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In this paper we study both theoretically and experimentally the inverse problem
of indirectly measuring the shape of a localized bottom deformation with a non-
instantaneous time evolution, from either an instantaneous global state (space-based
inversion) or a local time-history record (time-based inversion) of the free-surface
evolution. Firstly, the mathematical inversion problem is explicitly defined and
uniqueness of its solution is established. We then show that this problem is ill-posed
in the sense of Hadamard, rendering its solution unstable. In order to overcome this
difficulty, we introduce a regularization scheme as well as a strategy for choosing
the optimal value of the associated regularization parameter. We then conduct a
series of laboratory experiments in which an axisymmetric three-dimensional bottom
deformation of controlled shape and time evolution is imposed on a layer of water
of constant depth, initially at rest. The detailed evolution of the air–liquid interface
is measured by means of a free-surface profilometry technique providing space- and
time-resolved data. Based on these experimental data and employing our regularization
scheme, we are able to show that it is indeed possible to reconstruct the seabed
profile responsible for the linear free-surface dynamics either by space- or time-based
inversions. Furthermore, we discuss the different relative advantages of each type of
reconstruction, their associated errors and the limitations of the inverse determination.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction
Tsunamis are perhaps the most surprising manifestation of how a sudden and

localized seafloor movement is able to generate free-surface waves. The problem of

† Email address for correspondence: cobelli@df.uba.ar
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determining the associated bulk flow and the subsequent propagation of waves at
the free surface given a bottom movement of known characteristics can be reduced
to the classical Cauchy–Poisson boundary value problem (dating back to 1815; see
e.g. Lamb 1932). Indeed, this elementary approach set the framework for a number
of seminal works on the subject, such as those of Keller (1961), Kajiura (1963),
Braddock, Driessche & Peady (1973) and Hammack (1973), and is still employed
as the basis of more realistic and elaborate models of water wave generation from
bottom disturbances (Dutykh & Dias 2007; Murty, Aswathanarayana & Nirupama
2007).

In contrast, determining the bottom disturbance responsible for a given free-surface
state and/or time evolution is mathematically more involved. This inverse problem
was recently considered by Jang, Han & Kinoshita (2010) and Jang, Sung & Park
(2012) for the case of an instantaneous seafloor deformation in a one-dimensional
ocean of uniform depth. The authors showed that, in this case, the inverse problem
is ill-posed and therefore its solution (the originating bottom disturbance) does not
depend continuously on the available data (the free-surface state and/or evolution). As
a consequence, a small amount of noise in the original data leads to an arbitrarily
large erroneous result. Furthermore, this lack of stability of the solution implies that
direct discretization of the problem into a numerical system of simultaneous linear
equations is not viable, as the resulting system is ill-conditioned. In order to overcome
this difficulty, the authors proposed an inversion strategy and performed numerical
computations showing that it is indeed possible to reconstruct the seafloor profile in
the numerical one-dimensional cases considered.

In this work we present an experimental study on the inverse problem of indirectly
measuring the three-dimensional shape of a localized axisymmetric (but otherwise
arbitrary) bottom deformation with a known non-instantaneous time evolution, from
either an instantaneous global state or a local time-history record of the free-surface
evolution. The necessary theoretical tools associated with the inversion procedure are
based on the work of Jang et al. (2010), which we extended to account for both the
three-dimensional axisymmetric nature of the bottom shape and the non-instantaneous
character of the deformation to represent adequately the dynamics of the laboratory
experiments.

The paper is organized as follows. In order to make the presentation self-contained,
§ 2.1 briefly reviews the (direct) Cauchy–Poisson problem for water waves, and its
closed-form solution for the spatiotemporal evolution of surface waves created by a
localized axisymmetric arbitrary bottom movement is derived. Section 3 is concerned
with the associated inverse problem, i.e. that of determining the characteristics of the
seafloor disturbance from either an instantaneous global state (space-based inversion)
or a local time-history record (time-based inversion) of the free-surface evolution.
The experimental determination of the transient response of the free surface to the
different bottom disturbances is the subject of § 4.1. Our main results regarding the
determination of the bottom deformation from experimental data are presented in § 5,
for both space- and time-based inversion approaches. Finally, § 6 summarizes our
results and conclusions.

2. Theory

In this section we look at the transient response of a free surface to a bottom
disturbance of known characteristics, setting the basis for the analysis of the inversion
problem.
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At rest After impulse

(a) (b)

FIGURE 1. Definition of the fluid domain and coordinate system. (a) The initial
configuration, with both free surface and seafloor horizontal and separated by a fluid depth
h. (b) The state of both boundaries for a time t+ > 0.

2.1. Transient three-dimensional free-surface response to seabed disturbances
Let us consider an ocean of initially uniform depth h, with no rigid boundaries other
than its bottom, as shown schematically in figure 1. Initially the fluid is assumed to
be at rest, and both the free surface and the sea bottom to be horizontal. In this
configuration, their positions at time t= 0 are given by z= 0 and z=−h, respectively.

For t > 0, the bottom moves in a prescribed manner, giving rise to a floor
deformation axisymmetric with respect to the vertical axis Oz (the position vector
being decomposed into horizontal r = (r, θ) and vertical zez components). The
instantaneous equation of the bottom is given by

z=−h+ ζ (r, t), (2.1)

such that lim|r|→∞ ζ (r, t)= 0. The resulting deformation of the free surface, which is
to be determined, is given by

z= η(r, t). (2.2)

In what follows, we will assume that the fluid is inviscid and incompressible, and
that the resulting flow is irrotational. Under these conditions, the problem can be
posed in terms of a velocity potential φ(r, z, t). Besides, under linear and axisymmetric
hypothesis, the equations for φ are

1
r
∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2
= 0, r > 0, −h 6 z 6 0, t > 0, (2.3)

∂φ

∂t
+ gη= 0, z= 0, (2.4)

∂φ

∂z
=
∂η

∂t
, z= 0, (2.5)

∂φ

∂z
=
∂ζ

∂t
, z=−h, (2.6)

complemented by the initial conditions given by

ζ (r, t= 0)= 0,
η(r, t= 0)= 0.

}
(2.7)
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Equations (2.4) and (2.5) can be combined as

∂2φ

∂t2
+ g

∂φ

∂z
= 0, z= 0, (2.8)

yielding a single condition at the free surface.
The closed-form general solution to the problem of a water wave generated by

a moving bottom has been considered by a number of authors in the literature.
Hammack (1973) discussed the free-surface response to one-dimensional bed
disturbances; Mei, Stiassnie & Yue (2005) studied the generic two-dimensional
case; and more recently Dutykh & Dias (2007) considered non-axisymmetric
two-dimensional seabed deformations. In the following, we provide a general solution
particularly suited for the case at hand, i.e. that of the free-surface spatiotemporal
response to an axisymmetric seabed deformation.

For future reference, let us define the integral transforms employed in the analysis.
The Hankel transform of order zero (see Sneddon 1951) of a function f (r) is defined
by

H{f (r)} = f̂ (k)=
∫
∞

0
rJ0(kr)f (r) dr, (2.9a)

whose inverse transform is

H−1
{f̂ (k)} = f (r)=

∫
∞

0
kJ0(kr)f̂ (k) dk. (2.9b)

In the last two definitions, J0(·) represents the zeroth-order Bessel function of the first
kind. Also, we define the Laplace transform in time t for a function f (t) by

L{f (t)} = f̃ (s)=
∫
∞

0
f (t)e−st dt, (2.9c)

as well as its inverse, given by the Bromwich–Fourier–Mellin integral (see Arfken
1985)

L−1
{f̃ (s)} = f (t)=

1
2πi

lim
Γ→∞

∫ µ+iΓ

µ−iΓ
f̃ (s)est ds, (2.9d)

where i represents the imaginary unit and Re(s)=µ is a vertical line in the complex
plane chosen so that µ is greater than the real part of all singularities of f̃ (s).

In terms of these transforms, it can be shown (Hammack 1973) that the general
closed-form solution for the free-surface space-time evolution η(r, t) due to a
prescribed seafloor movement ζ (r, t) is

η(r, t)=
∫
∞

0

kJ0(kr)
cosh kh

{
lim
Γ→∞

1
2πi

∫ µ+iΓ

µ−iΓ

ˆ̃
ζ (k, s)

s2

s2 +ω2
est ds

}
dk. (2.10)

In this expression, k and ω denote the wavenumber and angular frequency for free-
surface waves, respectively. Both are related through the linear finite-depth dispersion
relation given by

ω2(k)= gk tanh kh. (2.11)
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Equation (2.10) can be recast in a more compact form in terms of the integral
operators defined above as

η(r, t)=H−1

{
L−1

{
L{H{ζ }}

s2

s2 +ω2

}}
. (2.12)

In order to be able to analytically invert the Laplace transform, we will consider
(axisymmetric) seabed deformations for which the space dependence can be separated
from the time evolution, i.e. those admitting the following representation:

ζ (r, t)= ζ0(r)T(t). (2.13)

For this family of seabed space-time evolutions, the integral solution given by (2.10)
becomes

η(r, t)=
∫
+∞

0
ζ̂0(k)

kJ0(kr)
cosh(kh)

L−1

{
s2est

s2 +ω2
L[T(t); s]; t

}
dk. (2.14)

Further simplification of this expression requires knowledge of the seabed kinematics,
which would allow us to explicitly compute the inverse Laplace transform. However,
for those time-evolution functions T(t) for which the calculation is indeed possible,
(2.14) acquires the general form

η(r, t)=
∫
+∞

0

kJ0(kr)
cosh(kh)

ζ̂0(k)Θ(k, t) dk, (2.15)

with Θ(k, t) representing the inverse Laplace transform term in (2.14). This expression
represents the most general solution to the problem of the three-dimensional transient
response of the free surface to a prescribed bottom disturbance in the case of
axisymmetric seabed deformations subject to (2.13). As such, it constitutes the
starting point for the following section, in which we will consider the inverse problem,
i.e. that of recovering the shape of the seabed disturbance from the spatiotemporal
evolution of the free surface.

In the present work, the time evolution of the bottom is modelled by a Ts(t)
that describes a continuous half-sine displacement before reaching its maximum.
Mathematically,

Ts(t)=H(t− t0)+
1
2 [1− cos(πt/t0)]H(t0 − t), (2.16)

where H(·) stands for the Heaviside step function and t0 represents a characteristic
time lapse. For this seabed time-evolution model, (2.14) reduces to

ηs(r, t) =
∫
∞

0

kJ0(kr)
cosh kh

ζ̂0(k)
γ 2

2(γ 2 −ω2)

×{cosωt− cos γ t+H(t− t0)[cosω(t− t0)+ cos γ t]} dk, (2.17)

where we have introduced the notation γ =π/t0 for the sake of brevity.

3. Indirect measurement of the seabed deformation
3.1. The inversion problem

The spatiotemporal evolution of the free surface given by (2.14) can be rewritten in
a more general form as

η(r, t)=
∫
∞

0
K(r, t, k)ζ̂0(k) dk. (3.1)
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In this expression, K(r, t, k) can be calculated owing to the knowledge of the seabed
time evolution function T(t). Notice that the detailed form of the kernel K(r, t, k)
depends on the temporal evolution of the ground, whereas all information regarding
the seabed deformation shape is contained in the Hankel transform ζ̂0(k).

In operator notation, the equivalent of (3.1) reads

η(r, t)=D(ζ̂0)=D[H(ζ0)], (3.2)

where the symbol D represents the linear operator defined as

D(ζ̂0)≡

∫
∞

0
K(r, t, k)ζ̂0(k) dk. (3.3)

Equation (3.1) constitutes an integral equation for the unknown seabed shape, ζ0(r),
as the spatiotemporal evolution of the free surface, given by η(r, t), is assumed to be
known from experiments. Consequently, the indirect determination (i.e. measurement)
of the ground deformation, ζ0(r), implies the inversion of that equation, whenever
possible. Employing operator notation, our aim in the framework of this study is to
determine

ζ0 = (DH)−1η= (H−1D−1)η, (3.4)

from the knowledge of η(r, t); a procedure termed the inverse or inversion problem.
An interesting feature of the inversion problem given by (3.1) is that, as η(r, t)

is a function of both space and time, the determination of the seabed shape can be
sought through either a time-based or a space-based approach (or both), depending
on the type of data records η(r, t) available. The former requires only a time series
of the free-surface height at a fixed point r∗ in space, denoted by η(r∗, t). The latter
concerns solely a global snapshot of the free-surface state at an instant t∗, symbolized
by η(r, t∗). These approaches are represented by

η(r∗, t)≡ ηr∗(t)=
∫
∞

0
K(r∗, t, k)ζ̂0(k) dk, (3.5a)

η(r, t∗)≡ ηt∗(r)=
∫
∞

0
K(r, t∗, k)ζ̂0(k) dk, (3.5b)

for the time-based and the space-based inversions, respectively. The two of them can
also be employed simultaneously (whenever spatiotemporal data of the free-surface
height are available). In what follows, we employ the terms inverse or inversion
problem to refer generically to either one of these approaches, as well as to the
complete two-dimensional setting/formulation of (3.1).

Before venturing into solving the inverse problem, it is important to determine
whether its solution is unique for any given η(r, t). In our case, uniqueness of the
solution is assured by the bijectivity of the compound integral operator (DH). Since
the Hankel transform operator H is bijective, we only need to show bijectivity of the
D operator. This can be accomplished by rewriting (2.14) as

η(r, t)=
∫
+∞

0
kJ0(kr)Ω(k, t) dk, (3.6)

with

Ω(k, t)=
ζ̂0(k)

cosh(kh)
L−1

{
s2est

s2 +ω2
L[T(t); s]; t

}
, (3.7)
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for any function T(t) allowing the computation of the inverse Laplace transform
term. The first of the last two equations shows that the D operator establishes a
one-to-one correspondence between η and Ω , again, by virtue of the bijectivity of
the Hankel transform. This result leads to a one-to-one correspondence between η and
ζ̂0, which completes the proof. As a consequence, the linear operator D is bijective
and therefore the inverse problem stated in (3.1) has a unique solution, leading to a
unique determination of the seabed shape, ζ0(r).

3.2. Stability of the inversion problem
In spite of the fact that the inversion problem presents a (physically meaningful)
unique solution ζ0(r), the question remains as to whether that solution is stable. In
this section we examine the stability of the inversion problem with regard to the
measurement of the seabed shape from the knowledge of the free-surface state and/or
evolution.

In experiments as well as in numerical simulations, the free-surface state is known
only at discrete instants in time and points in space. Spatial resolution, in turn, sets
an upper limit – through the Nyquist–Shannon sampling theorem (Shannon 1949) –
to the extent of the spectral description one is able to achieve, introducing a cutoff
wavenumber ~ beyond which no knowledge is available. From a physical standpoint,
this amounts to restricting the family of solutions accessible through the inversion
problem to seabed shapes whose spectrum ζ̂0(k) is a function with a compact support
(see Yosida 1995) such that the set of wavenumbers k on which ζ̂0(k) 6= 0 is given by
the interval 0 6 k 6 kS, with kS 6 ~. According to this, (3.1) reduces to

η(r, t)=
∫ ~

0
K(r, t, k)ζ̂0(k) dk, (3.8)

whose representation in operator notation is now

η(r, t)=Dc(ζ̂0). (3.9)

Equation (3.8) is a Fredholm integral equation of the first kind (Wazwaz 2011) with
a Hilbert–Schmidt kernel K(r, t, k) (Tricomi 1985). Moreover, owing to the finiteness
of the integration limit in (3.8), the operator Dc in (3.9) is a Hilbert–Schmidt
operator, which is known as a compact integral operator (Conway 1999; Vaughn
2007). Compactness of Dc implies that its inverse, D−1

c , is discontinuous although
Dc is continuous (Kirsch 2011); therefore, D−1

c does not depend on the data η in a
continuous manner. As a result, the integral equation (3.8) and, more generally, the
inversion problem is ill-posed in the sense of stability (Hadamard 2003) when the
spectrum of the axisymmetric seabed shape, ζ̂0, has compact support. This implies
that even a small amount of noise in the original data η(r, t) leads to an arbitrarily
large error in the result ζ0(r). In practice, instability means that the introduction of
direct numerical methods to tackle the ill-posed problem of (3.8) provides unreliable
solutions. This is particularly the case for strategies such as discretization into a
numerical system of simultaneous linear equations, as the discretized system turns
out to be ill-conditioned (Jang & Han 2008; Jang et al. 2010).

3.3. Solution by regularization
As discussed in the previous section, the inversion problem is ill-posed in the
sense of Hadamard, and therefore unstable to small perturbations to the initial data.
Consequently, the application of classical direct numerical methods is inexpedient as
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it leads to solutions with arbitrarily large error. In order to overcome this inherent
difficulty, regularization techniques are required to stabilize numerical computations
(Engl, Hanke & Neubauer 2000; Kirsch 2011). This section is devoted to a detailed
discussion concerning the implementation of a regularization method in conjunction
with a criterion for selecting an optimal solution to the inverse problem.

Without loss of generality and for the sake of simplicity of exposition, we look
here at the particular case of the time-based inversion problem of (3.5a) for seabed
deformations of compactly supported spectrum ζ̂0(k). This is a common experimental
situation, where a time series of the free-surface height at a fixed position is often
available by, for example, the use of point gauge devices. Nevertheless, all comments
and results apply also to the space-based approach. Moreover, we consider the discrete
version of the inverse problem at hand in which, for a given space location r∗, the
free-surface evolution η is known only at a discrete number of time instants ti with
i= 1, 2, . . . ,N.

For a numerical solution to (3.5a), the upper limit of integration is replaced with
a finite wavenumber ~ and the resulting equation is discretized by approximating the
integral with a quadrature rule. This leads to a discrete formulation of the ill-posed
inverse problem as

ηr∗(ti)=

M∑
j=1

qjK(r∗, ti, kj)ζ̂0(kj), (3.10)

where qj (with j = 1, 2, . . . , M) represent the weights of the chosen numerical
integration rule. Equation (3.10) admits a representation in matrix form as

η= Dζ̂0, (3.11)

where we have introduced the column vectors η≡ηr∗(ti) and ζ̂0≡ ζ̂0(kj) and the matrix
D ∈ RN×M representing the Dc operator at a finite number of discrete points in the
(t, k) space.

In general, solving this system of linear equations, either by considering the
least-squares formulation minζ̂0

‖Dζ̂0 − η‖ when N > M or simply as D−1η for a
square matrix D, is not possible because discrete ill-posed problems such as this are
characterized by having coefficient matrices with a very large condition number (see
e.g. Hansen 2010).

Among the many regularization algorithms available in the literature, we have
chosen the Tikhonov regularization technique (Tikhonov 1943, 1963; Tikhonov &
Arsenin 1977) for its robustness and ease of implementation. Tikhonov regularization
aims at obtaining a solution ζ̂0(λ) to the minimization problem

ζ̂0(λ)=min
ζ̂0

{‖Dζ̂0 − η‖2
+ λ2
‖ζ̂0‖

2
}, (3.12)

for a given value of the regularization parameter λ> 0. Once λ is chosen, the solution
to the linear least-squares problem of (3.12) is given by

ζ̂0(λ)= (D
TD + λ2I)−1DTη, (3.13)

where the usual notation for matrix inverse and transpose is employed and the symbol
I stands for the identity matrix. In terms of the singular value decomposition (SVD)
of D = USV T, the last equation can be simplified as

ζ̂0(λ)= V (S2
+ λ2I)−1SUTη. (3.14)
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FIGURE 2. (Colour online) Typical L-curve obtained during the inversion process
described in the text. Each point on the curve corresponds to a particular value of
the regularization parameter λ, monotonically increasing from the upper left towards the
bottom right end. As the value of λ is increased, one passes continuously from the
steep part of the curve, associated with noise-dominated solutions with high norm but
almost constant residual, to the mild region characterized by solutions with low noise
but increasingly greater residual. This particular L-curve corresponds to a space-based
inversion for H0 = 10 mm and t0 = 5 ms; see forthcoming section.

The key to obtaining a good solution to the inverse problem within Tikhonov’s
scheme is to find a balance between the norm of the solution ‖ζ̂0‖

2 and the residual
‖Dζ̂0−η‖2. This is achieved by seeking an optimal value for the parameter λ such that
the regularized solution is sufficiently regular and fits the data well enough. Otherwise
stated, the optimal value for λ should provide enough noise filtering without losing too
much information in the computed solution.

The optimal value of the regularization parameter is unknown a priori and must
be determined by an ad hoc method. The most common approaches include (in no
particular order): the discrepancy principle and its variants (Groetsch 1984, ch. 3),
the generalized cross-validation rule (Golub, Heath & Wahba 1979) and the L-curve
method (Hansen 1992). In the framework of this study, we shall employ the L-curve
method to get the optimal value of the regularization parameter λ, as it is known to
be more robust in the presence of noise (Hansen & O’Leary 1993).

The L-curve is a curve parametric plot (for all valid regularization parameter
values) of the norm of the regularized solution versus that of the corresponding
residual (Lawson & Hanson 1995; Hansen 1992). In log–log representation, this
curve basically consists of two almost linear parts, with respectively high and low
slopes. An example of such a curve obtained during this study is depicted in figure 2
(the corresponding experimental data are presented in the forthcoming section). The
more horizontal part corresponds to solutions where the regularization parameter is
too large and the solution is dominated by regularization errors. The vertical part, on
the other hand, corresponds to solutions where the value of λ is too small and the
solution is dominated by errors. The L-curve criterion is to choose the regularization
parameter λc at the ‘corner’ of the curve, as it corresponds to a solution that represents
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a compromise between regularization and perturbation errors. Even though this λc
value is not guaranteed to be appropriate for all linear systems of equations of the
form (3.13), computational experience indicates that the L-curve criterion is indeed
a powerful method for determining a suitable value of the regularization parameter
(Calvetti et al. 2000). For a discussion of the properties of the L-curve, as well as
of the numerical issues in locating the corner of the L-curve, the reader is referred
to the works of Hansen & O’Leary (1993), Hansen, Jensen & Rodriguez (2007) and
Hansen (2010). For recent practical numerical applications of the L-curve method,
the reader is referred to Jang (2013) and references therein.

In this work, the corner of the curve was identified with the value of λ that
corresponds to the point at which the L-curve attains its maximum curvature.
Moreover, the local curvature, as a function of λ, was calculated directly in terms of
the SVD of the D operator (for details see Hansen 1992; Hansen & O’Leary 1993).
For the sake of completeness, we note that Tikhonov solutions ζ̂0 for a range of
regularization parameter values λ were calculated by means of the bidiagonalization
algorithm due to Eldén (1977).

4. Measurement of the transient response of the free surface
4.1. Experimental set-up

A series of experiments was conducted in the laboratory in a 180 cm long, 60 cm
wide and 15 cm deep open-top tank. The tank is supported by a four-legged anodized
aluminium frame at a height of 90 cm above the floor, providing both vibration iso-
lation and ease of alignment.

In order to model the seabed deformations described in § 2.1 in the laboratory
setting, a system was required in which both the shape and time evolution of the
tank bottom could be easily controlled and varied independently. To meet these
requirements, the following set-up was developed.

A circular hole of diameter 3 cm is pierced through the tank floor, its centre located
along the longitudinal centreline at a distance of 30 cm from a sidewall. An elastic
nitrile rubber (acrylonitrile butadiene rubber (NBR)) membrane of thickness 0.12 mm
is stretched over the shouldered end of a cylindrical PVC tube, and the whole is
squeezed tightly into the bottom orifice. Proper design and machining of the tube
end allows for the membrane to be held taut in place, sitting flush with the tank
floor (see figure 3). Such close fitting of the parts together with the impermeable and
hydrophobic character of the NBR membrane provides a watertight seal.

This set-up creates a circular deformable zone of 3 cm diameter on the tank floor.
Controlled deformation of this region is achieved by means of a slider located concen-
trically inside with the PVC tube. The slider is attached to a servo-controlled linear
tubular motor (LinMot P01-23×80-R) placed underneath the tank and mechanically
isolated from it (not shown in figure 3).

Thus, the detailed shape of the floor deformation, ζ0(r), is determined by the slider
head profile, which ultimately gives shape to the membrane. In this manner, arbitrary
bottom deformations can be achieved simply by precise construction of the slider head.
On the other hand, the time evolution T(t) of the bottom deformation is independently
imposed by the movement of the slider, controlled by the servomotor with a precision
of ±0.05 mm.

Wave amplitudes were measured by a global, single-shot non-intrusive optical
technique known as Fourier transform profilometry (FTP). For details of the technique,
the reader is referred to Maurel et al. (2009) and Przadka et al. (2012); whereas
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High-speed camera

Video projector

Tank

Frame

Rail

Bottom deformation
system

FIGURE 3. (Colour online) Scheme of the experimental set-up. On the left is shown the
wave tank, as well as the Fourier transform profilometry (FTP) system comprising the
video projector and the high-speed camera (in the parallel-optical-axis configuration) used
for obtaining space- and time-resolved measurements of the free surface. On the tank floor,
a small protuberance is visible through the liquid within the dashed region of the image,
representing the bottom deformation system. On the right are two enlarged sectional views
corresponding to that same region. These views reveal the interior features of the seabed
deformation system employed, depicting (from bottom to top) the slider axle and head,
the vertical PVC guide tube and the nitrile rubber membrane held level with the tank’s
bottom (see text). The upper sectional view portrays the initial configuration in which the
bottom is flat (for t 6 0), whereas the lower one displays a deformed state (for t> 0).

for applications in different fluid dynamics scenarios, see Cobelli et al. (2009a,b,
2011a,b), Lagubeau et al. (2010) and Le Goff, Cobelli & Lagubeau (2013).

The principle of this measurement technique is the following. A fringe pattern of
known characteristics is projected onto the liquid surface and its image is registered
by a camera. In this way, a perturbation of the air–liquid interface introduces a (local)
frequency modulation in the observed pattern. The deformed fringe pattern arising
from the free-surface deformation is later compared to the undeformed (reference) one,
leading to a phase map from which the local free-surface height can be reconstructed.

To be able to project the aforementioned pattern onto the free surface, an aqueous
solution of titanium dioxide powder (TiO2, anatase phase) at a concentration of 4 g l−1

is employed as the working fluid. The resulting mixture presents the same rheological
characteristics as water (see Przadka et al. 2012), namely: dynamic viscosity µ= 1×
10−3 Pa s and surface tension σ = 71 mN m−1. A fixed liquid depth of 15 mm was
employed throughout the experiments.

Our FTP system is composed of two elements. An Epson EMP-TW1000 3LCD
video projector with a resolution of 1920 px× 1080 px, high contrast ratio (12 000 :
1) and brightness (1200 ANSI lm) provides the structured lighting required for the
technique. The apparent deformation of the patterns projected onto the free surface is
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Parameter Seabed I Seabed II Seabed III

H0 (mm) 4.98± 0.01 7.43± 0.02 9.92± 0.01
a (mm) 16.52± 0.08 16.49± 0.10 16.50± 0.09
p 2.45± 0.05 2.43± 0.04 2.41± 0.04

TABLE 1. Parameter values (H0, a and p) for each seabed shape employed in this study, as
obtained by fitting the experimentally determined bed profiles to the bump function given
by (4.1). For all three fits, the value of the coefficient of determination, R2, exceeds 0.998.

registered by a high-speed Phantom V9 camera, with a spatial resolution of 1632 px×
1200 px working at a sampling rate of 1000 Hz (frames per second). Both elements
are mounted on a rail over the tank, with their optical axes parallel to each other
(parallel-axis geometry). In the experiments, the measurement region corresponds to a
rectangular zone of size 366 mm×685 mm on the free surface. This region is imaged
with 1594 px × 852 px, corresponding to an in-plane resolution of 0.43 mm px−1.
Synchronization between the wave generator system and the camera allowed for the
measurement of the free-surface deformation starting 50 ms before the beginning of
the bed impulsion, and for an interval of approximately 2.4 s, gathering a total number
of 2418 images per realization.

Bed deformations created experimentally by means of axisymmetric rounded head
profiles were first characterized by applying the profilometry technique directly on the
tank’s bottom (i.e. prior to filling it with the working liquid). Figure 4 shows results
from FTP measurements of the various floor deformations. In figure 4, symbols denote
experimental measurements whereas continuous lines correspond to least-squares fits
to a generic bump function defined by

ζ
(B)
0 (r)=H0 exp

{
1−

ap

ap − rp

}
H(a− r), (4.1)

where H0, a and p are fitting parameters. Table 1 summarizes the results of such fits
for each of the three bed profiles considered.

As seen in figure 4(a), three different seabed deformations were employed in
the experiments, characterized by nominal peak amplitudes of 5, 7.5 and 10 mm.
For each of these seabed deformations, four half-sine time evolutions were studied,
corresponding to t0= 5, 10, 25 and 50 ms. Figure 4(b) shows the corresponding time
evolution curves, T(t), for those four values of the characteristic time t0.

4.2. Free-surface measurement results
Typical experimental results for the free-surface deformation (as measured by FTP)
are depicted in figure 5(a–h). Each panel presents, for a given instant, the free-surface
state within the field of view of the measurement system. As a whole, these snapshots
show the time evolution of the free surface, from the beginning of the sudden
bottom movement to the instant at which the leading wave attains the limits of the
measurement region.

In all cases explored in this experimental study, of which figure 5 is a sample,
the free-surface deformations generated by the bed motion showed, as expected, a
high degree of axial symmetry. This symmetry allows for the synthesis of data in
the form of radial profiles, obtained from angular means. For the calculation of such
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FIGURE 4. (Colour online) Imposed seabed deformations. (a) The three different bottom
shapes ζ0(r) employed in this study, measured by direct application of FTP on the tank
floor (symbols) and their corresponding least-squares fits to the generic bump function
of (4.1) (continuous lines). (b) The time evolution curves T(t) corresponding to half-sine
(solid) bed movements modelled by (2.16), with four different values of the time constant
t0 given by 5, 10, 25 and 50 ms. Symbols correspond to data stemming from the
servomotor internal control unit, whereas continuous lines are plots of the function T(t)
for the appropriate values of the characteristic time t0.

means, the in-plane position of the symmetry centre was determined experimentally
from the free-surface deformation data in the following way. For every free-surface
deformation field registered, contour lines are calculated for several values of height.
Owing to the symmetry, the resulting isocontours are circularly shaped, their centres
located directly above the point where the seabed deformation originates. By fitting a
circle (see Taubin 1991) to every contour (and averaging the results), it is possible to
associate an epicentre position to each free-surface instantaneous field. Repeating this
operation on every field within a time series measurement allowed us to determine the
epicentre position with an uncertainty of ±0.01 mm. This is indeed the way in which
the origin of the coordinate system in figure 5(a–j) is established.

Once the centre is determined, angular averaging over the radial profiles for each
time instant provides for a spatiotemporal diagram η(r, t) that completely summarizes
the free-surface response for every experiment conducted. Figure 6 shows one sam-
ple of such (compensated) spatiotemporal diagrams, for the case of a maximum sea-
bottom deformation (nominal) height of 10 mm and a half-sine bed with t0 = 50 ms.
(In this case, compensation amounts to considering the product

√
r η(r, t) rather than

just the free-surface height η(r, t), as the former compensates for the spatial spread of
the waves, making data more amenable to visualization). The spatiotemporal diagram,
in which t= 0 s corresponds to the beginning of the seabed movement, shows the for-
mation of a bump at the interface a few instants after the impulse is started. Later, this
configuration evolves, giving rise to a system of cylindrical waves whose front moves
at a speed of approximately 0.35 m s−1, consistent with c=

√
gh0≈ 0.38 m s−1. How-

ever, the diagram shows that the effects of dispersion are present (and not negligi-
ble) during their propagation. Finally, and after almost 1 s, the generated waves are
either too weak in amplitude to be detected, or have completely left the region of
observation. Nevertheless, the spatiotemporal diagram displays data measured up to
1.25 s to explicitly show that the observed wave field is still (to that instant) free
from reflections on the tank sidewalls. This general behaviour (leaving aside expected
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FIGURE 5. (Colour online) Experimental measurements of the instantaneous free-surface
deformation fields corresponding to the impulsive half-sine seabed movement. A time
sequence of the evolution of the free surface for the case H0= 10 mm and t0= 50 ms is
shown. Panels (a–j) present snapshots corresponding to t = 35, 110, 135, 185, 260, 335,
485, 585, 835 and 1085 ms, respectively. All units are in mm. The black grids shown
are employed for visualization purposes only and do not correspond to the actual spatial
resolution. (In-plane and vertical resolutions are δx, δy, δz= 0.05 mm.)
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FIGURE 6. (Colour online) Compensated spatiotemporal diagram showing
√

r η(r, t)
for the case of a half-sine bed displacement with t0 = 50 ms and maximum bottom
displacement of 10 mm. Colour scale units are mm3/2.

variations due to changes in the parameter values) was observed throughout all our
experiments.

By virtue of the space- and time-resolved nature of the measurements obtained
by means of the FTP technique, we gain access to the full wavenumber–frequency
spectrum Eη(k, ω) of the free-surface evolution generated by each bottom disturbance
considered. Figure 7 shows several cuts of this spectrum at constant values of
the angular frequency ω between 12 and 65 rad s−1 (i.e. for frequencies f within
the [2, 10] Hz range). In figure 7, each panel is represented with its own (linear)
colour scale, limited between the minimum and maximum values of Eη(k, ω) for
each ω, in order to highlight the contribution of each k component at constant
angular frequency. Complementarily, we observed that the maxima of Eη(k, ω) at
fixed ω decay exponentially with increasing angular frequency through a factor of
approximately 0.1, which implies a decrease of roughly four orders of magnitude
between the first (top left) and the last (bottom right) panels. We also observed
that for frequencies above 15 Hz, no significant contributions are observed on the
spectrum.

Figure 7 shows that the energy is concentrated on a two-dimensional surface in
(k, ω)-space, presenting azimuthal symmetry. The observed isotropy of the space
spectra allows us to calculate the angle-averaged spectrum Eη(k, ω), depicted in
figure 8 for the region of interest in the wavenumber–frequency plane. As can be
seen in figure 8, the line of maximum energy is localized very close to the dispersion
relation for gravity waves, as expected.

5. Inverse measurement of the seabed deformation
In the following paragraphs we describe the results obtained for the seabed shape

inverse determination from the free-surface space-time measurements described in the
preceding section.
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FIGURE 7. (Colour online) Experimentally determined wavenumber–frequency spectrum
Eη(k, ω) for the free-surface space-time evolution shown in figure 5. Cuts of the 3D
spectrum at given values of ω are shown (specified above each panel) displayed employing
a linear colour palette.

We begin by considering the results for the bottom shape when only a time series
of the free-surface height at a fixed position in space is employed (or available)
for solving the inverse problem. This scenario corresponds to what we termed
the time-based reconstruction, represented by (3.10), the particular form of which
depends on the choice of the numerical integration scheme (which defines the qj
values). This is also true, of course, for its space-based counterpart. In this sense it
is worth mentioning that all our results were obtained by employing the trapezoidal
rule, for the cases of both time- and space-based reconstructions. Moreover, we
did not observe a significant dependence of our results on the choice of the
quadrature rule.

Owing to the azimuthal symmetry of the free-surface evolution in our experiments,
a position in space is completely described by its (radial) distance to the centre, r∗. As
a result, for each value of r∗ available (r∗ ∈ [0, 178.45] mm, in 415 discrete steps of
1r=0.43 mm) a time series of the local free-surface height, η(r∗, t), can be employed
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FIGURE 8. (Colour online) Angle-averaged space-time spectrum E(k, ω) corresponding to
the cuts presented in figure 7. The maximum energy line closely follows the dispersion
relation for gravity waves (continuous line). For reference, the dispersion relations for
shallow water waves (dotted line) and for gravity-capillary waves (dashed line) are also
shown.

to solve the inverse problem. Therefore, each time series at a fixed position leads to
one reconstruction of the seabed shape, which we denote by ζ TB

0 (r; r∗), where ‘TB’
stands for time-based, and the second argument of the function specifies the position
from which the reconstruction is obtained.

The results of such a calculation are presented in figure 9(a), which shows all the
(time-based) seabed reconstructions, ζ TB

0 (r; r∗), available from our experiments for the
case H0 = 10 mm and t0 = 50 ms. Figure 9(a) is composed of 415 reconstructions
(along the r∗ direction) of the seabed profile, which are shown only in the region
of interest given by r 6 40 mm. Outside that region and up to the farthest available
radius of r = 178.45 mm, their behaviour is similar to what is observed in the
figure for 30 mm 6 r 6 40 mm. As a visual reference, the shape of the imposed
seabed deformation is depicted thrice by black curves located at r∗ = 0, 90 and
180 mm.

As already mentioned in § 3.1, seabed reconstructions are also achievable by
solving the inverse problem based on a (radial) spatial profile of the free surface at a
given instant t∗; a procedure that we called space-based reconstruction and which is
expressed in (3.5b). Consistently with the naming scheme that we introduced in the
preceding paragraphs, the space-based reconstructions are symbolized by ζ SB(r; t∗),
where ‘SB’ indicates a space-based inversion and t∗ identifies the instant upon which
it is based. For the case at hand, namely that with H0=10 mm and t0=50 ms, a total
of 1000 experimental determinations of the free-surface instantaneous deformation are
available, due to both the duration of the wave propagation in the field of view of
the camera and the sampling frequency employed. Again, by virtue of the azimuthal
symmetry, each instantaneous free-surface state is completely represented by a radial
profile comprising 415 points in the range r ∈ [0, 178.45] mm. The space-based
reconstructions obtained for this case are displayed in figure 9(b), for the region
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FIGURE 9. (Colour online) Results for the seabed reconstructions for the case H0 =

10 mm and t0 = 50 ms. (a) The time-based reconstructions, and (b) the results from the
space-based inversion. In both panels, only the region corresponding to r 6 40 mm is
shown. As a visual aid, the imposed seabed deformation is represented thrice in each panel
in the form of black curves.

r 6 40 mm. As in the case of time-based reconstructions, the behaviour of the
solutions for larger radii is similar to that observed for 30 mm 6 r 6 40 mm.

For each one of the remaining 11 cases considered in this study (of a total of
12, given by the Cartesian product {t0: 5, 10, 25, 50 ms} × {H0: 5, 7.5, 10 mm}), the
time-based and space-based reconstructions obtained from them share the same general
characteristics as those shown in figure 9(a,b), respectively. For this reason, and for
the sake of brevity, we henceforth limit our discussion on the nature of the seabed
reconstructions to this particular case, which we consider to be representative of our
complete set of results.

Both time- and space-based reconstructions give results that are close to the imposed
seabed deformation, particularly in that both the maximum height of the seabed at
the origin as well as the bump radius are well recovered. However, depending on
the particular point in space or instant in time at which the (time- or space-based)
reconstruction is calculated, the resulting seabed profiles differ slightly from one
another, which can be observed in figure 9(a,b), and is particularly noticeable for
points near the origin of the profile. This is true for both time- and space-based
reconstructions. An interesting fact is that these fluctuations in the quality of the
reconstructed profiles do not seem to be correlated with either r∗ (in the case of
time-based reconstructions) or t∗ (for space-based reconstructions). By this we mean
that reconstructions based on time series of the free surface at fixed points near
the origin of the disturbance are not significantly different from those obtained
from points near the border of the measurement region, in the case of time-based
reconstructions. A similar statement can be made for space-based reconstructions,
mutatis mutandis.

Next, we take advantage of the multiple reconstructions available for both ζ TB
0 (r; r∗)

and ζ SB
0 (r; t∗), and we define the seabed averaged profile calculated from N different

reconstructions as

〈ζ TB
0 (r)〉N =

1
N

N∑
r∗

ζ TB
0 (r; r∗) (5.1a)
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FIGURE 10. (Colour online) Global error on averaged profiles obtained from space-based
reconstructions, εSB(N), as a function of the number of averages, N, considered in their
calculation. Symbols denote the 12 cases explored in this study, whereas the continuous
line corresponds to a fit with a power law plus a deviation term. (See text for details.)

for time-based inversions, and

〈ζ SB
0 (r)〉N =

1
N

N∑
t∗

ζ SB
0 (r; t∗) (5.1b)

for space-based reconstructions. In principle, these two quantities are functions of
the radial coordinate and depend parametrically on the number of realizations N
involved in calculating the average at any radial position. We reserve the symbol 〈·〉,
i.e. without the N subscript, to designate averaging over all experimentally available
reconstructions for any given case. Based on these quantities, we can define a global
measure of error for an averaged seabed profile by introducing

εTB(N)=
‖〈ζ TB

0 (r; r∗)〉N − ζ0(r)‖2

‖ζ0(r)‖2
(5.2a)

for time-based reconstructions, and

εSB(N)=
‖〈ζ SB

0 (r; t∗)〉N − ζ0(r)‖2

‖ζ0(r)‖2
(5.2b)

for their space-based counterparts. In these expressions, the norm is taken with respect
to the radial coordinate. Defined in this way, these global errors depend only on the
number N of reconstructions involved in their calculation.

We observed that averaging the reconstructed seabed profiles over different instants
of time t∗ (or fixed points in space, r∗, in the case of time-based reconstructions)
produces a decrease in the corresponding global error. This is shown in figure 10 for
space-based reconstructions, where symbols denote each of the 12 experimental cases
considered in this study. The continuous line corresponds to a fit of the whole point
cloud by a power law in N plus a (constant) deviation term, which represents the mean
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uncertainty in the space-based reconstructions. The value of the power-law exponent
obtained from the fit (−0.49 ± 0.02) indicates that the global error is reduced by a
factor of 1/

√
N when considering N different profile realizations. We have checked

that this result is not affected by the particular choice of the profiles involved in the
averaging process by repeating this calculation with 100 profiles selected randomly
from the whole set of available realizations. This behaviour, although not shown in
the text, is observed as well for the case of time-based reconstructions.

In what follows, we discuss the goodness of the reconstructions by considering
the mean seabed profile obtained from averaging over all the available realizations
for a particular scenario (for both time-based inversions, 〈ζ TB

0 (r)〉, and space-based
reconstructions, 〈ζ SB

0 (r)〉) and comparing it with the corresponding imposed seabed
deformation.

In order to quantify the data dispersion at a particular point on a mean seabed
reconstructed profile, we introduce the local (with respect to the r variable) standard
deviation defined by

σ TB(r)=
√
〈[ζ TB

0 (r; r∗)− 〈ζ TB
0 (r; r∗)〉]2〉 (5.3a)

for time-based inversions, as well as

σ SB(r)=
√
〈[ζ SB

0 (r; t∗)− 〈ζ
SB
0 (r; t∗)〉]2〉, (5.3b)

which constitutes its equivalent for space-based reconstructions.
Figure 11 illustrates the results obtained for the mean seabed reconstructions

for both time- and space-based inversions in four of the 12 cases explored in
this work, for radial positions in the range r 6 40 mm. In figure 11, each pair of
panels on a given row corresponds to the same values of (H0, t0); the left and
right columns comprise the time- and space-based reconstructions, respectively. In
each panel, the mean seabed profile 〈ζ (TB,SB)

0 (r)〉 is depicted in a white continuous
curve, surrounded by a shaded region corresponding to a ±σ (TB,SB)(r) envelope. For
comparison purposes, the imposed seabed deformation is represented in a black
continuous curve. Additionally, each panel contains an inset showing a zoom-in view
in the region where the bump meets the flat bottom (enclosed by dashed lines).
For radial positions satisfying 40 mm < r 6 178.45 mm, the reconstructions behave
similarly to what is observed in the range between 30 and 40 mm, for which reason
they are not shown here.

A first remark on figure 11 is that the averaging procedure almost completely
removes the oscillations that polluted the individual reconstructions shown in
figure 9(a,b), which traduces into a much better agreement between the mean
reconstructed profile (white continuous line) and the imposed seabed deformation
(black continuous line). Naturally, those oscillations manifest themselves now in the
standard deviation envelopes. However, the striking feature here is that those envelopes
seem to be modulated by an oscillating amplitude-decreasing function, revealing a
spatial coherence between the individual reconstructions that result (through the
averaging process) in a mean seabed profile. Moreover, by examining the different
panels in figure 11, it is evident that the characteristic length of that modulating
function seems to be the same for all cases explored. Even though only four selected
cases are shown here, we observed that this last statement is valid for all of our
experimental data. We will come back to this point towards the end of this section.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

74
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.741


Bottom deformation from water wave measurements 321

0 5 10 15 20 25 30 35 40

r (mm)

0 5 10 15 20 25 30 35 40

r (mm)

0

5

10

15

–1
0
1
2
3

12 13 14 15 16 17

(a)

0

5

10

15

–1
0
1
2
3

12 13 14 15 16 17

(b)

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

0

5

10

15

–1
0
1
2
3

12 13 14 15 16 17

0

5

10

15

–1
0
1
2
3

12 13 14 15 16 17

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

0

5

10

15

–1
0
1
2
3

12 13 14 15 16 17

0

5

10

15

–1
0
1
2
3

12 13 14 15 16 17

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

0

5

10

15

–1
0
1
2
3

12 13 14 15 16 17

0

5

10

15

–1
0
1
2
3

12 13 14 15 16 17

FIGURE 11. (Colour online) Experimental results for the mean seabed reconstructions for
both time- and space-based inversions in four of the 12 cases explored in the present study.
Each pair of panels on a given row share the same values of H0 and t0; (a,b) present time-
and space-based reconstructions, respectively. The insets show a zoom-in view close to
the foot of the bump. White continuous lines denote the mean seabed profiles obtained,
while the black curve represents the corresponding imposed seabed deformation. The three
shaded regions in the insets correspond to envelopes given by one, two and three times
the local standard deviation.

As can be observed by comparing the corresponding figure 11(a,b), the local
standard deviations for time- and space-based reconstructions are comparable,
i.e. σ SB(r) ∼ σ TB(r) for every r within a given case. This is indeed expected, in
light of the similarities between the results of both types of reconstructions (of which
figure 9a,b are a sample) and the fact that the amount of individual profiles for the
averaging process is of the same order for both time- and space-based inversions.

From the first three rows of figure 11, one might think that the maximum values of
the local standard deviation increase when the characteristic time of the seabed motion,
t0, increases, i.e. for slower bottom disturbances. However, this is not the case. Indeed,
considering the totality of our results, it is clear there is no correlation between the
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FIGURE 12. (Colour online) Mean seabed reconstructions for both time- and space-based
inversions. The H0 values are colour coded: red, 5.0 mm; green, 7.5 mm; blue, 10 mm.
Symbols refer to different t0 values: E, t0 = 5 ms; ×, t0 = 10 ms; @, t0 = 25 ms; +,
t0 = 50 ms. Dash-dotted lines display the imposed seabed deformations as measured by
FTP. The inset shows the errors in the reconstructed profiles (respecting the same colour
and symbol conventions) as a function of the characteristic time t0 of the sea-bottom
disturbance.

two quantities. This is evident by comparing the last two rows of panels in figure 11,
which correspond to the same value of H0 (namely, 10 mm) but differ 10-fold in t0,
yet the local standard deviation shows no appreciable variation.

There remains one last aspect to highlight from the results shown in figure 11,
namely the quality of the mean seabed reconstructions near the foot of the bump,
which corresponds to the region where the largest differences between reconstructions
and the imposed bathymetry take place. In this regard, the insets show that in this
zone the mean profiles achieved from space-based inversions agree with the seabed
deformation to within 1.5 local standard deviations, whereas those resulting from
averaging individual time-based reconstructions tend to deviate further, presenting
differences of up to 3 local standard deviations.

Finally, figure 12 sums up our experimental results in terms of the mean seabed
reconstructions for all 12 cases considered in this study, organized in two panels
according to the type of inversion employed (either time- or space-based). As for the
preceding figures, the radial range shown is limited to the region of interest given by
r 6 40 mm. In figure 12, each particular value of the maximum bottom deformation
height, H0, is presented in a different colour and four symbols are used to distinguish
the various characteristic times t0 of the seabed impulsions (see the figure caption for
details). For comparison purposes, the imposed seabed deformations (as measured by
FTP) are displayed in dash-dotted lines. Moreover, the accompanying insets depict
the errors ε(TB,SB) (defined by (5.2a,b)) and calculated by considering all available
realizations) as a function of t0. Both the insets and the panels share the same colour
and symbol convention to identify corresponding values of the parameter pair (H0, t0).

These results show that the mean seabed reconstructions are in good agreement
with the imposed bottom deformations in all of the explored cases, irrespective of
the type of inversion considered. Overall, the associated relative errors, as quantified
by ε(TB,SB), are small: less than 6 % for time-based inversions and below 3 % in the
case of space-based reconstructions. Comparatively, space-based inversions follow
more closely the shape of the imposed seabed deformations, adequately reproducing
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the maximum height of the bump as well as its radius. Time-based reconstructions,
on the other hand, present larger errors, which arise from a combined underestimation
of the former and overshooting of the latter.

The reason for the mean space-based reconstructions outperforming their time-based
analogues can be ascribed to two main factors. The first one can be traced back
to the condition number of the matrices representing the discrete versions of the
functions K(r∗, t, k) and K(r, t∗, k) in (3.5a) and (3.5b), respectively. Calculated as
the ratio of the largest to the smallest singular value in the corresponding SVD, the
condition number for time-based reconstructions consistently exceeds, by as much
as four orders of magnitude, that of the space-based inversions. The second factor
involves an intrinsic difference between time and space profiles of the free-surface
evolution as stemming from our FTP measurements, and can be explained as follows.
In FTP, each measured wave field at a fixed instant is obtained through a process
that ultimately involves spatial bandpass filtering of profilometric images (see e.g.
Cobelli et al. 2009a), which results in an instantaneous free-surface deformation field,
η(x, y, t∗), whose high-spatial-frequency noise content is reduced. In contrast, no
time-frequency filtering is performed on the whole spatiotemporal set η(x, y, t). For
this reason, any time series of the local free-surface deformation presents relatively
larger high-frequency noise levels than do radial profiles at a given time instant. The
combined action of these two independent elements (comparatively better condition
number and lower high-frequency noise content) cause space-based inversions to
perform better than their time-based equivalents.

In general, we observe a systematic slight reduction in the error with increasing H0
(evidenced by the consistent colour ordering on the insets, reversed with respect to the
panels) and a more pronounced decrease with decreasing t0. These two observations
suggest that the reconstruction error lessens as the characteristic velocity v of the sea-
bottom disturbance, estimated as v ∼H0/t0, increases. We checked this quantitatively,
and obtained a power-law-plus-constant dependence between ε(TB,SB) and v with an
exponent in the range of −0.81 ± 0.05, for both space- and time-based approaches
(not shown). This could be attributable to the fact that faster bottom disturbances
generate greater deformations at the free surface, which, in turn, redound in spatio-
temporal measurements with larger signal-to-noise ratios, leading to better solutions
to the inversion problem.

Lastly, let us focus our attention on a point we mentioned briefly in the preceding
paragraphs; namely, that regarding the shape of the 1σ (TB,SB) envelopes in figure 11.
As we observed previously, and irrespective of reconstruction, those envelopes are
modulated by an oscillating amplitude-decreasing function, with null values occurring
at the same radial points for all panels and with an almost constant spacing between
them.

In order to explain that behaviour, let us consider how a reconstructed seabed profile
ζ0(r) (be it time- or space-based) is obtained. Through (3.5a) and (3.5b), the inversion
procedure yields ζ̂0(r), related analytically to the seabed profile by an inverse Hankel
transform,

ζ0(r)=
∫
∞

0
kJ0(kr)ζ̂0(k) dk. (5.4)

In discrete wavenumber form, this expression can be written ζ0(r) =
∑
∞

i=0 aiJ0(kir),
where ai denotes coefficients whose values are independent of the radial variable r.
Reconstructions obtained from experimental data, ζ ∗0 (r), can be decomposed in two
additive contributions. One of them involves the experimental noise. The second
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component is an approximation of ζ0(r) to finite order N, i.e. a truncation of the
original imposed bottom profile given by ζN

0 (r)=
∑N

i aiJ0(kir). Therefore, neglecting
the effects of experimental noise, the error between the imposed and the reconstructed
seabed profiles is ε= |ζ0(r)− ζ ∗0 (r)| = |

∑
∞

i=N+1 aiJ0(kir)|. This implies that, to leading
order, the error satisfies ε ∼ |J0(kN+1r)|, which qualitatively reproduces the spatial
characteristics observed in the 1σ envelopes of figure 11. Based on this estimate,
the value of kN+1 can be calculated from the fact that the first minimum of the 1σ
envelopes is located at r' 2.5 mm, whereas the first root of the zeroth-order Bessel
function of the first kind occurs at approximately 2.4048 (Abramowitz & Stegun
1964). Hence kN+1 ' (2.4048/2.5) rad mm−1

' 961 rad m−1, which corresponds to
a frequency of fN+1 ' 15 Hz through the dispersion relation for gravity waves (at
the working depth). Consistently, a similar value for fN+1 is obtained by considering
the radial position of the second and third minima of the 1σ envelopes and the
corresponding roots of the aforementioned Bessel function. Remarkably, this value for
fN+1 can be identified with the maximum frequency for which significant contributions
to the experimental energy spectrum are still discernible from the background noise,
as discussed in § 4.2. This is consistent with the fact that the quality of the seabed
profiles reconstructed by solving the inverse problem based on experimental data is
ultimately limited by the information available in the spatiotemporal spectrum of the
free-surface deformation, through the upper limits for significant spectral content in
frequency–wavenumber space.

6. Summary and conclusions
In this work we studied both theoretically and experimentally the problem of

determining the three-dimensional shape of the seabed responsible for the creation of
water waves based on an instantaneous global state (space-based inversion) or a local
time-history record (time-based inversion) of the free-surface evolution.

In the first part of the paper, we showed that the inversion problem amounts to
inverting a Hilbert–Schmidt operator, ill-posed in the sense of Hadamard (2003). In
order to overcome this difficulty, a Tikhonov regularization scheme was proposed as
well as a strategy for choosing the optimal value of the regularization parameter based
on the L-curve criterion.

We then conducted a series of laboratory experiments in which an axisymmetric
three-dimensional bottom deformation of controlled shape and time evolution was
imposed on a layer of water of constant depth, initially at rest. The evolution of
the air–water interface was measured by FTP, which provided for both space- and
time-resolved data of the free-surface dynamics. By considering the energy spectrum
of the free surface, we were able to confirm that the energy is concentrated mainly
on a two-dimensional surface in k–ω space, defined by the (linear) gravity-wave
dispersion relation.

Next, we tested our regularization scheme for obtaining a solution to the inverse
problem on our experimental data. Our results show that it is indeed possible to
reconstruct the seafloor profile accurately, from either a space- or a time-based
inversion. Moreover, our results for the seabed shape exhibit very good agreement
with the imposed seabed profiles. We have also shown evidence that it is possible
to take advantage of the different reconstructed profiles stemming from various radii
(for time-based inversion) or time instants (for space-based inversion) to calculate
mean seabed profiles. Moreover, in that case, the error between the imposed bottom
deformation and these mean seabed profiles is less than 6 % in the case of time-based
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reconstructions, and lower than 3 % for space-based inversions. Finally, we show that
the content of the spectrum of the free-surface dynamics sets a limit on the accuracy
of the reconstructions.
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