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A new class of weighted generalized gamma distribution (WGGD) and related distri-
butions are presented. Theoretical properties of the generalized gamma model, WGGD
including the hazard function, reverse hazard function, moments, coefficient of variation,
coefficient of skewness, coefficient of kurtosis, and entropy measures are derived. The
results presented here generalizes the generalized gamma distribution and includes sev-
eral distributions as special cases. The special cases include generalized gamma, weighted
gamma, weighted exponential, weighted Weibull, weighted Rayleigh distributions, and
their underlying or parent distributions.

1. INTRODUCTION

Well-defined sampling structures often do not exist in natural populations such as human,
wildlife, insect, plant, or fish populations. Therefore, recorded observations on individuals in
these populations are biased and will not have the original distribution unless every observa-
tion is given an equal chance of being recorded. Weighted distribution theory gives a unified
approach to modeling these biased data (Patil and Rao [11]). The concept of weighted
distributions has been employed in a wide variety applications in reliability and survival
analysis, analysis of family data, meta-analysis, ecology, and forestry. Rao [14,15] identified
the various sampling situations that can be modeled by what he called weighted distribu-
tions, extending the idea of the methods of ascertainment upon estimation of frequencies
by Fisher [3]. Patil and Rao [10,11] investigated the applications of weighted distributions.
Statistical applications of weighted distributions, especially to the analysis of data relating
to human population and ecology can be found in Patil [12].

To introduce the concept of a weighted distribution, suppose X is a non-negative random
variable (rv) with its natural probability density function (pdf) f(x; θ), where the natural
parameter is θ ∈ Ω (Ω is the parameter space). Suppose a realization x of X under f(x; θ)
enters the investigator’s record with probability proportional to w(x;β), so that the record-
ing (weight) function w(x;β) is a non-negative function with the parameter β representing
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the recording (sighting) mechanism. Clearly, the recorded x is not an observation on X, but
on the rv Xw, having a pdf

fw(x; θ, β) =
w(x, β)f(x; θ)

ω
, (1)

where ω is the normalizing factor obtained to make the total probability equal to unity
by choosing 0 < ω = E[w(X,β)] < ∞. The rv Xw is called the weighted version of X, and
its distribution is related to that of X and is called the weighted distribution with weight
function w.

The main objective of this paper is to construct and explore the properties of weighted
generalized gamma distribution (WGGD). This paper is organized as follows. Section 2
contains some basic definitions, utility notions and useful functions. The pdf, cumulative
distribution function (cdf), hazard function and reverse hazard function of the WGGD is
derived in Section 3. In Section 4, moments and related measures are derived. Measures of
uncertainty are presented in Section 5, followed by concluding remarks.

2. BASIC UTILITY NOTIONS

In this section, some basic utility notions and results are presented. Suppose the distribution
of a continuous rv X has the parameter set θ∗ = {θ1, θ2, . . . , θn}. Let the pdf of X be given
by f(x; θ∗). The cdf of X, is defined to be

F (x; θ∗) =
∫ x

−∞
f(t; θ∗) dt. (2)

The hazard rate function of X can be interpreted as the instantaneous failure rate or the
conditional probability density of failure at time x, given that the unit has survived until
time x. See Finkelstein [2] for additional details. The hazard function h(x; θ∗) is defined
to be

h(x; θ∗) = lim
Δx→0

P (x ≤ X ≤ x + Δx)
Δx[1 − F (x; θ∗)]

=
−F̄

′
(x; θ∗)

F̄ (x; θ∗)
=

f(x; θ∗)
1 − F (x; θ∗)

, (3)

where F̄ (x; θ∗) = 1 − F (x; θ∗) is the survival or reliability function. The reverse Hazard
function can be interpreted as an approximate probability of a failure in [x, x + dx], given
that the failure had occurred in [0, x] (see Finkelstein [2] for additional details). The reverse
hazard function τ(x; θ∗) is defined to be

τ(x; θ∗) =
f(x; θ∗)
F (x; θ∗)

. (4)

Some useful functions that are employed in subsequent sections are given below. The
gamma and digamma functions are given by

Γ (x) =
∫ ∞

0

tx−1e−t dt, and Ψ(x) =
Γ

′
(x)

Γ (x)
, (5)

where Γ
′
(x) =

∫∞
0

tx−1(log t)e−t dt is the first derivative of the gamma function. The second
derivative of the gamma function is Γ

′′
(x) =

∫∞
0

tx−1(log t)2e−t dt. The lower and upper
incomplete gamma functions are

γ(s, x) =
∫ x

0

ts−1e−t dt and Γ (s, x) =
∫ ∞

x

ts−1e−t dt, (6)

respectively.
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2.1. Generalized Gamma Distribution (GGD)

The GGD was introduced by Stacy [16]. It is considered to be a useful life distribution model
and is suitable for modeling data with different types of hazard rate function: increasing,
decreasing and unimodal. It is a flexible family of distributions in terms of the varieties
of shapes and hazard functions. The GGD has been used in several research areas such as
engineering, hydrology and survival analysis. See Ali, Woo, and Nadarajah [1], Lehmann [8],
and Nadarajah and Gupta [9] for additional details. Many distributions commonly used in
survival analysis, such as Weibull, log normal are special cases of the generalized gamma
distribution. The pdf of the generalized gamma distribution is given by

g(x;λ, β, k) =
λβ

Γ (k)
(λx)kβ−1e−(λx)β

, for x > 0 and λ, β, k > 0. (7)

Note that λ is a scale parameter, and k and β are shape parameters. When k = β = 1,
the GGD results in the exponential distribution. When β = 1, it results in the gamma
distribution. When k = 1, Weibull distribution is obtained. Also, when β = 2 and k = 1,
Rayleigh distribution is obtained. See Khodabin and Ahamadabadi [7] for additional details.
The cdf of the GGD is given by

G(x;λ, β, k) =
γ
(
k, (λx)β

)
Γ (k)

, for x > 0, and λ, β, k > 0. (8)

Basic properties of generalized gamma distribution are also derived by Huang and Hwang [6],
and Khodabin and Ahamadabadi [7]. From these results we have

E(XcetXβ

) =
λkβΓ (k + c

β )

(λβ − t)k+ c
β Γ (k)

, λβ > t. (9)

The mth non-central moment of the GGD is given by

E(Xm) =
Γ
(
k + m

β

)
λmΓ (k)

, for m = 1, 2, . . .. (10)

The variance of GGD is given by

σ2 =
Γ
(
k + 2

β

)
Γ (k) − Γ 2

(
k + 1

β

)
λ2Γ 2(k)

. (11)

The coefficient of variation (CV) is given by

CV =

[
Γ
(
k + 2

β

)
Γ (k) − Γ 2

(
k + 1

β

)] 1
2

Γ
(
k + 1

β

) . (12)

3. WEIGHTED GENERALIZED GAMMA DISTRIBUTIONS

In this section, we present results on the WGGD with the weight function w(x) =
xketxβ

F i(x)F
j
(x). When i = j = 0, we have w2(x; c, β, t) = xcetxβ

. In particular, we use
the weight function w2(x; c, β, t) to construct the WGGD. This weight is useful in its on
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Table 1. Generalizations of GGD and Submodels

λ β k c t Distribution pdf

– – – – – WGGD, w2(x) = xcetxβ

gw2(x; λ, β, k, c, t)
– – – – 0 WGGD, w(x) = xc gw(x; λ, β, k, c)

– – – 0 – WGGD, w1(x) = etxβ

gw1(x; λ, β, k, t)
– – – 0 0 GGD g(x; λ, β, k)
– 1 – 0 0 Gamma GAM((1/λ), k)
– 1 1 0 0 Exponential EXP (1/λ)

(1/2) 1 – 0 0 Chi-Square χ2(2k)
– – 1 0 0 Weibull WEI((1/λ), β)
– 2 1 0 0 Rayleigh Rayleigh(1/λ)

right, since it included weights that leads to the length-biased or size biased, and moment
generating functions versions of the WGGDs. Then we derive the cdf, survival or reliability
function, and some other useful distributional properties.

The pdf of the WGGD with weight function w2(x; c, β, t) = xcetxβ

, for β > 0, c > 0 is
given by

gw2(x;λ, β, k, c, t) =
β(λβ − t)k+ c

β xkβ+c−1e−(λβ−t)xβ

Γ (k + c
β )

, (13)

for λβ > t, kβ + c > 1 and x, λ, β, k, t, c > 0.
The corresponding cdf is given by

Gw2(x;λ, β, k, c, t) =
γ((k + c

β ), (λβ − t)xβ)

Γ (k + c
β )

, (14)

for λβ > t, kβ + c > 1 and x, λ, β, k, t, c > 0.
Also, note that the survival function is given by

Ḡw2(x;λ, β, k, c, t) =
Γ ((k + c

β ), (λβ − t)xβ)

Γ (k + c
β )

, (15)

for λβ > t, kβ + c > 1 and x, λ, β, k, t, c > 0, where Γ ((k + c
β ), (λβ − t)xβ) is the upper

incomplete gamma function given in Eq. (6).
Several distributions can be obtained from the WGGD with the weight function

w2(x; c, β, t). These distributions are summarized in Table 1. The graphs of the pdfs for
different values of the parameters λ, β, and k are also presented (Figures 1 and 2).

3.1. Properties of WGGD

In this section, we present the mode, the behavior of the hazard function and the reverse
hazard function of the WGGD.

1. Mode
Consider the pdf of the WGGD given by Eq. (13).

ln[gw2(x;λ, β, k, c, t)] = ln
β(λβ − t)k+ c

β

Γ (k + c
β )

+ (kβ + c − 1) ln(x) − (λβ − t)xβ . (16)
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Figure 1. PDF of WGGD for Different Values of λ and β, respectively.

Figure 2. PDF of WGGD for different values of k.

Differentiating Eq. (16) with respect to x, we get

∂

∂x
ln[gw2(x;λ, β, k, c, t)] =

kβ + c − 1 − (λβ − t)xβ

x
.

We can find the mode by equating (∂/∂x) ln gw2(x;λ, β, k, c, t) to zero. Hence the
mode of the WGGD is

x0 =
[
kβ + c − 1
β(λβ − t)

] 1
β

, (17)

for kβ + c > 1 and λβ > t. Note that

∂2

∂x2
ln[gw2(x;λ, β, k, c, t)] =

−(kβ + c − 1) − (β − 1)(λβ − t)xβ

x2
< 0, (18)

for ∀x > 0, kβ + c > 1 and λβ > t.
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Figure 3. Graph of the hazard function for different values of β.

2. Hazard Function
The hazard function for WGGD is given by

hgw2
(x;λ, β, k, c, t) =

β(λβ − t)k+ c
β x(kβ+c−1)e−(λβ−t)xβ

Γ (k + c
β ) − γ

(
(k + c

β ), (λβ − t)xβ
) , (19)

for x > 0, λβ > t, kβ + c > 1 and Γ (k + (c/β)) > γ
(
(k + (c/β)), (λβ − t)xβ

)
.

The following theorem describes the behavior of the hazard function. The theorem
is proved using Glaser’s result [4].

Theorem 3.1: 1. If β > 1, then the hazard function is monotonically increasing.
2. If 0 < β < 1, then the hazard function is upside down bathtub shape(UBT).

Proof:

(a) If β > 1, then η′
gw2

(x;λ, β, k, c, t) > 0 for all x > 0. Consequently, the hazard
function is monotonically increasing.

(b) Suppose β < 1 and let x∗ = ((kβ + c − 1))/(β(λβ − t)(1 − β)). Then η′
gw2

(x;λ, β, k, c, t) = 0 if x = x∗. Also, η′
gw2

(x;λ, β, k, c, t) > 0 if x < x∗, and
η′

gw2
(x;λ, β, k, c, t) < 0 if x > x∗.

�

The graphs of the hazard function given by Eq. (19) are displayed in the Figure 3 for
different values of the parameter β. When β ≤ 1, the hazard function is UBT shape.
When β > 1, the hazard function is monotonically increasing. This attractive flexi-
bility makes the WGGD hazard rate function useful and suitable for non-monotone
empirical hazard behaviors which are more likely to be encountered or observed in
real life situations.
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Figure 4. Graph of the reverse hazard function for different values of β.

3. Reverse Hazard Function The reverse hazard function for the WGGD when
w2(x; c, β, t) = xcetxβ

is given by

τgw2
(x;λ, β, k, c, t) =

β(λβ − t)k+ c
β xkβ+c−1e−(λβ−t)xβ

γ
(
(k + c

β ), (λβ − t)xβ
) , (20)

for λβ > t, kβ + c > 1 and x > 0, λ > 0, β > 0.

The graphs of the reverse hazard function given by Eq. (20) are displayed in Figure 4.
The shape of the reverse hazard function close to the origin is similar to the pdf. It is
monotonically increasing for β < 1. If β ≥ 1, the reverse hazard function drastically increases
as x increases.

4. MOMENTS

The rth non-central moment of WGGD with weight function w2(x; c, β, t) is given by

EGw2
(Xr) =

Γ (k + r+c
β )

(λβ − t)
r
β Γ (k + c

β )
, for λβ > t. (21)

Using Eq. (21), the mean, variance, CV, coefficient of skewness (CS), and coefficient of
kurtosis (CK) are readily obtained. The mean and variance are given by

μGw2
=

Γ (k + 1+c
β )

(λβ − t)
1
β Γ (k + c

β )
, for λβ > t, (22)

and

σ2
Gw2

=
Γ (k + c+2

β )Γ (k + c
β ) − Γ 2(k + c+1

β )

(λβ − t)
2
β Γ 2(k + c

β )
, for λβ > t, (23)
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respectively. The CV is given by

CV =
σGw2

μGw2

=

(
Γ (k + c+2

β )Γ (k + c
β ) − Γ 2(k + c+1

β )
) 1

2

Γ (k + c+1
β )

. (24)

Let δj = Γ (k + ((c + j)/β)), for j ≥ 0. Then the CV can be written as CV =
((δ2δ0 − δ2

1)
1
2 )/(δ1). The CS is given by

CS =
E(X − μGw2

)3

(E(X − μGw2
)2)3/2

=
Γ 2(k + c

β )Γ (k + c+3
β ) − 3Γ (k + c

β )Γ (k + c+1
β )Γ (k + c+2

β ) + 2Γ 3(k + c+1
β )(

Γ (k + c+2
β )Γ (k + c

β ) − Γ 2(k + c+1
β )
) 3

2

=
δ2
0δ3 − 3δ0δ1δ2 + 2δ3

1

[δ2δ0 − δ2
1 ]

3
2

. (25)

Similarly, the CK is given by

CK =
E(Y − μGw2

)4

(E(X − μGw2
)2)2

=
δ3
0δ4 − 4δ2

0δ1δ3 + 6δ0δ
2
1δ2 − 3δ4

1

[δ2δ0 − δ2
1 ]2

. (26)

In particular, if we set k = 1, c = 0 and t = 0, we obtain these measures for the Weibull
distribution. That is,

μW =
Γ (1 + 1

β )

λ
, σ2

W =
Γ (1 + 2

β ) − Γ 2(1 + 1
β )

λ2
,

CVW =

(
Γ (1 + 2

β ) − Γ 2(1 + 1
β )
) 1

2

Γ (1 + 1
β )

,

CSW =
Γ (1 + 3

β ) − 3Γ (1 + 1
β )Γ (1 + 2

β ) + 2Γ 3(1 + 1
β )(

Γ (1 + 2
β ) − Γ 2(1 + 1

β )
) 3

2
,

and

CKW =
Γ (1 + 4

β ) − 4Γ (1 + 1
β )Γ (1 + 3

β ) + 6Γ 2(1 + 1
β )Γ (1 + 2

β ) − 3Γ 4(1 + 1
β )(

Γ (1 + 2
β ) − Γ 2(1 + 1

β )
)2 .

5. SOME MEASURES OF UNCERTAINTY

The concept of entropy plays a vital role in information theory. The entropy of an rv is
defined in terms of its probability distribution and can be shown to be a good measure
of randomness or uncertainty. In this section, we present Shannon entropy, Renyi entropy,
generalized entropy, and beta entropy for the WGGD.
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5.1. Shannon Entropy

Shannon entropy H[gw2(x;λ, β, k, c, t)] is defined to be

H [gw2(x;λ, β, k, c, t)] = EGw2
[− log(gw2(X;λ, β, k, c, t))] . (27)

Using the WGGD gw2 , we note that

EGw2
(log X) =

∫ ∞

0

(log x)
β(λβ − t)k+ c

β xkβ+c−1e−(λβ−t)xβ

Γ (k + c
β )

dx

=
Ψ(k + c

β ) − log(λβ − t)

β
, for λβ > t.

Now, we can derive Shannon Entropy. Note that

H[gw2(x;λ, β, k, c, t)] = EGw2
(− log(gw(X;λ, β, k, c, t)))

= − log

[
β(λβ − t)(k + c

β )

Γ (k + c
β )

]
− (kβ + c − 1)EGw2

(log X) + (λβ − t)EGw2
(Xβ), (28)

and substituting for EGw2
(log X) and EGw2

(Xβ), we obtain

H[gw2(x;λ, β, k, c, t)] = − log

[
β(λβ − t)(k + c

β )

Γ (k + c
β )

]
− (kβ + c − 1)

Ψ(k + c
β ) − log(λβ − t)

β

+ (λβ − t)
Γ (k + β+c

β )

(λβ − t)Γ (k + c
β )

. (29)

Values of Shannon entropy for WGGD with the weight functions w(x; c) = xc and
w1(x;β, t) = etxβ

for different values of the parameters λ, β, k and c are listed in Table 2.

5.2. Generalized Entropy

Generalized entropy is often used in econometrics. See Golan [5] for additional details.
It is indexed by a single parameter α. The generalized entropy is defined to be Iα =
(vαμ−α − 1)/(α(α − 1)), where α �= 0, 1 and vα =

∫∞
0

xαgw2(x;λ, β, k, c, t) dx = EGw2
(Xα).

Substituting for vα and μ, we obtain

Iα =

Γ (k + α+c
β )

(λβ − t)
α
β Γ (k + c

β )

[
Γ (k + 1+c

β )

(λβ − t)
1
β Γ (k + c

β )

]−α

− 1

α(α − 1)

=
Γ (k + α+c

β )Γα−1(k + c
β )Γ−α

(
k + 1+c

β

)
− 1

α(α − 1)
, for α �= 0, 1. (30)

5.3. Renyi Entropy

Renyi entropy is an extension of Shannon entropy (Renyi [13]). Renyi entropy is defined
to be Hα = (log(

∫∞
0

gα
w2

(x;λ, β, k, c, t) dx))/(1 − α, where α �= 1). Renyi entropy tends to
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Table 2. Table of Shannon entropy for WGGD using w(x; c) and
w1(x;β, t).

λ β k c H[gw(x; λ, β, k, t)] H[gw1(x; λ, β, k, t)]

1 1 1 1 1.5772 1.6931
3 2.0234 1.6931
5 2.2569 1.6931
8 2.4795 1.6931
10 2.5869 1.6931

1 1 0.5 1 1.361 1.1303
1 1.5772 1.6931
2.5 1.9431 1.3834
5 2.2569 0.0741
8 2.4795 −1.7432

1 0.5 1 1 2.0772 2.4443
1 1.5772 1.6931
2.5 2.2581 0.603
5 3.0131 −0.38
8 3.5329 −1.1978

1 1 1 1 1.5772 1.6931
2.5 0.6609 0.3069
5 −0.0322 −0.5041
8 −0.5022 −1.0149

Shannon entropy as α → 1. Note that

∫ ∞

0

gα
w2

(x;λ, β, k, c, t) dx =
(λβ − t)

α−1
β βα−1Γ (kα + cα−α+1

β )

αkα+ cα−α+1
β Γα(k + c

β )
. (31)

Consequently, Renyi entropy is given by

Hα(gw2(x;λ, β, k, c, t)) =

log

(
(λβ−t)

α−1
β βα−1Γ (kα+ cα−α+1

β )

α
kα+ cα−α+1

β Γ α(k+ c
β )

)

1 − α
, for α �= 1. (32)

5.4. β-Entropy

β-entropy is a one parameter generalization of the Shannon entropy. Applications of the β-
entropy can be found in many physical systems (Yaghoobi, Borzadaran, and Yari [17]).
β-entropy is defined by

Hβ̃(g) =
1

β̃ − 1

[
1 −

∫ ∞

0

gβ̃(x) dx

]
, for β̃ �= 1. (33)

β-entropy for WGGD using the weight function w2(x; c, β, t) = xcetxβ

is given by

Hβ̃(gw2(x;λ, β, k, c, t)) =
1

β̃ − 1

⎡
⎣1 −

(λβ − t)
β̃−1

β ββ̃−1Γ (kβ̃ + cβ̃−β̃+1
β )

(1 − β̃)β̃kβ̃+ cβ̃−β̃+1
β Γ β̃(k + c

β )

⎤
⎦ , (34)
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Table 3. Table of β-Entropy for WGGD using w(x; c) and w1(x;β, t).

λ β k c β̃ Hβ̃(gw(x; λ, β, k, c)) Hβ̃(gw1(x; λ, β, k, t))

1 1 1 1 0.5 3.01326 0.828427125
1.5 1.03520 0.585786438
2 0.75 0.5
5 0.24808 0.141741071
8 0.14281 0.585786438

1 1 1 1 1.5 1.03520 0.585786438
3 1.23412 0.585786438
5 1.31974 0.585786438
8 1.39201 0.585786438
10 1.42400 0.585786438

1 1 1 1 2 0.75000 0.363380228
1 0.83023 0
5 0.87695 −34
8 0.90181 −171.5

1 1 1 1 5 0.24808 0.156187237
2.5 0.11686 −0.253314137
5 −1.55921 −3.054083332
8 −10.24869 −5.994509322

1 1 1 1 8 0.14281 0
2.5 0.11666 −0.5
5 −3.20990 −3.5
8 −89.85714 −6.5

for β̃ �= 1. Values of β-entropy for different values of parameters λ, β, k, c, and α, using the
weight functions w(x; c) and w1(x;β, t) are listed in Table 3. Note that β-entropy of WGGD
for w(x; c) is increasing as the values of the parameters c and k increase. But it decrease as
the values of λ, β increase.

6. CONCLUDING REMARKS

Some theoretical properties of the generalized gamma distribution and WGGDs were pre-
sented. The pdf, cdf, moments, cv, cs, and ck, failure rate function or hazard function
and the reverse hazard function are presented. The behavior of the hazard function for
WGGD was also established. Entropy measures including Shannon entropy, Renyi entropy,
generalized entropy, and β-entropy for WGGD were also derived.
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