line) and the least-squares result

of (2.6) (round points). The corresponding least- squares result of (2.6) for the hexagonal cluster are the

starred points. As lc → 2+ the disks begin to touch. Right-hand panel: absolute error between the exact

formula for d1c in (2.5) for a two-disk cluster and the numerical result computed using (2.6) and the least-

squares fit with n = 5 and n = 10 terms. Observe that n = 10 provides a highly accurate result.

For the two-trap cluster, in the left-hand panel of Figure 3 we show that the

numerical result for d1c from the least-squares fit (2.6) compares very favourably with

the analytical result (2.5). In the right-hand panel of Figure 3, we plot the absolute

value of the error obtained in approximating the exact result (2.5) for d1c with the

least-squares fit based on (2.6) with n = 5 and n = 10 terms. We observe that the

accuracy of the fit improves as the separation between the disks increases and that

n = 10 terms gives a very accurate result. In the left-hand panel of Figure 3, we also

plot d1c versus lc for the hexagonal trap cluster, as computed from the least-squares

fit based on (2.6). For a hexagonal trap cluster an analytical solution of (2.4) is not

available.

2.2. Example: MFPT for a trap cluster in the unit disk To illustrate (2.2) and the

effect of a clustered trap set, we let Ω be the unit disk and assume that N = 1, so that

the only traps in Ω are within a trap cluster centred at xxx1 ∈ Ω. From (2.2), the average

MFPT is

T̄ ≡ T̄(ε) ∼ |Ω|
2πD

(

1

ν1
+ 2πR(xxx1)

)

, ν1 = −1/ log(εd1c), (2.7a)

where |Ω| = π. For the unit disk, the Neumann Green’s function and its regular part are

(see equation (4.3) of Kolokolnikov et al. [10])

G(xxx;xxx1) = − 1

2π
log |xxx − xxx1| −

1

4π
log(|xxx|2|xxx1|2 + 1 − 2xxx · xxx1) +

(|xxx|2 + |xxx1|2)

4π
− 3

8π
,

(2.7b)

R(xxx1) = − 1

2π
log(1 − |xxx1|2) +

|xxx1|2
2π
− 3

8π
. (2.7c)

To show the effect of the trap set, we compare (2.7) for three scenarios when xxx1 =

(0.5, 0)T and D = 1, and where we have fixed the total area of the trap set at πε2
0
.
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FIGURE 4. Average MFPT T̄ in (2.7) for a trap cluster centred at (0.5, 0)T in the unit disk. Case I: single

isolated trap of radius ε0. Case II: a two-trap cluster with traps of radius ε0/
√

2 with centre-to-centre

separation ε0lc/
√

2 with lc = 3. Case III: a hexagonal cluster with traps of radius ε0/
√

7 with separation

ε0lc/
√

7 with lc = 3. In each case, the traps occupy the same area πε2
0
.

TABLE 1. A comparison of the asymptotic result T̄ with the FlexPDE numerical result T̄n at a few ε0 in

the form (T̄ , T̄n) for Cases I, II, and III, as shown in Figure 4.

ε0 Case I: one trap Case II: two traps Case III: hex traps

0.01 (2.1964, 2.1960) (2.0691, 2.0688) (2.0316, 2.0314)

0.02 (1.8499, 1.8496) (1.7225, 1.7226) (1.6850, 1.6853)

0.03 (1.6471, 1.6478) (1.5198, 1.5205) (1.4823, 1.4831)

0.04 (1.5033, 1.5048) (1.3759, 1.3772) (1.3384, 1.3398)

0.05 (1.3917, 1.3942) (1.2643, 1.2665) (1.2269, 1.2289)

• Case I: a single isolated trap of radius ε0 for which d1c = 1.

• Case II: a two-trap cluster with traps of radius ε0/
√

2 and centre-to-centre

separation ε0lc/
√

2 with lc = 3 for which d1c ≈ 1.8245 from (2.5).

• Case III: a hexagonal trap cluster with traps of radius ε0/
√

7 and centre-to-centre

separation ε0lc/
√

7 with lc = 3 for which d1c ≈ 3.6791 from (2.6).

In Figure 4, we compare the asymptotic results T̄(ε0), T̄(ε0/
√

2), and T̄(ε0/
√

7) for

these three scenarios, where T̄(ε) is defined in (2.7). From this figure, we observe

as expected that the MFPT is smallest for the hexagonal trap cluster. As a qualitative

explanation of this result, we note that for the hexagonal trap cluster the absorbing traps

have a combined perimeter of 7(2πε0/
√

7) =
√

7πε0, which is larger than that for the

two-trap cluster or for the single trap. With a larger trap perimeter it should be easier

to capture a Brownian particle. However, as the number of traps in a cluster increases,

there should be less of a marginal decrease in the MFPT owing to the presence of

shielded traps, not on the periphery of cluster, that are unlikely to be reached by a

Brownian particle wandering in Ω. In Table 1, we show a very favourable comparison

between the asymptotic results for T̄ and the corresponding full PDE results computed
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FIGURE 5. Contour plots of T from FlexPDE [6] for a two-trap cluster (left) and a hexagonal cluster

(right) with ε0 = 0.04, lc = 3, and D = 1. Left: traps have radii ε0/
√

2 and centre-to-centre separation

lcε0/
√

2. Right: traps have radii ε0/
√

7 and centre-to-centre separation lcε0/
√

7. (Colour available

online.)

FIGURE 6. Contour plot of T in the outer region from the asymptotic theory (2.2a) of the Principal Result

1 for a two-trap cluster with parameters D = 1, lc = 3, and ε0 = 0.04. The traps have radii ε0/
√

2 and

centre-to-centre separation lcε0/
√

2. The asymptotic results agree closely with the FlexPDE result in the

left-hand panel of Figure 5. (Colour available online.)

from (2.1) using FlexPDE [6]. In Figure 5, we show a contour plot of the FlexPDE

result for T for a two-trap and a hexagonal trap cluster. For a two-trap cluster, in

Figure 6 we show a contour plot of the asymptotic result in (2.2a) of the Principal

Result 1 for the outer solution, which is for the same parameters used for the FlexPDE

results shown in the left-hand panel of Figure 5. The asymptotic and FlexPDE results

are nearly indistinguishable.

3. Splitting probability with a cluster of traps

In this section, we develop a similar approach as done for the MFPT to calculate

the splitting probability for a collection of N traps that consists of N − 1 isolated

traps together with a trap cluster. Our goal is to calculate the splitting probability,

defined as the probability of reaching a particular trap located within the trap cluster,

before reaching any of the other possible traps. We will assume that all traps are
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nonoverlapping disks of a common radius ε. The closely spaced traps within a cluster

of size O(ε) are centred at some xxx1 ∈ Ω, while the N − 1 isolated traps are centred at

xxxj ∈ Ω for j = 2, . . . , N. For this configuration of traps, the splitting probability P(xxx)

satisfies [14]

∆P = 0 , xxx ∈ Ω \ ∪N
j=1Ω

ε
j , Ω

ε
1 ≡ ∪m

i=1Ω
ε
1,i; ∂nP = 0, xxx ∈ ∂Ω,

P = 0 , xxx ∈ ∂Ωεj , j = 2, . . . , N,

P = 1, xxx ∈ ∂Ωε1,1; P = 0, xxx ∈ ∂Ωε1,i , i = 2, . . . , m,

(3.1)

where the target trap within the cluster is labelled by Ωε
1,1

.

To analyse (3.1), we must consider a new inner problem near the multi-trap

cluster Ωε
1
. In this inner region, we introduce local variables yyy = ε−1(xxx − xxx1) and

v(yyy) = P(xxx1 + εyyy), and we decompose v as

v ∼ v⋆ + A1vc , (3.2)

where A1 is a constant to be found and vc satisfies (2.4), which determines the

logarithmic capacitance d1c of the cluster. In (3.2), the bounded function v⋆(y), with

limiting value v⋆∞ to be determined, is taken to satisfy

∆yyyv⋆ = 0, yyy < ∪m
k=1Ω1,k; v⋆ ∼ v⋆∞ +

ppp∞·yyy
|yyy|2 + · · · as |yyy| → ∞,

v⋆ = 1, yyy ∈ ∂Ω1,1; v⋆ = 0, yyy ∈ ∂Ω1,k, k = 2, . . . , m,

(3.3)

where Ω1,k ≡ ε−1
Ω
ε
1,k

for k = 1, . . . , m.

In terms of the inner problem (3.3), the asymptotic result for (3.1), as derived by

Kurella et al. [11, Section 5], and extended here to include the O(ε) correction term

arising from the dipole moment of the trap cluster, is as follows.

PRINCIPAL RESULT 2. For ε→ 0, the asymptotic solution for the splitting probability

in the outer region |xxx − xxxj| ≫ O(ε) for j = 1, . . . , N is

P ∼ −2π

N
∑

j=1

AjG(xxx;xxxj) + χ + 2πε[ppp∞ + A1pppc]·∇xxx1
G(xxx;xxx1) + o(ε). (3.4a)

Here pppc and ppp∞ are the dipole vectors defined by the local problems (2.4) and (3.3),

respectively. The constants Aj for j = 1, . . . , N and χ are the solution to the linear

system

Aj

νj
+ 2πAjRj +

N
∑

k,j

2πAkGjk − χ = −δ1,jv
⋆
∞ , j = 1, . . . , N , (3.4b)

N
∑

j=1

Aj = 0, (3.4c)
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where Rj ≡ R(xxxj), Gjk ≡ G(xxxj;xxxk), and δ1,j is the Kronecker symbol. Here νj ≡ −1/ log ε

for j = 2, . . . , N for the isolated circular traps, while ν1 ≡ −1/ log(εd1c) for the trap

cluster with d1c defined by (2.4). In (3.4), G is the Neumann Green’s function with

regular part R satisfying (2.3).

The O(ε) term in (3.4a) is a new result that arises from the dipole term associated

with the trap cluster. To derive this term we obtain that the far-field behaviour of (3.2),

when written in terms of the outer variable xxx, yields the following matching condition

for the outer solution:

P ∼ v⋆∞ + A1 log |xxx − xxx1| +
A1

ν1
+ ε

(ppp∞ + A1pppc)·(xxx − xxx1)

|xxx − xxx1|2
as xxx→ xxx1 . (3.5)

This enforces that in the outer region we expand P = P0 + εP1 + · · · and obtain that

the correction P1 satisfies

∆P1 = 0 , xxx ∈ Ω\{xxx1}; ∂nP1 = 0, xxx ∈ ∂Ω; (3.6a)

P1 ∼
(ppp∞ + A1pppc)·(xxx − xxx1)

|xxx − xxx1|2
as xxx→ xxx1 . (3.6b)

We remark that since the other well-separated traps for j = 2, . . . , N are disks, there is

no dipole term arising at O(ε) from these other traps. The problem (3.6) is equivalent

to ∆P1 = −2π(ppp∞ + A1pppc)·∇xxx1
δ(xxx − xxx1), where δ(xxx − xxx1) is the delta function. Since

∆[aaa·∇xxx1
G(xxx;xxx1)] = −aaa·∇xxx1

δ(xxx − xxx1) in Ω, together with ∂n[aaa·∇xxx1
Gp] = 0 on ∂Ω, holds

for any constant vector aaa, by choosing aaa ≡ ppp∞ + A1pppc we readily identify that the

solution to (3.6) is given by the O(ε) term in (3.4a).

In order to illustrate the asymptotic theory that leads to (3.4), we need a simple

approach for calculating v⋆∞ and the dipole vector ppp∞ from (3.3). Following the

approach of Trefethon [17] used for the inner problem (2.4), we deduce that v⋆ has

the form

v⋆(z) = v⋆∞ +
m

∑

j=1

ej log |z − cj| +
m

∑

j=1

n
∑

k=1

(ajk Re(z − cj)
−k
+ bjk Im(z − cj)

−k) , (3.7)

together with the condition that
∑m

j=1 ej = 0, so that the solution is bounded as |z| → ∞
and satisfies v⋆(z)→ v⋆∞ as |z| → ∞. In this formulation, z ∈ C is equivalent to the

point yyy in complex coordinates, cj ∈ C is the centre of the jth trap, and m is the number

of traps in the cluster. The real-valued constants v⋆∞, ej, ajk, and bjk for j = 1, . . . , m and

k = 1, . . . , n are determined such that the boundary conditions in (3.3) are satisfied in

the least-squares sense. Following the same approach described above in Section 2.1

for implementing the boundary conditions, we obtain 3nm + 1 algebraic equations and

2nm + m + 1 unknowns. Choosing n = 10, this gives 211 algebraic equations and 148

unknowns for the hexagonal trap cluster, and 61 equations and 43 unknowns for the

two-trap cluster.

Next we let |z| → ∞ in (3.7) so as to identify the numerical approximation to

the dipole term in the far-field behaviour of (3.3). For |z| ≫ 1, we use a Taylor
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FIGURE 7. Comparison of the analytical result (3.10) (solid curve) with the numerical result (3.9)

for the components of the dipole vector ppp∞ = (p∞x, p∞y)T for a two-trap cluster with centre-to-centre

separation lc.

approximation to estimate

Re(z − cj)
−1 ∼ Re(z)

|z|2 , Im(z − cj)
−1 ∼ Im(z̄)

|z|2 , (3.8a)

log |z − cj| ∼ log |z| −
Re(zc̄j)

|z|2 + O(|z|−2) . (3.8b)

Substituting these expressions into (3.7), and using
∑m

j=1 ej = 0, we obtain for |z| ≫ 1,

with z = y1 + iy2, that

vc ∼ v⋆∞ +
y1

y2
1
+ y2

2

[ m
∑

j=1

{aj1 − ejRe(c̄j)}
]

+
y2

y2
1
+ y2

2

[

−
m

∑

j=1

{bj1 − ejIm(c̄j)}
]

+ O(|yyy|−2) .

In this way, we identify that the approximation to the dipole vector ppp∞ in (3.3) is

ppp∞ ≈
( m
∑

j=1

{aj1 − ejRe(c̄j)},−
m

∑

j=1

{bj1 − ejIm(c̄j)}
)

. (3.9)

For a two-disk cluster with the target trap at Ω1,1 = {yyy ||yyy − yyy1| ≤ 1}, where yyy1 =

(lc/2, 0)T , and the other trap at Ω1,2 = {yyy ||yyy − yyy2| ≤ 1}, with yyy2 = (−lc/2, 0)T , we can

calculate the dipole vector ppp∞ in (3.3) analytically for any lc > 2, In Appendix A, we

derive that

ppp∞ =

(

√

(lc/2)2 − 1

cosh−1(lc/2)
, 0

)T

. (3.10)

In Figure 7, we show a very favourable comparison between the analytical result (3.10)

and the numerical result (3.9) based on the least-squares fit.

3.1. Example: The unit disk with a trap cluster We now illustrate (3.4b) when

Ω is the unit disk for the case N = 1, where the only traps in Ω are within a clustered

trap set. We find from (3.4b) that A1 = 0 and χ = v⋆∞ and so from (3.4a) and (2.7b) a

https://doi.org/10.1017/S1446181121000018 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000018


12 S. Iyaniwura and M. J. Ward [12]

TABLE 2. Comparison of the two-term result (3.11), labelled as Pa with the full PDE result Pn in the form

(Pa, Pn) for a two-trap cluster centred at the origin with traps at xxx = (−εlc/2, 0)T and xxx = (εlc/2, 0)T with

lc = 3. The rightmost trap is the target trap where P = 1. The comparison at a few values of ε is done at

the points xxx = (±0.5, 0) in the outer region.

ε P: xxx = (−0.5, 0)T P: xxx = (0.5, 0)T

0.005 (0.48548, 0.48543) (0.51452, 0.51451)

0.01 (0.47096, 0.47088) (0.52904, 0.52903)

0.02 (0.44192, 0.44188) (0.55808, 0.55804)

0.03 (0.41287, 0.41308) (0.58713, 0.58702)

0.05 (0.35470, 0.35602) (0.64521, 0.64397)

two-term approximation for the splitting probability in the outer region is given by

P ∼ v⋆∞ + 2πεppp∞·∇xxx1
G(xxx;xxx1) + o(ε), (3.11a)

where ∇xxx1
G(xxx;xxx1) =

1

2π

(

xxx − xxx1

|xxx − xxx1|2
+ xxx1 −

|xxx|2xxx1 − xxx

|xxx|2|xxx1|2 + 1 − 2xxx1·xxx

)

. (3.11b)

For a two-trap cluster with identical traps, the far-field behaviour of the solution to

(3.3) gives v⋆∞ = 1/2, as can be readily proved by symmetry or by using bipolar

coordinates [11]. Qualitatively, this leading-order approximation for P shows that for

any starting point xxx ∈ Ω, which is not within an O(ε) neighbourhood of xxx1, it is equally

likely to first reach either of the two identical traps in the two-trap cluster. With this

simple exact solution, as a check on the accuracy of the least-squares fit we obtained

numerically that |v⋆∞ − 1/2| ≤ 10−10 using n = 10 in (3.7). However, the O(ε) gradient

term in (3.11) shows that the outer solution has a weak dependence on the orientation

of the traps within the cluster.

To illustrate (3.11), we consider a two-disk cluster centred at the origin xxx1 = 000

of the unit disk with traps centred at (±εlc/2, 0)T in which P = 1 and P = 0 on the

rightmost and leftmost traps, respectively. For this configuration, the dipole vector ppp∞
is given in (3.10). Fixing lc = 3, in Table 2 we show a very favourable comparison

for various ε between the two-term asymptotic result (3.11) and the corresponding

full numerical results computed from the PDE (3.1) using FlexPDE [6] at the sample

points xxx± = (±0.5, 0)T . From this table, we observe that the dipole term induces an

asymmetry in the splitting probability on either side of the cluster. Upstream of the

cluster at xxx+ = (0.5, 0)T the target trap centred at (εlc/2, 0)T is not shielded by the

other trap in the cluster and consequently P > 1/2 at xxx = xxx+. At this upstream point we

observe very close agreement between the two-term asymptotic result (3.11) and the

full PDE results. In addition, as a result of a shielding effect, we observe that P < 1/2

at the downstream starting point xxx− = (−0.5, 0)T . In the left-hand panel of Figure 8,

we provide a contour plot of P, as computed from (3.1) using FlexPDE [6], which

shows the effect of the dipole vector in the outer region. The corresponding plot of
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FIGURE 8. Left-hand panel: contour plot of the splitting probability P computed from the PDE (3.1) using

FlexPDE [6] for a two-trap cluster centred at the origin in the unit disk with traps at xxx = (−εlc/2, 0)T and

xxx = (εlc/2, 0)T with lc = 3 and ε = 0.03. The rightmost trap in the cluster is the target trap. The effect of

the dipole term from the trap cluster is evident. Right-hand panel: contour plot of the splitting probability

in the outer region, as given in (3.11), from the asymptotic theory. The results are nearly indistinguishable.

(Colour available online.)
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FIGURE 9. Left-hand panel: numerical result for v⋆∞, defined by (3.3), and computed from a least-squares

fit of (3.7), when either the target trap is on the edge (solid line) or at the centre (dashed line) of the

hexagonal cluster. Right-hand panel: numerical result from (3.9) for the components of the dipole vector

ppp∞ = (p∞x, p∞y)T for the hexagonal trap cluster with separation lc and where the target trap is at the

rightmost edge of the cluster.

the asymptotic solution (3.11) in the outer region is shown in the right-hand panel of

Figure 8 to very closely approximate the FlexPDE result.

Next we consider the hexagonal clustered trap set in Figure 2. By using (3.7) to

approximate the solution to (3.3), in the left-hand panel of Figure 9 we plot the

leading-order outer solution P ∼ v⋆∞ versus lc for the case where the target trap is

either on the rightmost edge of the cluster (solid curve) or is at the centre of the cluster

(dashed curve). When lc is only slightly above lc = 2, corresponding to when the traps

are closely packed, we observe as expected from Figure 9 that P ∼ v⋆∞ ≈ 1/6 when the

target trap is at the edge of the cluster and that P is near zero when the target trap

is shielded at the centre of the cluster. As lc increases, and the cluster becomes less

packed, the shielding effect on the centre trap decreases and it becomes increasingly

https://doi.org/10.1017/S1446181121000018 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000018


14 S. Iyaniwura and M. J. Ward [14]

ε Pn: x = (−0.5, 0)T Pn: x = (0.5, 0)T

.005 9.189 × 10−4 9.189 × 10−4

.01 9.152 × 10−4 9.153 × 10−4

.03 8.7342 × 10−4 8.7342 × 10−4

.05 8.7185 × 10−4 8.7186 × 10−4

FIGURE 10. Right-hand panel: the FlexPDE [6] numerical result Pn computed at (±0.5, 0)T for a

hexagonal trap cluster centred at the origin of the unit disk with lc = 3. The target trap with P = 1 is at

the centre of the cluster and the dipole vector is ppp∞ = (0, 0)T . The spatially uniform theoretical prediction

for the outer solution is P ∼ v⋆∞ + o(ε), where v⋆∞ ≈ 8.745 × 10−4. Left-hand panel: contour plot of P from

FlexPDE at ε = 0.05 showing no dipole effect. (Colour available online.)

likely to hit this trap first before any of the six traps on the periphery of the cluster.

In the right-hand panel of Figure 9, we plot the components of the dipole vector

ppp∞ = (p∞x, p∞y)T versus lc, as computed numerically from (3.9), when the target trap

is at the rightmost edge of the cluster. As a check on the numerics, we compute from

(3.9) that |ppp∞| ≈ 10−16 when the target trap is at the centre of the cluster. For this case,

by symmetry we must have ppp∞ = (0, 0)T .

As a further illustration of (3.11), we consider the hexagonal trap cluster centred

at the origin xxx1 = 000 of the unit disk with lc = 3. We consider two scenarios. Case I:

target trap, for which P = 1, is located at the centre of the cluster. For this case, we

have ppp∞ = (0, 0)T and v⋆∞ ≈ 8.745 × 10−4 (dotted curve in the left-hand panel of Figure

9). Case II: target trap with P = 1 is located at the rightmost trap of the cluster. For

this case, we calculate v⋆∞ ≈ 0.1665 (solid curve in the left-hand panel of Figure 9) and

ppp∞ ≈ (1.1702, 0)T from the right-hand panel of Figure 9.

For Case I, in Figure 10 we show a favourable comparison at xxx = (±0.5, 0)T between

the spatially uniform asymptotic result P ∼ v⋆∞ + o(ε) and the FlexPDE numerical

result computed from the PDE (3.1). From this figure we observe no dipole effect

and that the probability of reaching the target trap at the centre of the hexagon before

encountering any of the shielding traps on the periphery of the cluster is uniformly

small when |xxx| ≫ O(ε).

Next, for Case II where the target trap is at the rightmost edge of the cluster, in

the right-hand panel of Figure 11 we show that the two-term asymptotic result (3.11)

with v⋆∞ ≈ 0.1665 and dipole vector ppp∞ ≈ (1.1702, 0)T compares very favourably at

xxx = (±0.5, 0) with the corresponding FlexPDE numerical result up to roughly ε ≈ 0.03.

The effect of the dipole term is evident in the FlexPDE contour plot shown in the

left-hand panel of Figure 11. We observe that the effect of the dipole is to increase

significantly the probability of first encountering the target trap starting from the
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ε P: x = (−0.5, 0)T P: x = (0.5, 0)T

.005 (0.15187 , 0.15223) (0.18113 , 0.18153)

.01 (0.13725 , 0.13874) (0.19576 , 0.19742)

.02 (0.10799, 0.10729) (0.22501, 0.24289)

.03 (0.07874 , 0.09204) (0.25427, 0.27022)

.05 (0.02023, 0.05596) (0.31278 , 0.36116)

FIGURE 11. Right-hand panel: the two-term asymptotic result Pa in (3.11) with v⋆∞ ≈ 0.1665 and dipole

vector ppp∞ ≈ (1.1702, 0)T is compared at xxx = (±0.5, 0)T with the FlexPDE numerical result Pn in the form

(Pa, Pn) for a hexagonal trap cluster centred at the origin of the unit disk with lc = 3. The target trap with

P = 1 is at the rightmost edge of the cluster. Left-hand panel: contour plot of P from FlexPDE at ε = 0.05

showing the dipole. (Colour available online.)

upstream point (0.5, 0)T in comparison to starting from the downstream location

(−0.5, 0)T .

4. Spatially periodic trap patterns

In this section, we consider a spatially periodic array of traps in R2 where either a

single trap or a trap cluster of small O(ε) measure is centred at the lattice points of an

oblique Bravais lattice Λ defined by

Λ ≡ {mlll1 + nlll2 | m, n ∈ Z}, (4.1)

where Z denotes the set of integers. We recall that the Wigner–Seitz (WS) cell centred

at a fixed lll ∈ Λ is the set of all points in the plane that are closer to lll than to any

other lattice point. The fundamental WS cell Ω is the one centred at the origin (see

Figure 12 with the red trap). A WS cell is a convex polygon that has the same area |lll1 ×
lll2| of the primitive cell, and the union of these WS cells tile all of R2. We will choose

the length scale so that the area of the primitive cell is fixed at unity. For a hexagonal

and a particular oblique lattice, in Figure 12 we show the WS cells with a single circular

trap (blue disk) of radius ε centred at each lattice point, and the fundamental WS cell

Ω centred at the origin (red disk).

4.1. The MFPT The determination of the MFPT for the spatially periodic pattern

of localized traps in R2 can be reduced to a problem defined on the fundamental WS

cell Ω, which is formulated as

△T = − 1

D
, xxx ∈ Ω\Ωε; T ∈ P, xxx ∈ ∂Ω, (4.2a)

T = 0 , xxx ∈ ∂Ωε. (4.2b)
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FIGURE 12. Left-hand panel: Wigner–Seitz (WS), or Voronoi, cells for a hexagonal pattern of circular

traps (blue dots) of a common radius ε. The fundamental WS cell Ω of unit area is centred at the origin

and contains the red trap. The lattice vectors are lll1 = ((4/3)(1/4), 0)T and lll2 = (4/3)(1/4)((1/2), (
√

3/2))T .

Right-hand panel: an oblique lattice with unit area of the primitive cell with generators lll1 = (21/4, 0)T and

lll2 = 2−1/4(1, 1)T . (Colour available online.)

Here Ωε denotes a possibly multiply connected trap cluster of measure O(ε) centred

at the origin 000 ∈ Ω, while the set P denotes periodic boundary conditions on ∂Ω (see

equation (2.35) of Iron et al. [9] for a precise description of P). In the limit ε→ 0, we

will calculate the average MFPT

T̄ ≡ 1

|Ω\Ωε|

∫

Ω\Ωε
T dxxx with |Ω\Ωε| = 1 − |Ωε|, (4.3)

where |Ωε| is the area of the trap cluster.

The asymptotic analysis of (4.2) as ε→ 0 relies on the periodic source-neutral

Green’s function Gp(xxx) with regular part Rp, defined uniquely by

∆Gp =
1

|Ω| − δ(xxx), xxx ∈ Ω; Gb ∈ P, xxx ∈ ∂Ω;

∫

Ω

Gp dxxx = 0 , (4.4a)

Gp ∼ −
1

2π
log |xxx| + Rp +

|xxx|2
4
+ o(|xxx|2) as xxx→ 000. (4.4b)

We remark that sinceΩ has two lines of symmetry that intersect at the origin, the usual

gradient term ∇xxxGp|xxx=000 · xxx is absent in the local behaviour (4.4b).

Chen and Oshita [4] derived explicit formulae for Gp(xxx) and Rp in their analysis

of droplet patterns in diblock copolymer theory. By identifying a point xxx as a complex

number z = x + iy and by writing the Bravais lattice equivalently in terms of generators

α ∈ C and β ∈ C as Λ ≡ {mα + nβ | m, n ∈ Z}, with Im(β/α) > 0 and Im(ᾱβ) = 1 to fix

the area of the primitive cell to unity, it is known [4] that

Gp = Im

( |z|2 − ᾱz2/α

2(αβ̄ − ᾱβ)
− z

2α
+
β

12α

)

− 1

2π
log

∣

∣

∣

∣

∣

(

1 − e

(

z

α

))

×
∞
∏

n=1

(

1 − e

(

nβ + z

α

))(

1 − e

(

nβ − z

α

))

∣

∣

∣

∣

∣

, (4.5)
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where e(w) is defined by e(w) ≡ e2πiw and where the overbar denotes complex

conjugate. Upon defining ζ ≡ β/α, the regular part Rp of Gp is

Rp = −
1

2π
log(2π) − 1

2π
log

∣

∣

∣

∣

∣

√

Im(ζ) e

(

ζ

12

) ∞
∏

n=1

(1 − e(nζ))2

∣

∣

∣

∣

∣

. (4.6)

In terms of Rp, our asymptotic result for the average MFPT is as follows.

PRINCIPAL RESULT 3. For ε→ 0, the average MFPT (4.3) for (4.2) for an arbitrary

oblique Bravais lattice is

T̄ ∼ 1

2πD
(− log[εdc]) +

Rp

D
+ o(1), as ε→ 0, (4.7)

where Rp is given in (4.6). Here dc is the logarithmic capacitance of the re-scaled trap

cluster Ω0 ≡ ε−1
Ωε, as defined by the local problem

∆yyyvc = 0, yyy < Ω0; vc = 0, yyy ∈ ∂Ω0, (4.8a)

vc ∼ log |yyy| − log dc + o(1) as |yyy| → ∞. (4.8b)

For the special case where Ωε is a disk of radius ε, we have the refined estimate

T̄ ∼ 1

2πD
(− log ε) +

Rp

D
+
ε2

D

[

− 1

2
log ε + πRp +

1

2

]

+ o(ε2) as ε→ 0. (4.9)

To establish these results for (4.2), we use strong localized perturbation theory as

in Ward and Keller [20]. In the inner region near Ωε we introduce the inner variables

yyy = ε−1xxx, v(yyy) ≡ T(εyyy)

and we expand the inner solution as

v(yyy) = Avc(yyy) + µ(ε)v1(yyy) + · · · , (4.10)

where A = A(ν), with ν ≡ −1/ log(εdc), is to be found and µ ≪ νk for any k > 0. Here

vc(yyy) is the solution to the local problem (4.8) that defines the logarithmic capacitance

dc of the trap cluster.

The dominant far-field behaviour for the inner expansion (4.10) provides the

asymptotic matching condition T ∼ A log |xxx| + A/ν + o(1) as xxx→ 0. As such, in order

to account for all terms in powers of ν, we pose the outer expansion as

T ∼ T0(xxx; ν) + σ(ε)T1 + · · · , (4.11)

where the transcendentally small correction term σ(ε), with σ(ε) ≪ νk for any k > 0,

is determined below. We obtain that T0 satisfies

∆T0 = −
1

D
, xxx ∈ Ω\{000} ; T0 ∈ P , xxx ∈ ∂Ω , (4.12a)

T0 ∼ A log |xxx| + A

ν
as xxx→ 0 . (4.12b)
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Since |Ω| = 1, by the divergence theorem we calculate A = 1/(2πD) and we identify

that

T0 =
1

D
(−Gp(xxx) + χ0), (4.13)

where χ0 is an undetermined constant. Finally, by matching (4.13) to the regular part of

the singularity condition in (4.12) as xxx→ 000, we obtain χ0 = Rp + 1/(2πν). Then, upon

integrating (4.13) over Ω\Ωε, we obtain (4.7).

Next we will calculate the first transcendentally small term of order O(ε2) for the

special case when Ωε is a disk of radius ε for which dc = 1. By writing the local

behaviour for Gp in (4.4b) in terms of the inner variable yyy, we obtain from (4.13) and

(4.11) that

T ∼ 1

2πD
log |yyy| − ε

2

4D
|yyy|2 + σ(ε)T1 + · · ·

with the O(ε2) term providing the scale of the correction term in the inner region.

Therefore, we must choose µ(ε) = ε2 in the inner expansion (4.10). For the disk-shaped

trap, we have vc = log |yyy| and that v1 in (4.10) satisfies

∆yyyv1 = −
1

D
, |yyy| ≥ 1; v1 = 0 on |yyy| = 1; v1 ∼ −

|yyy|2
4D

as |yyy| → ∞, (4.14)

which has the exact solution v1 = (1 − |yyy|2)/(4D). By matching v1 to the outer

expansion (4.11), we conclude that σ(ε) = ε2 and that T1 satisfies

∆T1 = 0, xxx ∈ Ω\{000}; T1 ∈ P, xxx ∈ ∂Ω; T1 →
1

4D
as xxx→ 0, (4.15)

which has the trivial solution T1 = 1/(4D). In this way, for a circular trap, we obtain

the refined outer and inner solutions

T ∼ 1

D

[− log ε

2π
− Gp(xxx) + Rp

]

+
ε2

4D
+ · · · for |xxx| ≫ O(ε), (4.16a)

v ∼ 1

2πD
log |yyy| + ε

2

4D
(1 − |yyy|2) + · · · for |yyy| = |xxx|

ε
= O(1). (4.16b)

By using the local behaviour for Gp(xxx) in (4.4b), we readily observe that the outer

expansion (4.16a) contains the inner expansion (4.16b). As such, in estimating T̄ in

(4.3) we need only integrate the outer expansion (4.16a) as

T̄ ∼ 1

D(1 − πε2)

∫

Ω\Ωε

(

Rp −
log ε

2π
+
ε2

4

)

dxxx − 1

D(1 − πε2)

∫

Ω\Ωε
Gp dxxx

∼ 1

D

(

Rp +
(− log ε)

2π
+
ε2

4

)

+
1

D(1 − πε2)

∫

Ωε

Gp dxxx, (4.17)
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where we used
∫

Ω\Ωε
Gp dxxx = −

∫

Ωε
Gp dxxx since

∫

Ω
Gp dxxx = 0. Then, by using the local

behaviour in (4.4b), we get
∫

Ωε
Gp dxxx ∼ −(ε2/2) log ε + ε2/4 + πε2Rp. By using this

estimate in (4.17), we obtain (4.9) from an explicit integration. This completes the

derivation of Principal Result 3.

We remark that it is an open problem to determine the leading transcendentally

small term for the average MFPT for a trap cluster at the origin. However, for the

MFPT (and not its spatial average), the dipole term pppc in the far-field expansion in (2.4)

determines the correction term to the MFPT in the outer region. More specifically, we

have in the outer region that T ∼ T0 + εT1, where T1 satisfies ∆T1 = D−1pppc·∇xxxδ(xxx) with

T1 ∈ P on ∂Ω.

For a Bravais lattice with unit area of the primitive cell, it was proved in Theorem 2

of Chen and Oshita [4] that the regular part Rp in (4.6) is minimized for a regular

hexagonal lattice. From Principal Result 3, this establishes that over this class of

lattices, the average MFPT is smallest for the hexagonal lattice.

Next we illustrate (4.6) for the one-parameter family of lattices Λ given by

lll1 = (1/
√

sin(θ), 0)T and lll2 = (cos(θ)/
√

sin(θ),
√

sin(θ))T for which |lll1| = |lll2|. This

corresponds to setting α = 1/
√

sin θ and β = αeiθ in (4.6), which yields

Rp0 = −
1

2π
log(2π) − 1

2π
log

∣

∣

∣

∣

∣

√
sin θ eπiξ/6

∞
∏

n=1

(1 − e2πinξ)2

∣

∣

∣

∣

∣

, ξ = eiθ. (4.18)

In Figure 13, we plot Rp0 versus θ for this class of lattices. For the hexagonal lattice,

where θ = π/3, we calculate Rp0 ≈ −0.210262, while, for the square lattice, where

θ = π/2, we have Rp0 ≈ −0.208578. From the leading-order result (4.7),

T̄ ∼ 1

2πD
[− log(εdc) − 1.310533 + o(1)] (square), (4.19a)

T̄ ∼ 1

2πD
[− log(εdc) − 1.321117 + o(1)] (hexagon). (4.19b)

20 30 40 50 60 70 80 90
-0.22

-0.2

-0.18

-0.16

-0.14

FIGURE 13. Plot of the the regular part Rp, as given in (4.18), for the periodic source-neutral Green’s

function for oblique lattices with unit area of the primitive cell for which lll1 = (1/
√

sin(θ), 0)T and lll2 =

(cos(θ)/
√

sin(θ),
√

sin(θ))T . The minimum occurs for the hexagon for which θ = 60◦.

https://doi.org/10.1017/S1446181121000018 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000018


20 S. Iyaniwura and M. J. Ward [20]

Here dc is the logarithmic capacitance of the trap cluster, as defined by the local

problem (4.8).

For a circular trap of radius ε, for which dc = 1, the leading-order result (4.19)

for the square lattice was derived previously by Torney and Goldstein [16, equation

(36)] by using the method of pseudo-potentials and from the numerical evaluation of a

certain discrete lattice sum. However, in Torney and Goldstein [16] no estimate of the

next term in the expansion of T̄ was provided. This estimate is provided by the more

refined result (4.9), which yields

T̄ ∼ 1

2πD
(− log ε − 1.310533) +

ε2

D

(

− 1

2
log ε − 0.155266

)

(square),

T̄ ∼ 1

2πD
(− log ε − 1.321117) +

ε2

D

(

− 1

2
log ε − 0.160559

)

(hexagon).

5. Discussion

The asymptotic calculation of the MFPT and the splitting probability in 2D

domains with small traps of radius O(ε) has previously been restricted to the

case where the traps are isolated in the sense that their centre-to-centre sepa-

ration is O(1) as ε→ 0 [5, 11]. By adapting the simple series-based numerical

approach of Trefethon [17], we have shown how to readily incorporate the effect

of a cluster of closely spaced circular traps into the asymptotic framework of

Kurella et al. [11] and Coombs et al. [5] for the MFPT and splitting probability. For a

target trap located within a cluster of traps, we have shown that we need to extend the

asymptotic theory of Kurella et al. [11] to one higher order so as to include the effect of

the dipole vector for the trap cluster, which provides positional information about the

target trap within the cluster. For a general trap cluster, this dipole vector is calculated

numerically from extending the least-squares fitting procedure of Trefethon [17].

An exact solution for the dipole vector for a two-trap cluster provides partial

confirmation of the numerical result. Results from the extended asymptotic theory

for the splitting probability were favourably compared with full FlexPDE numerical

simulations for a few examples with trap clusters, which have clear qualitative

interpretations.

We have also provided asymptotic expansions for the average MFPT for a cluster

of traps centred at the lattice points of an arbitrary Bravais lattice in R2. Our analysis

for this problem has relied on an explicit formula for the regular part of the periodic

source-neutral Green’s function, as derived by Chen and Oshita [4], within the

fundamental Wigner–Seitz cell of the lattice. For the special case of a circular trap and

for a square lattice, our asymptotic result agrees with that of Torney and Goldstein [16]

and provides the dominant transcendentally small terms in the expansion not derived

there.
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A. Appendix: Dipole moment: two-trap cluster

In this appendix, we derive a formula for the dipole vector ppp∞ from the solution to

(2.4) for a two-trap cluster where the two traps are

Ω1,1 = {yyy ||yyy − (lc/2, 0)T | ≤ 1}, Ω1,2 = {yyy ||yyy + (lc/2, 0)T | ≤ 1}, (A.1)

where lc > 2. To solve (2.4) for the two-trap cluster (A.1), we follow Appendix A of

Kurella et al. [11] and introduce bipolar coordinates ξ and η, as defined by

y1 =
c sinh ξ

cosh ξ − cos η
, y2 =

c sin η

cosh ξ − cos η
with c =

√

l2c

4
− 1. (A.2)

Then |yyy| → ∞ corresponds to (ξ2 + η2)1/2 → 0, and the two disks are mapped to the

coordinate lines ξ = ±ξ1 where ξ1 ≡ cosh−1(lc/2).

By introducing these bipolar coordinates in (2.4), we readily derive that V⋆(ξ, η) ≡
v⋆[y1(ξ, η), y2(ξ, η)] satisfies

V⋆ξξ + V⋆ηη = 0, |ξ| ≤ ξ1, |η| ≤ π,
V⋆ = 0 on ξ = −ξ1 ; V⋆ = 1 on ξ = ξ1,

V⋆ , V⋆η 2π periodic in η,

(A.3)

which has the exact solution

V⋆ =
1

2
+
ξ

2ξ1
, where ξ1 ≡ cosh−1(lc/2). (A.4)

Finally, we let |yyy| → ∞ in the mapping (A.2), which corresponds to ξ2 + η2 → 0. From

a Taylor expansion of (A.2), we derive that

y1 ∼
2cξ

ξ2 + η2
, y2 ∼

2cη

ξ2 + η2
, (A.5)

which yields ξ2 + η2 ∼ 4c2/(y2
1
+ y2

2
). This shows that ξ ∼ 2cy1/(y

2
1
+ y2

2
) as |yyy| → ∞.

Upon substituting this expression into (A.4), we obtain the following far-field

behaviour for the solution to (2.4):

v⋆ ∼ 1

2
+

c

ξ1

y1

y2
1
+ y2

2

as |yyy| → ∞. (A.6)

By recalling (A.2) and (A.4) for c and ξ1, respectively, we obtain (3.10) for the dipole

vector ppp∞.
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