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Abstract. Although piecewise isometries (PWIs) are higher-dimensional generalizations
of one-dimensional interval exchange transformations (IETs), their generic dynamical
properties seem to be quite different. In this paper, we consider embeddings of
IET dynamics into PWI with a view to better understanding their similarities and
differences. We derive some necessary conditions for existence of such embeddings using
combinatorial, topological and measure-theoretic properties of IETs. In particular, we
prove that continuous embeddings of minimal 2-IETs into orientation-preserving PWIs are
necessarily trivial and that any 3-PWI has at most one non-trivially continuously embedded
minimal 3-IET with the same underlying permutation. Finally, we introduce a family of
4-PWIs, with an apparent abundance of invariant non-smooth fractal curves supporting
IETs, that limit to a trivial embedding of an IET.
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1. Introduction

Interval exchange transformations (IETs) are bijective piecewise translations of an interval
divided into a finite partition of subintervals. Piecewise isometries (PWIs) [17, 18] are
generalizations of IETs to higher dimensions where a region is split into a number of
convex sets (usually polytopes) and these are rearranged using isometries. Both IETs
and PWIs arise in a number of applications. For example, PWIs in two dimensions have
been found in models used for signal processing and digital filters [5, 14, 15, 22], for
Hamiltonian systems [26, 27], for printing processes [1] and for other types of geometric
dynamics [25]. PWIs exhibit complex and diverse dynamical behaviour that is far less
understood than, and quite different from, that of IETs. There are many results that suggest
generic choices of parameters for IETs give ergodicity, while many examples suggest this
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is rarely the case for PWIs in two or more dimensions. In this paper, we discuss the general
problem of embedding IET dynamics within PWIs with a particular focus on the regularity
of this embedding for two-dimensional PWIs.

IETs were defined by Keane [21] and studied for instance in [3, 10, 16]. Masur and
Veech [24, 28] established unique ergodicity of typical IETs while Avila and Forni [9]
showed that a typical IET is either weakly mixing or an irrational rotation. It is known that
IETs (and suspension flows over IETs with roof function of bounded variation) are not
strongly mixing [13, 20].

We define an IET as in [9] (see also [13, 21]). Let d > 2 be a natural number and let
be an irreducible permutation of {1, . . ., d}, thatis, such that w ({1, . .., k}) # {1, ..., k}
forl <k <d.Letpue Ri and define

7
=0, xj=) m ls<j=d (1.1)
k=1

We consider an interval I = [xq, x4) partitioned into subintervals I; =[x;_1, x;) for
1 < j <d. Aninterval exchange transformation (more precisely, a d-IET on the interval 1)
is a pair (1, fy ) where f,, ; : I — I is the bijection that rearranges /; according to 7,
that is, the interval /; is mapped onto the 7 (j)th interval. For x € I; we write f;, (x) =
fj(x) where

fix)=x+1j, (1.2)

and ;=3 < () P~ Lok j Mk

We define a two-dimensional, orientation-preserving PWI as follows (see [18]). Let
r > 2 be a natural number, let X be a subset of R? (which we parametrize as C) and let
P ={Xo, ..., X,_1} for r > 1 be a finite partition of X into convex sets (or atoms), that
is, Up<j~r Xi =X, and X; N X; =0 for i # j. We say (X, T) is a piecewise isometry
(more f)recisely, an orientation-preserving d-PWI in two dimensions) if 7 is such that for
z € Xj we have T(z) =T;(z), with

Ti(z) =€z + 1 (1.3)

for some 0; € [0, 27r) and A; € Cso that T is a piecewise isometric rotation or translation.
There will be a subset of points (maximal invariant set) that remain in X for all forward
iterates under 7'. Potentially, this set could have dimension less than two. Note that the
restriction of the atoms to the maximal invariant set need not be convex.

Many examples of PWIs have been studied in recent years; for example, [11] studied
a class of piecewise rotations on the square and computed numerically box-counting
dimensions, correlation dimensions and complexity of the symbolic language produced
by the system. Adler, Kitchens and Tresser [2] investigated a specific class of non-
ergodic piecewise affine maps of the torus and gave a decomposition into three invariant
sets whose dynamics are very different. They showed that the map on one of these
invariant sets is minimal, uniquely ergodic and an odometer; they also demonstrated the
existence of a full Lebesgue measure set of periodic points. It was proved by Buzzi [12]
that piecewise isometries have zero topological entropy. Lowenstein and Vivaldi [23]
presented a computer-assisted proof for renormalizing a one-parameter family of piecewise
isometries of a rhombus.
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In general, for a given PWI it is helpful to define a partition of X into a regular
and an exceptional set [7]. If we consider the zero measure set given by the union £ of
all preimages of the set of discontinuities D, then we say its closure £ (which may be
of positive measure) is called the exceptional set for the map. The complement of the
exceptional set is called the regular set for the map and consists of disjoint polygons
or disks that are periodically coded by their itinerary through the atoms of the PWI. As
an example, in [2], the authors show for a particular transformation where the rotations
are rational that the regular set has full Lebesgue measure and, as a consequence, the
exceptional set has zero Lebesgue measure. However, as highlighted in [6], there is
numerical evidence that the exceptional set may have positive Lebesgue measure for
typical PWIs. In [19], the author shows that this is the case for certain rectangle-exchange
transformations.

Even when the exceptional set has positive Lebesgue measure, as noted in [7] there is
numerical evidence that the Lebesgue measure on the exceptional set may not be ergodic—
there can be invariant curves that prevent trajectories from spreading across the whole of
the exceptional set. In [8], a planar PWI whose generating map is a permutation of four
cones was investigated, and coexistence of an infinite number of periodic components
and of an uncountable number of transitive components was proved. On these transitive
components, it was noted that the dynamics is conjugate to a transitive interval exchange.
In [4, 7], similar maps were examined and the existence of a large number of these invariant
curves, apparently nowhere smooth, are investigated.

In this paper, we consider general properties of an embedding of an IET into a PWI, and
consider conditions for this embedding to be trivial or non-trivial. Our main results are as
follows.

e In Theorem 3.4, we use combinatorial properties of IETs to prove that in order for
a PWI to realize a continuous embedding of an IET with the same permutation,
its parameters must satisfy a necessary condition: the parametric connecting
equation (3.10).

e As a consequence of this, Theorem 3.6 states that all continuous embeddings of
minimal 2-IETs are trivial, and Theorem 3.7 asserts that a 3-PWI has at most
one non-trivially continuously embedded minimal 3-IET with the same underlying
permutation.

e Given an IET embedded into a PWI, we use the derived rangent exchange map (4.1)
to prove Theorem 4.1, which gives a necessary condition on the parameters of a PWI
such that there is a continuous embedding of an IET into that PWI.

We introduce a specific example T (5.3) of a PWI that has a trivially embedded IET on
the boundary. Considering R, a first return map under 7 to a subset of the phase space, we
observe invariant regions bounded by invariant curves (Figure 7) and perform numerical
experiments to verify the conditions of Theorems 3.4 and 4.1. We introduce a PWI T’
(see (5.1)) on three atoms that apparently exhibits a single invariant curve that is a non-
trivial embedding of a 3-IET into 7’. Using this, we make specific conjectures about the
nature of non-trivial embeddings of IETs in PWIs.

This paper is organized as follows. In §2, we consider possible embeddings of a
transitive IET into a PWI and make some definitions regarding their regularity. We identify
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FIGURE 1. An illustration of the action of a piecewise isometry R (see (5.5)), on the image of a non-trivial

embedding ¥ = Uj‘:l Y; of aminimal 4-IET. (a) An invariant set Y where each Y for j =1, ..., 41is contained

in a polygon. Points in each polygon are mapped isometrically by R to a subset of the region {z € C:0.35 <
Im(z) < 0.55}. (b) Image of Y and the polygons in (a) under R.

trivial cases of embedding where the image of the embedding is either a union of lines or
of arcs of the same radius. Furthermore, we extend the Rauzy—Veech induction for IETs to
PWIs that admit continuous embeddings of IETs. In §3, we introduce some combinatorial
conditions on the embedding of an IET into a PWI and state a necessary condition for
the existence of continuous embeddings. Using these techical tools, we prove that only
trivial embeddings of 2-IETs are possible and that a 3-PWI has at most one non-trivially
continuous embedded 3-IET with the same underlying permutation. In §4, we turn to
ergodic properties of the embeddings and in Theorem 4.1 give a necessary condition
for embedding in terms of average returns. In §5, we introduce concrete examples of
PWIs and show numerical results. We introduce a PWI on three atoms, illustrate some
examples of orbits for this piecewise isometry and numerically estimate the parameters of
a 3-IET which is embedded into this PWI. We also introduce a particular planar 4-PWI
illustrated in Figure 4 that is an ‘IET with a twist’. This transformation has a trivially
embedded 2-IET on a line that we call the baseline, and arbitrarily close to this baseline
there are non-trivial rotations. The dynamics of points close to this baseline is remarkably
rich. In particular, numerical simulations suggest that the baseline is an accumulation for
non-smooth invariant curves that are non-trivial embeddings of 4-IETs in the 4-PWI. We
illustrate some examples of orbits for this piecewise isometry and show numerical evidence
for the abundance of periodic orbits for certain regions of the parameters. We show that the
parameters of this map satisfy the restrictions from Theorem 3.4. We numerically verify
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that the condition from Theorem 4.1 is satisfied. Section 6 is a discussion that considers
some open questions and possible generalizations of these results.

2. Symbolic, topological and differentiable embeddings

In this section, we introduce some definitions of various regularity properties that
characterize an embedding of an IET into a PWI. The weakest of these is a symbolic
embedding. Furthermore, we extend Rauzy—Veech induction for IETs to PWIs that admit
continuous embeddings of IETs.

Consider a d-1IET (I, f,, =), which we sometimes denote by (/, f) when parameters
are clear from context. For a point x € I we define the itinerary or symbolic encoding of x
by the IET as

ix)=igir---e{l,...,d}\, (2.1)

where i € {1, ..., d}is such that f¥(x) e I; if and only if iy = j.
Similarly, suppose that (X, T') is a d-PWI with atoms {X ; }‘j: |- We define the itinerary
of a point z € X by the PWI as

i'@) =ijiy---cfl,...,d)", (2.2)

where i; € {1, ..., d} is such that T*(z) € X if and only if i} = ;.

We now introduce some definitions that will be used throughout this paper.

An injective map h : [ — X is a symbolic embedding of (I, f) into (X, T)ifh(I) C X
is an invariant set for (X, T') and there is a numbering of the atoms such that

i"oh(x)=i(x) forallxel.

An injective map h : I — X is a piecewise continuous embedding of (I, f) into (X, T)
if 2;; is a homeomorphism for each j such that h(/;) C X; and

hof(x)=T oh(x) 2.3)

for all x € I. In this case, note that #(/) C X is an invariant set for (X, T).

If (1, f) has a piecewise continuous embedding / into (X, T) then it is also a symbolic
embedding, but the converse does not necessarily hold (to see this, note that (/) need not
be closed if it is a disconnected union of disjoint orbits). If /& is a piecewise continuous
embedding that is continuous on /, we say it is a continuous embedding, otherwise we say
it is a discontinuous embedding.

We say # is a differentiable embedding if it is a piecewise continuous embedding and
hly; is continuously differentiable.

We characterize certain differentiable embeddings as, in some sense, trivial. A
piecewise continuous embedding of (I, f) by & into (X, T) is a linear embedding if there
are 7, vj € C such that

hl(x) =zj +vjx (2.4

for all x € I, and is an arc embedding if there are z; € C, r; > 0 and a;, b; € R such that
h|1j(x)=z,' +rjexpli(ajx +b;)] (2.5)

for all x € I. We say an embedding is trivial if it is a linear embedding or an arc embedding,
otherwise it is non-trivial.
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LEMMA 2.1. For any d-IET (I, f), there exists a trivial continuous embedding h : [ — X
of (I, f) into a d-PWI (X, T), which can be either a linear embedding or an arc
embedding. Suppose in addition that (I, f) is minimal. Then (a) if h is a linear embedding
then |v;| is independent of j; and (b) if h is an arc embedding then r; and a; are
independent of j.

Proof. Assume without loss of generality that / C [0, 7). Note that there exists a linear
embedding with rectangular atoms such that 7'(x 4+ iy) = f(x) + iy, and there exists an
arc embedding such that 7 (re'?) = relf @,

‘We now prove (a) and (b). Fix x € I, forsome p € {1, ..., d}. Since (I, f) is minimal,
for all g € {1, ..., d}\{p} there is an N, > O such that fNax)y=x+rte I, with T =
Selo Tico-

We begin by proving (a). Assume that /4 is a linear embedding of (I, f) into (X, T) as
in (2.4). We show that |v,| = |vy|. By (1.3), (2.3) and (2.4) we have

e (2 + vpx) +Ap =24 + vg(x + 7). (2.6)
Differentiating (2.6) with respect to x gives e!%v p = Vg, and thus [v,| = |vg].

We now prove (b). Assume that / is an arc embedding of (I, f) into (X, T) as in (2.5).
We show that a, =a, and r, =r,. Combining (2.3) and (2.5) and differentiating with
respect to x, we get

irpap expli(@p +apx + bp)] =irgay expli(agx +ayt + by)]l,
and taking modulus gives
rp|ap|:rq|aq|a 2.7)
while the argument gives

0p +apx +b, =ayx +a,t +b; mod 2m. (2.8)

Note that (2.8) holds for any x € f N4 (I4) N Ip. Since this set contains an interval, (2.8)
must hold for infinitely many values of x, and hence we get a,, = a4. Together with (2.7)
this shows that r, = r,, completing the proof. O

The next theorem allows us to characterize the existence of continuous or discontinuous
embeddings just in terms of the preimages of interior discontinuities of f.

THEOREM 2.2. Assume that (I, f) is a d-IET with intervals 1; =[xj_1, x}) for j =
1,...,d. There exists a d-PWI (X, T) such that (I, f) has a discontinuous embedding
into (X, T) if and only if

FNxn, o xa—1 ) N {xo, .., xa} £ 9.

Proof. LetI =11 U---Uly, withI; =[x;_1,x;), je€{l,...,d}.
We begin by proving that if there is j € {l,...,d — 1} such that f_l(xj/) €
{x0, ..., xq} then there exists a d-PWI (X, T) such that (I, f) has a discontinuous

embedding into (X, T).
By Lemma 2.1, there is a continuous embedding of (I, f) by 4" into a d-PWI (X', T')
with Y’ = h(I) C X’ an invariant set for (X’, T'). Note that since this embedding is trivial,
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we can take X’ to be a compact set. Therefore, it has a finite diameter, which we denote
as | X'|.
SetY;:Y’ﬂX}forj:l,...,d,andlet
X' ifj<j,
TUXS x>
with X = X{ U - - - U X4. Define the maps
T (2) if j <j',
Tj@ =1 , L
’ Tiz = 21X')) +2IX'| if j > j.

IfT(z)=T;(z) forz € X, with j =1, ...,d,then (X, T) defines a d-PWIL
Define the function 2 : I — X as

h'(x), x <xj,

hx) = {h/(x) F2UX], x>

Set Y =h(I). The map h: I — Y is bijective, and it is simple to check that (/, f) has
a piecewise continuous embedding by 4 into (X, T). Moreover, note that the restriction

of h to I; is continuous for j =1, ..., d, but h has a discontinuity at x = x . Thus, the
embedding is discontinuous.

Now assume there is no x; € {x1, ..., x4—1} such that f’l(xj) € {xg, ..., x4} and
there exists a d-PWI (X, T) such that (I, f) has a discontinuous embedding by / into
(X, T).

Since the restriction of h to I; is continuous for all j=1,...,d, the set of
discontinuities of # must be contained in {x1, ..., xy_1}. Assume j € {1,...,d — 1}

is such that /4 is discontinuous at x Iz Let

zy= lim h(x), Zy= lim h(x)
- +

x—>xj_/ x—)xj/
and [ €{1,...,d} be such that x;y € f(I;). Set Y =h(I) and Y; =X; NY for j=
1,...,d. Then {z;, z;7} C T(Y}). Since f’l(xj/) ¢ {xo, ..., xq}, we have

Tz ) N {h(xo), - -, h(xa)} = 0.

Thus, there must be an !’ € {1, ..., d} such that {z j’» 2/} C Yp. Therefore, the restriction
of &’ to Iy must be discontinuous, contradicting & being a piecewise continuous embedding
of (I, f) into (X, T). This completes the proof. O

We now extend Rauzy—Veech induction (see for instance [9]) for IETs to PWIs that
admit continuous embeddings of IETs. Given a d-IET f, ; :I — I such that I; #
Jfz-1(q)), we say that f has type 0 if f(I;-14) Clqg and type 1 if 1 C f(L-1(4)).
In both cases the largest interval is called the winner and the smallest the loser.

Let I’ be the interval obtained by removing the loser from /, that is,

, {I\fa,,l(d)) if f has type 0,

= 2.
I\l if f has type 1. 29
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The Rauzy—Veech induction of f is its first return map R( f) to I, which again is a d-IET.

We can extend this induction procedure to PWIs that admit continuous embeddings of
IETs as follows. Assume (I, f) has a continuous embedding by /4 into (X, T). Define the
map S(T') as the first return map under T to X', where

d—1
U XjUXaNT(Xz-1(4)) if f hastype O,
/_ j=1
X = d—1
UXf if f has type 1.
j=l1

Then (X', S(T)) is again a d’-PWI since it is a first return map of a PWI to a convex subset
of X. However it is now possible that d’ # d.

We now show that a continuous embedding of (I, f) into (X, T) also embeds
(I', R(f)) into (X', S(T)).

THEOREM 2.3. Assume that a d-IET (1, f) such that Iq # f(I-14)) has a continuous
embedding by h into a d-PWI (X, T). Then (I', R(f)) has a continuous embedding by h
into (X', S(T)).

Proof. We prove that for all x € I’ we have
hoR(f)(x)=8(T) o h(x). (2.10)

Assume first that f has type 0. Let IJ’. =1jfor j #dand I; = 14\ f (I;-1(4)- Tt is well
known (see [29]) that

fix), xel _, .,
R - THd) 2.11
(Hx) {f(x)’ vl | ra@. @.11)

‘We now show that we have

2 /
T+(2), ZEh(In—l(d))’ (2.12)

T =
S0 iT(z), cehll), j#n@).

Note that f(Ij’.) C I for j # mw~1(d). Thus, by (2.3) we have T(h(Ij’»)) C h(I'), and we
get (2.12) for z € h(I}) and j # 7= (d).
Since f (I, ;) = f(r-1q) £ I' and S2Uz-14y) C fg) C I', by (2.3) we have

T(h([;_,(d))) =T(h(Iz-14)) & h(I") and Tz(h(l;r_l(d))) C T(h(Iy)) C h(I'), and thus
we have (2.12).
Noting that x € /; if and only if h(x) € h(Ij’.) for j=1,...,d, and combining (2.3),

(2.11) and (2.12), we get (2.10).
Assume now that f has type 1. Let I}:Ij for 1<j<n"'(d),

/ —
ld)
L\ f '), I i = S Uy and I = 1;—y for x~'(d) + 1 < j <d.Itis clear

that 2
/
fe(x), xe[ﬂfl(d)-kl’ (2.13)

R =
DE=1 0. xell, jEr @ +1.
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By a similar argument it can be proved that

T2(x), zeh( )
S(T)(z) = DT (2.14)
T(z), zehly), j#rn" (d)+1.
Since x € I; if and only if h(x) € h(I}) for j=1,...,d, combining (2.3), (2.13) and

(2.14), we get (2.10). O

3. Connecting equations and continuous embeddings of 2, 3-1ETs
In this section, we introduce a graph for a given permutation. We use its combinatorial and
topological properties to obtain a necessary condition for the parameters of a PWI to be a
continuous embedding of an IET into a PWI described by the same permutation.

We then prove that only trivial embeddings of 2-IETs are possible and that a 3-PWI
has at most one non-trivially continuous embedded 3-IET with the same underlying

permutation.

Given an irreducible permutation 7 of {1, ..., d}, and u € RZ, let Sua@x) I =1
denote a minimal IET with I = I; U - - - U I4. As before, we write f = f, ». Recall (1.2).
Itis clear thatif f;(x) =x + 7 forx € I_andj =1,...,d,then f(x) = f;(x) forx € I;.

We extend 7 to w(0) =0 and define fy as the identity map in . For j € Z, we write
[j1=j mod d + 1. Forx; with0 < j <d asin (1.1), we have

S 10 Ot =1 (=10 = Jr=1qj -1 G =1 -19)- G.1
where j =0, ..., d. Note that as the domain of each map f;, j =0, ..., d is the closed
interval I, they are defined at the endpoints x -

We now define a directed graph G, in d + 1 vertices vy, . . ., vz such that there is an
edge
Vr=1(fi—1]) = Va=1([j-1]) (3.2)

if 7~ Y([j — 1)) =[7z~'G) — 1] withi, j €{0, ..., d}.

The graph G, as we will shortly see, identifies the endpoints of adjacent intervals after
rearrangement by a d-IET with base permutation . The next proposition characterizes the
topology of G .

PROPOSITION 3.1. Given an irreducible permutation w, the directed graph G is a
disjoint union of directed cyclic subgraphs.

Proof. Since G, is a finite graph, it has a finite number of connected components, and
hence it suffices to prove that every connected component of G, is a cyclic graph.

Consider a vertex v, with ¢ €{0,...,d}. There is a unique ig=[n(g) + 1] €
{0, ..., d} such that 7~ !([iy — 1]) = g. Define the map n: {0, ..., d} — {0, ..., d} as
n(n) =7 ([7~'([n — 11) + 1]). Note that 7 is a bijection, and hence i; = (i) is the
unique i1 € {0, ..., d} satisfying

7 N (lio — 1) = [ (1) — 11.

Thus, there is an edge vz — V-1, —1))-
We now form a sequence {iy}reny Where ig = [(q1) + 1] and iy = n(ix—1) for k > 1.
Since 7 is a bijection between finite sets {if }xcN, it must be a periodic sequence. If 1 has
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period d + 1 then G, is a cyclic graph. Otherwise, n has period p <d. This implies
that the vertices v, for n € {ix}o,.., p—1 and the edges connecting them form a connected

.....

and directed cyclic subgraph. Since the point g € {0, ..., d} was chosen without loss
of generality, this shows that connected subgraphs of G, are cycles. This completes the
proof. O

PROPOSITION 3.2. Let (I, f) be a d-IET with respect to an irreducible permutation .
The directed graph G, has an edge v, — v, if and only if

Xp =Ly 0 fat 1y (o)- (3.3)

Proof. Let p=n~'([i —1]) and ¢ =7~'([j — 1]) for some i, j € {0, ..., d}. From
(3.1), we have fo -1 i) (X1 =17) = fa—1qi—17) Kr—1i=17)), Which is equivalent to

S 1) G-t j=1) = S 1 (i1 K1 i1 G4
if and only if 7= 1([j — 1) =[x~ 1) — 1], that is, if v, — vg. From (3.4), we get (3.3),
which completes the proof. O

Now assume (I, f) has a continuous embedding by % into a d-PWI (X, T) with ¥ =
h(I)andY; = X; NY suchthat T(z) =Tj(z) forz € Y;, j=1,...,d with

Ti(z)=e€"z4+21; zeC,j=1,...,d. (3.5)

Define Ty as the identity map in C. Let z; = h(x;) for j =0, ..., d. Equations (3.1) are
preserved under topological conjugacy and can be written for 7 as

Lo Gra—1(y-11) = L1 -1y Gt gjnp) - 7 =000 d (3:6)

We call (3.6) the connecting equations. The next corollary follows from Proposition 3.2
and from the topological conjugacy of (¥, T) and (I, f).

COROLLARY 3.3. Assume a d-IET (I, f) has a continuous embedding by h into a d-PWI
(X, T). The directed graph G, has an edge v, — v, if and only if

—1
=T, o Tt (ia(py+1) Zg)-

Let po € {0, ..., d}. We define a connecting sequence { pi}ren for pg with py = qr—1,
where g1 is such that vy, _, — vy, _,. By Proposition 3.1, the connected component of
G containing v,, must be a directed cyclic graph. Thus, { pi } ke is a well-defined periodic
sequence with period s(pg) <d + 1.

Witho : {0, ...,d} — {0, ..., d} such that

o(p)=I[r""(x(p)+ 1) —1],

it is simple to see by (3.2) that py = o (px—1), and hence the number of distinct orbits of
o is equal to the number of connected components of G,;. The map o was first introduced
by Veech in [28].

The Rauzy—Veech induction of a d-IET (I, f, ) is its first return map R(fy ) to
I’, as in (2.9), and is again a d-IET; thus, for some u’ € Ri and 71’ € S(d), R(fu,x) =
S =~ The Rauzy class (see [29]) of an irreducible permutation 7 € S(d) is the set of all
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irreducible 7’ € S(d) such that there exist u, u' € Ri and n € N such that R"(fy,,») =
f W'

A translation surface (as defined in [9]), with genus g, is a surface with a finite number
k of conical singularities endowed with an atlas such that coordinate changes are given by
translations in R2.

Given an IET, it is possible to associate, via a suspension construction, a translation
surface, with g and « depending only on the Rauzy class of the permutation of the
underlying IET (see for instance [28]). It is known (see [29]) that the number of distinct
orbits of o is constant on each Rauzy class and determines g and « of the associated
translation surface. In particular, for the hyperelliptic Rauzy class, that is, the Rauzy class
containing the permutation 7 (j) =d + 1 — j forall j =1, ..., d, o has a single orbit if
d is even and has two distinct orbits if d is odd.

We define the connecting map for pg as

— 7! ~1
Fpo@ =Ty 0 Tt (poy+11 © 7 Tyt © Te 1ty +10 @) 2 €C

It follows from Corollary 3.3 that z,, is a fixed point of F,; thus, Fp(zp,) = 2p,.- We

have
(! (P0) _ D)zpy + Fp,(0) =0 3.7
and
s(po)—1
O (po) = Z Or 1w (poy+11) — O
k=0

Now, (3.7) either imposes a restriction on £, if ®; (pg) # 0, by forcing

h(xpy) = (1 — '@ P) "1 F, (), (3.8)
or, if ®; (pg) =0, it imposes a restriction on the parameters A, 6;, j =1, ..., d, by
Fp,(0) =0. (3.9
Note that F,;(0) can be seen as a sum where each term is A ; times a coefficient depending
onlyonéy, ..., 0.
Denote the coefficient of A; in £, (0) by r; (61, ...,0y) for j =1, ..., d. Note that

by linearity in A j, (3.9) can be written as

d
D ajri6r. ... 04) =0. (3.10)
j=1

We call (3.10) the parametric connecting equation for pg.
In the following theorem, we show that if G, is connected then the parameters of the
PWI satisfy the parametric connecting equation.

THEOREM 3.4. Assume a d-IET (I, f) has a continuous embedding by h into a d-PWI
(X, T). If G is a connected graph, then the parameters Aj, B, j=1,..., d satisfy the
parametric connecting equation (3.10).
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Proof. Since G, is a connected graph, by Proposition 3.1 it must be a directed cyclic graph.
The connecting sequence for pop = 0 is well defined and has period d 4 1. Since the map
n — ([ (n) + 1]) is a bijection between finite sets, we must have
d d
O2(0) =D br-t(impo1y — D O =0-
k=0 k=0
Thus, there are functions r; (01, ..., 0y) for j =1, ..., d, not identically 0, satisfying
(3.10). O

The following example shows two permutations, one for which the graph G, is
disconnected and a permutation that yields a connected G, and a parametric connecting
equation that can in principle allow the existence of non-trivial embeddings.

Example 3.5. Consider the permutation 7 = (123). It is simple to see, either by checking
directly or by noting that 7 is in the hyperelliptic Rauzy class for d = 3, that G, is not
a connected graph. The connecting sequence for 1 is constant and equal to 1; thus, from
(3.7), we get

@27 _ (x4 ( — Ae % =0. (3.11)

Consider the permutation 7’ = (2)(143). It is clear that in this case G, is a connected
graph. Indeed, 7’ is in the hyperelliptic Rauzy class for d = 4. The connecting sequence
forOis p=1(0, 2, 3, 1, 4, . ..), and we have the connecting map

Fo) =Ty, ' oTs0T,  oTuo Ty L oo T o Tyo T, o Ti(2).
From this, we get the following parametric connecting equation:
A(e 0 — @m0y L (ol O1=02) _ ,i(E3-02))
+ a3(1 — &' 0a=02y 4y, (10302 _ =iy =, (3.12)
In §5 we will discuss an example of a PWI satisfying (3.12).

In the next theorem we prove that there are no non-trivial continuous embeddings of
minimal 2-interval exchange transformations into orientation-preserving planar PWIs.

THEOREM 3.6. A minimal 2-1ET has no non-trivial continuous embedding into a 2-PWI.

Proof. Let (I, fi ) be a minimal 2-IET different from the identity with ;& = {1, o} €
R%r. Assume there is a continuous embedding of (I, f) by & into a 2-PWI (X, T) with
partition {X, X»}.
Set Y =h(I) and Y; =Y N X; for j =1, 2. There are §; € [0, 27) and X; € C such
that
Ti(x)=e%z+1j, zeC, j=1,2,

and the restriction of T to Y is given by
T()=Tj(), zeY;, j=1,2.

Since f is not the identity, 7 = (12) and G, is a connected graph, the connecting
sequence for po =0is p = (0, 1, 2, .. .). This gives the connecting map

Fo(z) = TO_1 oT>o Tl_l oTpo T2_1 o T1(2).
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By Theorem 3.4, the parameters A1, Az, 01 and 6> must satisfy the parametric connecting
equation, which can be written as

A(e ™ — 270y 41 —e ) =0. (3.13)
Multiplying by /%1, (3.13) becomes
Aol — ey =1 (1 — eif2). (3.14)

Since T is not the identity map, (3.14) is true if either both sides equal O or both sides
do not equal zero.
If both sides are equal to zero, we have the following cases:

(i) If6y=6,=0 mod 27 then T(z) =z + Aj, z € Y¥;. Since we are assuming that f
is minimal and Y is compact, it follows that T has dense orbits. This implies that
there is s € R such that A; = s\,. For such a transformation, invariant sets must be
unions of lines. This implies that % is a trivial linear embedding.

(i) IfA;=Xxy=0thenT;(z) = eiz, z e Y;. Since we are assuming that f is minimal,
the orbits of T must be dense and in such a transformation, invariant sets must be
unions of circle arcs. This implies that / is a trivial circle arc embedding.

(iii) Finally,if A; =0and6; =0 mod 27 for j =1 or 2 then T is equal to the identity,
and hence T can not be conjugated to a minimal IET.

If both sides of equation (3.14) are non-zero, there must exist A € C such that 1; =

A(1 —¢i%), j =1, 2. This implies

Tj(z) = (z — 1'% 4+,
which is conjugate by L(z) = z + X to the map
T(z)=¢éY%z ze€ Y, —A, j=1,2
and thus £ is a circle arc embedding. This completes the proof. O

In §5, we present some numerical results which suggest that there exist non-trivial
embeddings of d-IETs into d-PWIs for d = 3 and d = 4.

Before proving the next theorem, recall that we are representing a permutation 7 € S(3)
using cyclic notation.

THEOREM 3.7. A 3-PWI has at most one non-trivially continuously embedded minimal
3-IET with the same underlying permutation.

Proof. Given m € S(3) and € R3, assume there is a minimal 3-IET (I, fu.z) that is
continuously embedded by #/ into a 3-PWI (X, T') with partition {X1, X», X3} and

T()=e%z+1j, zeX;.

Let Y = h(I). We show that either (/, f;, ) and i are unique or the embedding is trivial.
Assume first that 7 = (123). Recall that this is the permutation 7 in Example 3.5. By
(3.11) we have |©; ()| = |0, =10, — 6;| for j =0, ..., 3.
If ®; = 0then 6] = 6,, and by (3.11) we get A = A;.
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Consider the 2-IET (I, f,/ /) where u' = (1 + p2, u3) and x’ is the permutation
(12). Consider the 2-PWI (X, T’) with base partition {X{, X/}, where X| = X| U X, and
X/, = X3 and

T'(z)=e"%7 + Vi, zeXl,

with 0] =61, ) =63, 1] = A1 and A, = A3. It is simple to see now that f,/ »» = f, » and
T’ = T; thus by Theorem 3.6, the embedding of ([, fu,7) must be trivial.
If ®, #0, (3.8) gives

h(xj)=(1—-e®D)1F;0), j=0,....3. (3.15)

Since F;(0) does not depend on u, by (3.15) we have that for any u' € Ri such that
(I, fu ) is minimal, any continuous embedding 4" into (X, T') must satisfy h’(x}) =
h(x;). Since the restriction of 7' to Y must be invertible and every z € Y must have a dense
orbit in Y, this shows that 4’ = and /' = h.
We omit the proof for m = (321) as it can be done in a similar way to the previous case.
Finally, assume that 7 = (13)(2). Then G, is not a connected graph. The connecting
sequence for 1 is equal to (1, 3, .. .), and from (3.7) we get

(exp [—i (63 + 61 — 62)] — Dh(x1) + e 1 [e™ By — 13) — 211 =0. (3.16)

We have |0 (j)| = |Ox| =103 + 61 — 62| for j =0, ..., 3.
If ®; = 0 then by (3.16) we get

6, =61 + 63, )»2=)»1€i93 + A3. (3.17)

Note that I3 = fpﬂn(ln—l(?’)) if and only if w; = 3. In this case, we have that the
restriction of f, » to I is equal to the identity map. Since f, , is minimal, we must
have I3 # f‘u_)n(lﬂ—l(:;)), and thus by Theorem 2.3 there is a continuous embedding of
(I', R(fu,x)) by h into (X', S(T)).

We now prove that this embedding is trivial.

Assume that f;, ; has type 1. Let I; be as in the proof of Theorem 2.3. By (2.14), we

have )
ez + A1, z€h(I)),
S(T)(2) = { ' DH5)z 4+ (1€ +23), z€h(ly), (3.18)
€%z 4 A, z€h(I}).

Consider the 2-IET (I, fj 7) with i = (u1 — 3, u2 + p3) and 7 = (12), and the map
T :h(I') = h(I’) such that
T =e%z+1j, ze¥;,

where Y} = h(I}) and Y= h(I} U I}). It is simple to see now that f; z = R(fy,») and by
(3.17) and (3.18) we have T (z) = S(T (z)) for all z € h(I’). Therefore, by Theorem 3.6, the
embedding of (I’, R(fy,)) by h into (X', S(T)) must be trivial. By (2.3), we have that
for x € I3 we have h(x) = ¢'?"h(x — s — u3) + A1, and thus the embedding of (/, Su.m)
by & into (X, T) must be trivial as well.

We omit the proof for the case where f,  has type 0, as it can be done in a similar way
to the previous case.
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Finally, if ®; # 0, by (3.8), h(x;) is determined by (3.15). Since F;(0) does not depend
on u, we have that for any u’ € ]Ri such that (/, f, ) is minimal, any continuous
embedding 4’ into (X, T) must satisfy /'’ (x}) = h(x;). Since the restriction of T to ¥
must be invertible and every z € Y must have a dense orbit in Y, this shows that ' =
and b’ = h. O

4. Ergodic condition for the existence of piecewise continuous embeddings
In this section, we give a necessary condition for the existence of piecewise continuous
embeddings of uniquely ergodic IETs into planar PWIs.

Givenad-IET (I, f),let I; and 7; be asin §1. Suppose we have a piecewise continuous
embedding £ of this map into a d-PWI (X, T'), and suppose that T'(z) =T (z) for z € X
with T (z) = €%z + X;.

Let S' =R/277Z. For x € I and y € S! we define the tangent exchange map W : I x
S — I x S! as the skew product given by

Vx, y)=(f(x), y+0jw)- (4.1)

The dynamics of this map contains information on the angle of tangents of an
embedding when iterated by the underlying PWI. A schematic representation of the action
of this map can be seen in Figure 2. It will be the main technical tool to prove Theorem 4.1.

For n € N, we have

W(x, y) = (f"(x), y + CP (),
where C") : Z x I — S! is the rotational cocycle for this embedding, given by
COU) =0, C"(x)=0jx)++0;n-1(y mod 2

forx eI, n>0, and
CWx)=-C"(x) mod 2x

for n <0, where j(x) is the piecewise constant map such that j(x) = j when x € I;.
Informally, the rotational cocycle keeps track of the angle of a line passing through a point
h(x) when iterated by 7.

For x € I;, we define the first return time of x by f to I; as

nj(x) =inflk > 1: f*(x) € I;}.

If f is minimal then 7 (x) is finite. The first return map of x by f to I, fjf il — 1 is
then a well-defined d-IET and is given by

i@ =190, xel). (4.2)
For j =1, ..., d, we define the cocycle N](.‘) 1Zx1;— Zas
NO@ =0, NP =nj@) +ni(£;@) +- -+ (£ @)

for x € I; and k > 0. For n < 0, we set N;k)(x) = —Nj(fk) (x).
Define the sequence {p(n)},>1 by

p(1) = min{k > 1: f50) € Iy}
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@ s (F(@1),61)

I 1
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v (331,0) \11(13 % Sl)
I, x St /’—_—(JZ(;U;):G‘z
\I/<Ig _><h5'1)
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FIGURE 2. A schematic representation of the action of a tangent exchange map W, as in (4.1), on a cylinder
with 7 = (132). (a) The partitioned space I x st in three subcylinders, /; x SL. The X are equal to Ziﬁj Wi

for j =1, 2, 3, and the points (x}, 0) are represented. (b) The action of the map W on I x § 1 and on the points
(xj, 0), which map to (fy, = (x), 8;) for j =1, 2, 3.

and
p(n) =min{k > p(n — 1) : fX0) < FP*D©0)), n>1.

Note that if f is minimal then 7 (0) — 0 as n — +o0. Let
m j(n) = card{ f*(0) € I; : k < n},

withneN, j=1,...,d, and

k; = min{k > 0: f*(0) € I;}.
Define x} = £ki(0), y} =C®%)(0).ForneNand j =1, ..., d, define the sequences

cim) = + C(N}")<x;>+1)(x})

and

mj(n)—1
ej(n) = Z expl—ic; (k)]. (4.3)
k=0

The sequence e (p(n)) can be seen as the displacement by rotation of a point h(x;-) up to
the nth return to X ;. The limit of e;(p(n)) when n — +00 need not exist in general.
Consider, for j =1, ..., d, the limiting average of the sequence ¢;(p(n)),

=

Note that this limit need not exist in general. By Wey[’s criterion, if ¢;(n) is uniformly

,m PRTICOR (p(m). (4.4)

distributed mod 2 then &; = 0. However, this need not hold in general: a numerical
study, in §85.1 and 5.3, presents a non-trivial example where the &; are non-zero. The
following theorem shows that for a piecewise continuous embedding of a uniquely ergodic
(I, fu,x), as long as the limit (4.4) is finite, the condition (4.6) tells us that the average of
displacements by rotation and by translations, weighted by the lengths u ;, must cancel out
so that orbits remain bounded.
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THEOREM 4.1. Assume that (I, f,, ) is a uniquely ergodic d-IET that has a piecewise
continuous embedding by h into a d-PWI (X, T) with X C C, where

T(z)=e"Y%z+2, (4.5)
forzeXjand j=1,...,d. Ifthereare&; € C such that (4.4) holds then
d
> G = h(O)(1 — €))Ejp; =0, (4.6)
j=I
where we recall that |1 j denotes the length of the subinterval I; for j =1, ..., d.

Proof. We begin by proving that there is an orientation-preserving PWI (X, T),
conjugated by a translation to (X, T), such that (I, f,, ») has a piecewise continuous
embedding by 4 into (X, T') with 4(0) = 0.
Let X={z€C:z+h(0) € X}and g : X — X be such that g(z) = z — h(0). Let
T(@)=qoToq ')
for z € X. The homeomorphism h= q o h conjugates (I, f) to (fz(l), f’), with fz([) - X
invariant for (X, 7). Moreover, h(0) = g(h(0)) = 0. Note that we have
T(z)= iz 4 Xj

forz € X;, where X; ={ze€C:z+h(0) € X;},6; =6, and X; = »; — h(0)(1 — /).
We now prove that

d
nETOOZ;Ajej(p(n)) =0. 4.7)
j=
Since (I, f,, ) has a piecewise continuous embedding by h into (X, T), we have
h(x + 1)) =e%h(x) + A, (4.8)
forxel;, j=1,...,d. Let?:fz([), fj :fﬁ)}j andﬁj - Yj be the restriction

of i to I;. From (4.8), we get
hj(x)=e "% (hi(x + 1)) — ),

where x € fu_,;lr(lk) and j=1,...,d.
Recall the itinerary of x as in (2.1). It can be proved by induction that forx € I, n € N,
we have

k

n—1 n—1
hig(x) = exp [—i > eik]iz,-n (fil () = iy exp [—i > 9,-,] (4.9)

k=0 k=0 =0

Since 7(0) = 0, taking x = 0 in (4.9), we get

n—1 n—1 k
exp |:—i > eik}ﬁ,-n (fi2(0) = Xy exp |:—i > 9,,} =0 (4.10)

k=0 k=0 =0
forn € N.
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Note that fzj -~ 17]- is a homeomorphism for j =1, . .., d. By continuity of #; and
(4.10),
pn)—1 k
I (P9 0) = i) =| Y Aiexp [ iy 0,1} =2 0. (4.11)
k=0 =0
By (4.3), (4.11) is equivalent to (4.7).
We now show that y
ZI\ Eju;=0. (4.12)

Since (I, fu,x) is uniquely ergodic w1th respect to the Lebesgue measure,

mj(p(n)) _ wj

lim = (4.13)
n—+oo  p(n) ]
forj=1,...,d.
Note that (4.4) is equivalent to
ej(p(n)) =mj(p(n)&; +o(pn), j=1,....d. (4.14)
Combining (4.13) and (4.14), we have
ei(pm) = py) TP L) = (o) + o(p)) g,
p(n)  m;(p(n)) 1]
forj=1,...,d, and we get
d d
D hjei(pm) =Y (p(n) + o(p(m)i ;. (4.15)
j=1 j=1

Since (I, fyu,z) has a piecewise continuous embedding into (X, T'), (4.7) holds. Thus,
(4.15) implies that

n——+o00

d
lim > (p(n) + o(p(m))Aju & =0,
=1

which can only hold if (4.12) is true, as desired. Finally, note that (4.12) is equivalent to
(4.6), and the proof is complete. O

Condition (4.4) is not simple to verify in general since c;(n) is determined by two
cocycles. However, under some assumption on ¢;, we can identify c;(n) with an orbit of
a point by interval exchange map and compute the &; as spatial averages using the ergodic
theorem.

COROLLARY 4.2. Assume that (I, f) is a uniquely ergodic d-IET with a piecewise
continuous embedding by h into a d-PWI (X, T) as in (4.5). Let X denote the
characteristic function of 1;. If

0, =L (4.16)
T '
forj=1,...,d then
d
[1 <Z(Aj —h(©0)(1 =€)y, (f—l(x))>e—2’”x dx =0. (4.17)
j=1
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Proof. Let fi:1; — I be as in (4.2). With f, = = f, by (4.16) we have

2

W fu‘n o fjn(x})

Since (I, fy,=) is uniquely ergodic, it follows that (/;, f j’ ) is also uniquely ergodic. Thus,
the ergodic theorem implies that

cj(n) =

mj(p(n))—1

1 2mi / 1
lim —— exp[——f , of-k(x/<)] = —/ exp[—2mix] dx
n=>+oo mj(p(n)) ,; 1T g S a
(4.18)
forj=1,...,d.
Let & = (1/u;) ffﬂ,ﬂ(l_;) exp[—2mix]dx for j =1, ..., d. Combined with (4.3) and
(4.18), we get
o ity P =
for j=1,...,d, and thus by Theorem 4.1 we must satisfy (4.6), which is equivalent
to (4.17). This completes the proof. O

5. Evidence of non-trivial embeddings of IETs into PWls

In this section, we present some numerical evidence of non-trivial continuous embeddings
of IETs in PWIs. In order to do this, we first define a PWI on three atoms that apparently
exhibits a single invariant curve that is the image of a non-trivial embedding of a 3-IET.
We also introduce a new family of PWIs that includes linear embeddings of 2-IETs and
apparently many non-trivial embeddings of 4-IETs.

5.1. A PWI with an embedded three interval exchange. ~We now present an example of
a 3-PWI for which numerical evidence suggests the existence of a non-trivial embedded
3-IET.

Let o' =13, g'=0.75, z;=0, 2} =0,0.215998 +i0.168125, z, =0.491520 +
i0.051612, z’3 = (.586452 and the convex sets

Q) =1{zeC:Im(e (z — 2})) <0},
0, ={z e C:Im(e " (z — z5)) > 0 and Im(e'® (z — 2})) = 0},
0} ={z e C:Im(e ' (z — 2})) < 0 and Im(e'® (z — 2})) > 0}.
Consider the PWI T’ : C — C such that

T'@)=é"z+1; z€0Q) (5.1)

for j =1, 2, 3, where
4.460361, j=1,
9]’- = {0.800153, j=2,
0.995933, j=3,

- , (5.2)
2y — ez, j=1
- . .
M=% — ) — ez, j=2,
cn/
ez, j=3
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(a) (b)

© (d)
FIGURE 3. An illustration of the action of the piecewise isometry T’. (a) An invariant set ¥ and the partition
{Q;. }j=1,2,3- (b) Image of Y" by T”. (c) Orbits of 40 points, including z, (ignoring a transient) under 7” and the
partition {Q/j }j=1,2,3- (d) Image of the orbits and the partition in (c) by T".

and set Y/ ={T" (z{))}neN. These parameters are constructed according to certain
renormalization properties of the IET; a separate paper is in preparation that explains this in
detail. Figure 3 shows the action of the map 7’; in particular, in Figure 3(a) we can see Y’
and in Figure 3(b) its image by 7". Consider the family 73 of 3-IETs f,, ,» : I — I given
by subdividing the interval into four intervals of lengths u = (1, u2, u3) € Ri with base
permutation 7’ = (2)(13).

We can partition Y’ by setting Yj’. =Y'Nn Q’j for j =1, 2, 3. The length l} = Leb(Y]/.)
of each Y} can be numerically estimated to be

1 =0.3910666426, 15 =0.4553369973, 5 =0.1535963601.

Fix u = (I{, 1}, 15), and consider the IET (I, f, /) € F3. Numerical evidence suggests
that there is a continuous embedding of (1, f,, ) into (C, T") by amap h’ : I — Y’, with
Y’ C C, such that £(0) = z(/). Note that G,/ is not a connected graph so we are not in the
conditions of Theorem 3.4. However, by (5.2), it is simple to check that (3.6) and (3.8)
are satisfied. Indeed, numerical verification shows that i ,/C(T/ (h(0))) = ix(fy,7(0)) for all
k < 6 x 10*, supporting that 4’ is a symbolic embedding.

We can also verify numerically that the condition in Theorem 4.1 holds for this case.
We estimate 5}’. ~e;j(p(8))/m;j(p(8)), where £ ~ —0.453 4 0.651i, &, ~ 0.326 4 0.669i
and &5 >~ 0.417 + 0.679i. For these estimates we get

d d
S W = H©O) S (1= g | ~ 119 x 1075,

j=1 j=1
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FIGURE 4. Schematic representation of a family of 4-PWIs 7 : C — C with atoms given by the four cones P;,
and three parameters: «, 8 and A. The atoms Py and Pj3 are translated by 7', while P; and P, are rotated about
their vertices then translated. The map on the baseline [—1, 1) is a 2-IET.

5.2. A planar piecewise isometry with four cones. ~We now introduce a new family of
PWIs that includes a linear embedding of a 2-IET and an apparently infinite number of
non-trivial embeddings of 4-IETs.
For any B € (0, 7/2), « € (0, 7 —28) and A € RT, we consider a partition of C into
four atoms:
Py={ze€C:arg(z) e[-B, )} U {0},
Pr={zeC:arg(z) €[B, a + B},
Py={zeCargx) €l + B, m — P},
Py={zeC:arg(z) €[r — B, 2 — B)},
and defineamap T : C — C by T'(z) =T} (z), for z € P;, where

z—1, z€j=0,
e —(1—=1), zej=1,
Ti(z) = 9 . (5.3)
ze'2 —(1-2), zej=2,
Z+A, z€j=3,
and 91 =7 — 28 — o, ¥ = —a. An example is illustrated in Figure 4; note that this map

is not invertible. We define the maximal invariant set for this map as X C C. Note that T
restricted to the real line reduces to a 2-IET on [—1, A) that is equivalent to an interchange
of intervals of length 1 and A. We refer to this as the baseline transformation.

This map is such that all vertices of atoms that touch the baseline are mapped to the
baseline. This means that although 7 is not invertible, it is locally bijective near the
baseline. The middle cones P; and P, are swapped by two rotations, and after this, P
and P, are translated by —(1 — 1).

We define the first return map R: Py U P, — P; U P> as

R(z) =T"9(2), (5.4)

where k(z) =inf{k > 1:T*(z) € P, U P,}. If A is irrational then every point enters
P; U P, after a finite number of iterates, and hence in this case R can be used to
characterize all orbits of the map.
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FIGURE 5. (a) Orbits of 200 points (ignoring a transient) by 7 for («, 8, A) = (0.5, 1, (+/5 = 1)/2). (b) Details

of (a) in the area [—0.4, 0.4] x [0, 0.5]. The cone indicates the location of P; U P,. In this and later figures,

orbits of length 105 are generated after removing a transient of 100 iterates. The maximal invariant set appears

to have a highly complex boundary, but it does appear to include a polygon containing the baseline. The boxed
region contains what seem to be many invariant non-smooth curves.

For typical choices of parameters «, 8 and A, it seems that the dynamics of T defined by
(5.3) (and hence of R) is very rich. Figure 5(a) shows typical trajectories (after a transient)
for 200 randomly selected points and (¢, 8, 1) = (0.5, 1, W5-1) /2). Details of some
invariant sets are then shown in Figure 5(b). These numerical simulations illustrate that (as
expected, [7, 8]) the map T has an abundance of periodic islands for typical values of the
parameters.

Figure 6(a) shows the orbits of five points (ignoring a transient) under R for (o, 8, A) =
05,1, V5-1) /2). Details of this are shown in Figures 6(b) and 6(c) in the areas
[—0.04, —0.01] x [0.16, 0.21] and [—0.0016, —0.01] x [0.16, 0.165] respectively.

These figures show the diverse types of behaviour that can be found in the invariant sets
of R (and hence T). They show what seem to be non-trivial embedded IETs as well as
invariant sets of higher dimension. There are also periodic islands to which the return map
is a rotation.

Numerical results show that for some parameters we can observe non-smooth invariant
curves for the dynamics of the map R as defined in equation (5.4). These curves appear to
have a dynamics similar to that of an interval exchange transformation. These curves can
bound invariant regions that exhibit quite complex dynamics. We now construct one such
region: set = 0.5, 8 =1, A = (+/5 — 1)/2 and n = 1 — A. Consider the points

20=roe' " P,z =ri"PH

with rg = 0.470 and r, = 0.503, and denote the orbit closures of these points as &’ and E”.
These are contained in the boxed region in Figure 5(b) and are also represented in Figure 7,
where it can be seen that both &’ and E” appear to be non-trivial continuous embeddings
of IETs. Now consider the sets

Q7 ={zeC:arg(z) =m — Band ro < |z] <11},
Qr={zeC:arg(z) =B and ro < |z| <r1}.

If 2" and E” are invariant curves that are embeddings of IETs, then the set 9 = Q' U
Q' U E"U E” is a Jordan curve. Denote by E the closure of the region bounded by 9 E.
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FIGURE 6. (a) Orbits of 5 points (ignoring a transient) under R for («, 8, ) = (0.5, 1, (+/5 — 1)/2) in the area

[—0.14, 0.14] x [0, 0.25]. (b) Details of (a) in the area [—0.04, —0.01] x [0.16, 0.21]. (c¢) Details of (a) in the

area [—0.0016, —0.01] x [0.16, 0.165]. Observe a complex pattern of periodic islands and the presence of non-
trivially embedded IETs as well as orbits with more complex structure.

Numerical investigations suggest that & is an invariant region for R. Let Exy = Qx N &,
where

Q1 ={zeC:Ime @A (7 + 21 — 1)el®)) > 0},

02 ={z€C:Im(e @A (z + (21 — 1)e'®)) < 0 and Im(e' P~ (z — (1 — 1)e/¥)) < 0},
03={z€C:Im@E P9z — (1 — 1)e'®)) > 0and Im(e @+ z) > 0},
04 ={ze€C:Im(ze @th) < 0}.

Using the property of the golden mean, 1 — A = A2, it can be seen that R(z) = R j(z) for
z € Ej, where
ze2 )3, j=1,
zel?® )4 j=2,

Rj(z) = e 32 j=3 (5.5)
701 4+ 23, j=4.
The subsets E;, j =1, ..., 4 and the action of R in this set are depicted in Figure 7.
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FIGURE 7. (a) The presumably invariant region & = 81 U 8y U E3 U E4. (b) Image of E by R.

Note that R acts isometrically on each E;, but since these sets are not convex, (&, R)
is not a 4-PWI, but it is simple to construct a 4-PWI (C, S) such that E is invariant
under S and the restriction of S to E is equal to R, by partitioning C = Uj:o Q; and
setting S(z) = R;(z) for z € Q. One can verify that S satisfies the parametric connecting
equation (3.12), therefore satisfying a necessary condition for the existence of an IET that
can be continuously embedded by 4 in (C, S), with Y = h([) C E also invariant under R.

5.3. A PWI with an embedded four-interval exchange. Finally, we show that the map
R in (5.5) is an example of a 4-PWI for which numerical evidence suggests the existence
of a non-trivial embedded 4-1ET.

Consider the family F4 of four-interval exchange maps f, :/ — I given by
subdividing the interval into four intervals of lengths u = (i1, 2, U3, n4) € Ri with
base permutation 7 = (2)(143).

Note that on the real axis, Im(z) =0 is a trivial embedding of the (degenerate) four-
interval exchange where u = (4, 0, 0, 1). Let

Y = [R"(0.4160)}pen.-

This defines an invariant set, is portrayed in Figure 1, that appears to be an embedding of an
IET. We can partition Y by setting Y; =Y N E; for j =1, ..., 4. The length or Lebesgue

https://doi.org/10.1017/etds.2018.112 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2018.112

Embeddings of IETs into planar PWIs 1177

1] 0.4

FIGURE 8. First 10° points of the orbit of (0, 0), by the tangent exchange map W given by u = (I1, I, I3, lg),
7 =(2)(143), 0 = ¥, for j =1, 2, 3 and 64 = ¥,. Observe the apparent lack of ergodicity as expected for a
non-trivial embedding.

one-dimensional measure /; = Leb(Y;) of each Y; can be numerically estimated to be
11 =0.1217970148, [, =0.1329352086, I3 =0.2008884081, I4=0.3550989199.

Fix u = (I1, I, I3, l4) and consider the IET (I, f,, ») € F4. Numerical evidence suggests
that there is a continuous embedding of (I, f, ) into (C, S), by amap s : 1 — Y with
Y C & such that h(0) = roe'®, with ro = 0.47665 and 6y = 0.681657 . Indeed, numerical
verification shows that i,/CR(h(O)) =i (fu,z(0)) for all k£ < 10°, supporting that h is a
symbolic embedding.

We can also verify numerically that the condition in Theorem 4.1 holds for this case.
Estimating &; >~e;(p(8))/m;(p(8)) gives & ~0.718 +0.125i, & ~0.538 —0.512i,
&3 >~ 0.460 — 0.438i and &4 >~ 0.300 — 0.562i. For these estimates we get

d d
D iy —h0) Y (1= e ~6.30 x 1079,

j=1 j=1
where 6; = for j =1, 2, 3 and 64 = 9.

Figure 8 shows 103 points of the orbit of (0, 0), by tangent exchange map W associated
to S, which is consistent with the orbit being dense but not having non-uniform distribution
on the cylinder 7 x S'.

6. Conjectures, questions and conclusions

We have highlighted that embeddings of IETs into PWIs present a number of subtle
and mathematically rich problems associated with the regularity or otherwise of these
embeddings. Theorem 3.6 shows that there are no non-trivial continuous embeddings of
a minimal d-IET into a d-PWI for d =2, while Theorem 4.1 gives a condition for the
existence of a piecewise continuous embedding. For d = 4 there are PWIs that seem to
have an abundance of non-trivial embeddings of d-IETs. It seems to be much harder
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to find a 3-PWI that exhibits non-trivial embeddings of 3-IETs, and to do so requires
much parametric fine tuning, a fact that is justified by Theorem 3.7, which shows that any
3-PWI has at most one non-trivially continuously embedded minimal 3-IET with the same
underlying permutation.

Our main conjecture is as follows.

Conjecture 6.1. For any d > 3, there is a minimal d-IET (/, f) that admits an embedding
into a d-PWI which is continuous but not trivial.

Assuming this is conjecture is valid, a number of interesting lines of enquiry open up.

e Foragiven IET (I, f), what is the structure of the PWIs (X, T') that carry continuous
embeddings of (I, f), and how can the irregularity of the continuous embeddings be
characterized within this class?

e If an IET has a non-trivial embedding into a PWI, must its rotation parameters be
irrational multiples of w? How does this relate to the behaviour of the rotational
cocycle?

e For a given PWI (X, T), what are the arithmetic properties and structure of the IETs
(I, f) that are embedded within this PWI?

e So far we have considered continuous embeddings of d-IETs into d-PWIs, but in
principle a d-IET may be embedded into a d’-PWI for some d’ < d: see for example
[7, Figure 8]. How can we understand these embeddings within PWIs with fewer
atoms?

e What is the structure of parametrizations of d-PWIs that embed the same given IET?

We suspect that for a continuous non-trivial embedding . of (I, f) into (X, T), typical

embeddings have a tangent exchange map that is minimal but not ergodic. A lot of insight

has come from examples (see for example [7]) and we suggest that the example introduced
in §5 will be useful to explore the above, in that it has a larger number of apparent
embeddings that limit to the baseline.

We do not consider the cases of (I, f) that are not minimal, or that are reducible, but
there may be some surprises waiting there as well. The region E discussed in §5 seems
to contain periodic islands, embedded IETs and other invariant sets that are neither. It is
a challenge to describe these other invariant sets in a coherent way. Regarding the IETs
embedded in &, we conjecture that all minimal nearby IETs in F4 are continuously (or at
least symbolically) embedded.
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