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Abstract

Objective: Functional impairment in daily activity is a cornerstone in distinguishing the clinical progression of
dementia. Multiple indicators based on neuroimaging and neuropsychological instruments are used to assess the levels
of impairment and disease severity; however, it remains unclear how multivariate patterns of predictors uniquely predict
the functional ability and how the relative importance of various predictors differs. Method: In this study, 881 older
adults with subjective cognitive complaints, mild cognitive impairment (MCI), and dementia with Alzheimer’s type
completed brain structural magnetic resonance imaging (MRI), neuropsychological assessment, and a survey of
instrumental activities of daily living (IADL). We utilized the partial least square (PLS) method to identify latent
components that are predictive of IADL. Results: The result showed distinct brain components (gray matter density of
cerebellar, medial temporal, subcortical, limbic, and default network regions) and cognitive–behavioral components
(general cognitive abilities, processing speed, and executive function, episodic memory, and neuropsychiatric symptoms)
were predictive of IADL. Subsequent path analysis showed that the effect of brain structural components on IADL was
largely mediated by cognitive and behavioral components. When comparing hierarchical regression models, the brain
structural measures minimally added the explanatory power of cognitive and behavioral measures on IADL.
Conclusion: Our finding suggests that cerebellar structure and orbitofrontal cortex, alongside with medial temporal lobe,
play an important role in the maintenance of functional status in older adults with or without dementia. Moreover, the
significance of brain structural volume affects real-life functional activities via disruptions in multiple cognitive and
behavioral functions.
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INTRODUCTION

Accurate assessment of functional abilities is a hallmark in
the clinical evaluation of Alzheimer’s disease (AD) when
determining the diagnostic status and disease severity of a
patient. AD-related pathology manifests as a continuum of
clinical status, ranging from normal cognition, mild cognitive
impairment (MCI) to AD dementia, and the diagnosis of
dementia is made especially based on significant disturbance
in the functional impairment (McKhann et al., 2011). An
objective definition of dementia as a disease is becoming
increasingly important with the advance of the biomarker

instruments, but the ultimate implication of the brain pathol-
ogy becomes apparent with the evidence of whether the path-
ology leads to a real-world disability. For this reason, an
accurate description of the functional status remains a crucial
part of clinical diagnosis and judgments.

The presence of disturbance or loss of independence in
functional ability can be assessed through interviews and
inferences by clinicians, and the distinction between MCI
and dementia in terms of functional assessment largely relies
on the purported information.

Amore subtle variation of functional ability across various
daily tasks can be examined in detail through the specified
questionnaires. The overall functional ability is assessed with
instrumental activities of daily living (IADL), which is typi-
cally measured with a list of items that ask which of the daily
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life can be proficiently performed. The IADL score provides
comprehensive information on the progression and clinical
severity of the disorder. While IADL changes are most sig-
nificant in populations with dementia, studies also showed
that variation in IADL was also observed in the MCI popu-
lation (Chang et al., 2011; Jekel et al., 2015; Lindbergh,
Dishman, &Miller, 2016). In other words, even when an indi-
vidual maintains relatively intact functional independence,
subtle variations of functional proficiency can be reflected
in the IADL assessment.

Functional ability in daily activity is one of the most impor-
tant outcomes for both patients and caregivers. The researchers
have examined which of the specific assessment instruments
can predict such outcomes during the process of late-life cog-
nitive impairment (Fields, Ferman, Boeve, & Smith, 2011).
According to the systematic review of the previous studies,
multiple tests that are included in a neuropsychological battery
predict the current or future functional outcomes (Belleville,
Fouquet, Hudon, Zomahoun, & Croteau, 2017; Fields et al.,
2010; Royall et al., 2007). In older adults with or without cog-
nitive impairment, the tests modestly explained the variance of
daily activity function around 22–30% variance (de Paula
et al., 2015). These studies suggest substantial but rather insuf-
ficient utility of the neuropsychological test batteries in esti-
mating the functional capacities of real-life settings.

Likewise, the studies have also shown that brain imaging
features are also predictive of one’s clinical status of demen-
tia. Brain structural differences are consistently observed
between the MCI, dementia of AD, compared to the cogni-
tively intact older adults (Pellegrini et al., 2018; Ruan
et al., 2016). The hippocampal volume or white matter
changes that indicate the pathophysiological process of
dementia have shown a unique association with daily func-
tional activities, implicating a clinical value of the measures
(Overdorp, Kessels, Claassen, & Oosterman, 2016). The pre-
vious study also indicated that even at a similar level of clini-
cal impairment [i.e., Clinical Dementia Rating (CDR) score
of 0.5], the subtle variability in the IADL was associated with
a more progressed cortical thinning in the medial temporal
cortex (Chang et al., 2011). However, it remains unclear
the extent to which the association is a result of poorer neuro-
psychological performances, and how distinct brain regional
contribution differs, though these studies suggest the pres-
ence of a neuropathological basis in terms of dementia’s func-
tional capacity.

Despite the abundance of studies reporting the correlates
of neuropsychological and brain pathological markers in
IADL, the current instruments of cognitive and behavioral
abilities are often criticized for their insufficient ecological
validity. Due to the classical focus on the role of neuro-
psychological tests in detecting early signs of pathophysiol-
ogy, the predictors tend to measure cognitive performance in
a highly structured setting or target biological process that
may not be crucial to disabilities in daily life (Bilder &
Reise, 2019; Howieson, 2019). Thus, neuropsychological
and neural correlates that have additive relevance in explain-
ing daily function need further systematic exploration.

One of the remaining questions in identifying cognitive
and biological correlates of late-life IADL is how multiple
measures of predictors share a common basis of functional
capacities. Previous studies lacked neuroimaging correlates
of IADL and have been limited in interpreting the presence
of small regional effects based on a relatively small popula-
tion, which resulted in inconsistent findings (Donders, 2019;
Overdorp et al., 2016). Furthermore, the nature of the large
overlaps across multiple predictors of cognitive, neuropsy-
chiatric, and brain structural markers remains unexplored
in having unique predictability to daily functional abilities.

According to the process of disability model, biological
changes of dementia lead to disabilities in daily activities
via cognitive abilities that are necessary for coping and solv-
ing complex tasks (Royall et al., 2007; Verbrugge & Jette,
1994). The model also resonates with a more recent concep-
tualization of the hypothetical model of ADs pathological
progression (Jack & Holtzman, 2013). One notable study
effectively depicted that a path analysis can translate such
a conceptual cascade model into testable forms (Vemuri
et al., 2017).

Another issue in looking at the neural basis of IADL is the
extent to which researchers set the scope of brain regions.
Until now, most of the studies exploring correlations have
been conducted in a way that interprets the inconsistent
results of univariate tests or narrowing the scope to only a
few regions of interest (Overdorp et al., 2016). However, uti-
lizing neuroanatomical measures within the locally confined
area may be insufficient to describe heterogeneous pathophy-
siological processes across individuals (Dong et al., 2017).
Moreover, the use of repeated univariate testing across every
neuroanatomical measure often captures spurious regional
effects while omitting widespread effects across multiple
brain regions (Masouleh, Eickhoff, Hoffstaedter, & Genon,
2019). Utilizing themultiple patterns of cortical and non-cort-
ical areas may broaden the utility of brain imaging markers in
predicting clinical outcomes. A recent preference for the pre-
dictive approach may provide a more realistic picture of the
multiple intercorrelated predictors of IADL (Bzdok &
Meyer-Lindenberg, 2018; Yarkoni & Westfall, 2017). The
application of the cross-validation procedure provides a
non-overfitted set of multivariate predictors that are charac-
terized with distinct patterns of brain structural measures.

In the current study, we identified neuropsychological,
neuropsychiatric, and neuroanatomical predictors of daily
functional status across the cognitively normal to dementia
population. Using a multivariate predictive approach, we
integrated the latent pattern of neural and cognitive–behav-
ioral basis functional status (IADL) while taking into account
the high collinearity of multiple predictors. Next, we tested
the path models that identify which latent patterns of the
neuropsychological score (cognitive performance and neuro-
psychiatric symptoms) mediate the effect of latent brain struc-
tural patterns. We hypothesized that multiple cognitive–
behavioral functions mediate the association between brain
structure and IADL. For the explorative purpose, we exam-
ined the specific brain-to-cognition pathways of IADL.
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METHODS

Participants

The older adults with or without cognitive impairment were
retrospectively recruited from SMG-SNU Boramae Medical
Center and Dongjak-Gu Center for Dementia from January
2014 to December 2019. The participants underwent both
neuropsychological assessment and magnetic resonance im-
aging (MRI) scan. This study was conducted under the
Declaration of Helsinki, and the protocol was approved by
the Institutional Review Board of SMG-SNU Boramae
Medical Center (IRB No.30-2020-181). The current study
included older adults diagnosed without cognitive impair-
ment (normal aging or only presenting subjective cognitive
decline) or with MCI, AD dementia, Mixed Dementia (AD
with vascular dementia). The diagnosis of the AD and
MCI were based on the criteria of the National Institute of
Neurological and Communicative Disorders and Stroke
and AD and Related Disorders Association (NINCDS-
ADRDA) and Petersen’s criteria (McKhann et al., 1984;
Petersen et al., 1999). The presence of vascular disease
including small vessel disease, stroke, infarction which are
not in a typical range of normal aging, or AD were additively
considered as having the vascular feature. The clinical char-
acteristics of dementia severity were provided based on the
CDR. The structured interview and the reassurance of the sur-
vey responses were administered by the trained clinical psy-
chologists. Since the current study’s focus was on the
correlates of functional status in the early clinical stages of
dementia, we confined the severity of dementia to amild level
(CDR≤ 1). Subjects with the primary cause of dementia
other than AD, including Lewy body dementia, frontotempo-
ral lobe dementia, vascular dementia, were not included in the
analysis. Those identified or suspected with significant neu-
rological conditions including stroke, traumatic brain injury,
meningioma, hemorrhage, normal pressure hydrocephalus,
delirium, intellectual disabilities were also excluded. The
older adults who showed a significant impairment in the basic
activities of daily living (e.g., walking, bathing, dressing, toi-
leting) were excluded (Barthel ADL≤ 16, maximum score
= 20) to rule out the cases of impairment possibly due to con-
straints in physical health rather than changes in neurocogni-
tive function (Wade & Collin, 1988). Finally, a total of 881
older adults who met the screening criterion were analyzed in
the study (Tables 1 and 2).

Instrumental activities of daily living

The Lawton IADLwas used to evaluate the ability to function
independently in a list of activities (Lawton & Brody, 1969).
The index was initially developed to sum the item scores dif-
ferentially depending on the gender (the item of housework
and food preparation are additionally summed in the case
of women). The current study used five items of Lawton
IADL that are commonly applicable to both genders. The
IADL items included whether the respondent could perform

the following tasks with minimal or full support: phone use
(1–4), buying goods (1–4), taking medicine (1–3), managing
money (1–3), and transportation use (1–5). The total score
indicated the levels of functional independence ranging from
5 (full independence) to 19 (requiring full support or com-
plete inability The instrument’s reliability and concurrent val-
idity have been confirmed (Kim, Won, & Cho, 2005). The
IADL was primarily assessed based on the informant report,
but the self-report was used only when the patients were able
to visit without the accompanying caregiver. The validity of
the IADL rating was reviewed by the interviewer whether the
items were misconstrued. The correlation between IADL
items was generally high (r= 0.57 − 0.72).

Neuropsychological assessment

The neuropsychological assessment mainly included an
informant survey of neuropsychiatric symptoms and the cog-
nitive test battery. The Consortium to Establish a Registry for
Alzheimer’s Disease Neuropsychological Battery for Koreans
(CERAD-K) was administered to measure the multiple
domains of cognitive function (Lee et al., 2002). The test facil-
itates the diagnosis of MCI and dementia and contains the fol-
lowing subtests: Verbal fluency (animal), Boston Naming
Test, Word List Recall (immediate, delayed), Constructional
Praxis (copy, delayed), Word List Recognition, Trail
Making Test (A and B: TMT-A, TMT-B). The Trail
Making Test measured the total time spent to complete the
tasks. Similar to that of the previous study, there was a high
rate of failure especially in the TMT-B (Current dataset:
76%; Seo et al.’s Normative dataset: 60%). According to the
previous report, the high failure rate is prominently due to dif-
ficulties in sequencing the seven Korean letters and difficulties
in understanding instruction (Seo et al., 2006). The test admin-
istration had set themaximum time limit at 360 s (TMT-A) and
300 seconds (TMT-B) based on administration instruction in
CERAD-K. The score was interpolated as the maximum time
limit in the cases when the TMT was aborted or not feasible

Table 1. Descriptive characteristics of the participants.

Mean (SD)/Frequency
(proportion)

Age 75.15 (7.76)
Sex (M:F) 326 : 555
Education (years) 7.73 (5.10)
0–5 243 (27.5%)
6–11 354 (40.2%)
12–15 181 (20.5%)
16–23 103 (11.7%)

Diagnosis
Alzheimer’s disease dementia 326 (37.0%)
Mixed dementia (Alzheimer’s with
vascular)

34 (3.8%)

Mild cognitive impairment 392 (44.5%)
Subjective cognitive complaint 129 (14.6%)
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due to the following reasons: exceeded the time limit, unable to
understand the rule, or committed more than five errors.

Neuropsychiatric Inventory (NPI) score assessed the pres-
ence and severity of neuropsychiatric symptoms which
typically manifest as behavioral disturbance and socio-emo-
tional regulation (Choi et al., 2000; Cummings et al., 1994).
The NPI was rated by clinical psychologists and was based on
the semi-structured interview administered to the patients’
informants or caregivers and rated. It consists of 12 separate
items assessing neuropsychiatric disturbances, including
delusion, hallucination, agitation/aggression, depression/
dysphoria, anxiety, elation/euphoria, apathy/indifference,
disinhibition, irritability/lability, aberrant motor behavior,
sleep, and appetite. The item scores were calculated by multi-
plying the severity and frequency of each symptom. In sum,
10 cognitive measures (CERAD-K) and behavioral measures
(NPI) were used to predict IADL in the subsequent regression
models.

Neuroimaging acquisition and preprocessing

The neuroimaging data were collected in the MR scanner
(3 Tesla, Achieva, Philips Medical Systems, Best, the
Netherlands) to acquire a high-resolution T1 anatomical brain
image with a 3D T1-weighted turbo field echo sequence (TR:
9.3 ms, TE: 4.6 ms, flip angle: 8˚, voxel size: 1.0 × 1.0 × 1.0
mm, slice thickness: 1mm, 180 slices, image matrix: 224 ×
224). We used a fully automated preprocessing procedure
implemented in CAT12 r1450 (Computational Anatomy
Toolbox; Structural Brain Mapping Group, Departments of
Psychiatry and Neurology, Jena University Hospital, http://
dbm.neuro.uni-jena.de/cat/) to apply a standardized analysis

pipeline. First, a spatial-adaptive nonlocal means denoising
filter was employed (Manjón, Coupé, Martí-Bonmatí,
Collins, & Robles, 2010). Segmentation algorithms based
on the adaptive maximum a posterior technique, imple-
mented in CAT12, were used to classify brain tissue into three
classes: Gray matter, white matter, and cerebrospinal fluid.
Additionally, partial volume estimation was used to create
a more accurate segmentation for the mixed tissue classes.
The quality of images (index of quality rating, IQR) was cal-
culated by CAT12 during the preprocessing. The images with
poor preprocessing performance were excluded (IQR > 2.3).
After segmentation, the segmented image of gray matter tis-
sue was spatially transformed while preserving for the total
amount of gray matter signal in the normalized partitions.
We used two parcellation atlas to define cortical, subcortical,
and infratentorial regions, and the mean density measures
were extracted within each parcellated region. For the cortical
regions, a 400 cortical parcellation map was used (Schaefer
et al., 2018). It has been suggested that the functional parcel-
lation of the brain structure may provide more fine-grained
patterns of brain structural phenotypes. The regional labels
were assigned with the 17 functional networks (Varkuti
et al., 2011; Yeo et al., 2011). For the non-cortical regions,
the 24 regions in the subcortical structures (brain stem, cau-
date, putamen, pallidum, amygdala, thalamus, and hippocam-
pus) and cerebellum (exterior, vermis) were defined with
Neuromorphometric atlas (http://Neuromorphometrics.
com). In total, 424 brainmeasures of cortical, subcortical, cer-
ebellum were used to predict IADL. All measures of gray
matter density were adjusted by residualizing the effect of
sex and total intracranial volume in the fitted regres-
sion model.

Table 2. Neuropsychological test performances, NPI, and IADL across clinical groups.

Clinical group Clinical group difference

CN MCI AD F-value (post hoc comparison) ††

Age 71.3 (7.7) 74.3 (7.4) 77.5 (7.4) 37.11** (CN<MCI<AD)
Sex (M:F) 38:90 163:229 125:236 7.34†*
Education 9.02 (5.3) 7.95 (5.0) 7.04 (5.0) 7.85** (CN=MCI<AD)
Semantic Fluency 15.1 (4.2) 11.60 (3.9) 8.73 (3.6) 142.7** (CN<MCI<AD)
Boston Naming 12.00 (2.2) 9.95 (2.9) 8.20 (3.0) 94.15** (CN<MCI<AD)
Word List Recall – Immediate 17.80(3.8) 13.80 (3.9) 9.42 (3.5) 280.1** (CN<MCI<AD)
Word List Recall – Delayed 5.92 (1.7) 2.99 (2.0) 1.17 (1.3) 369.8** (CN<MCI<AD)
Word List Recognition 9.28 (1.2) 7.24 (2.4) 4.75 (2.79) 191.6** (CN<MCI<AD)
Construction – Copy 9.94 (1.5) 9.05 (1.9) 8.16 (2.2) 44.38** (CN<MCI<AD)
Construction – Delayed 6.62 (2.7) 3.44 (2.7) 1.44 (2.0) 219.5** (CN<MCI<AD)
Trail Making Test A 74.3 (58.7) 113 (87.9) 171 (119.0) 57.91** (CN<MCI<AD)
Trail Making Test B 217 (86.7) 266 (62.0) 291 (35.1) 79.85** (CN<MCI<AD)
Neuropsychiatric Inventory 10.8 (11.3) 12.4 (12.3) 13.3 (14.4) 1.769** (CN=MCI=AD)
IADL 5.25 (0.7) 5.54 (0.9) 8.59 (2.3) 407.7** (CN<MCI<AD)

CN = Cognitively Normal; MCI = Mild Cognitive Impairment; AD = Alzheimer’s disease type of dementia.
† Chi-square test result.
†† Post hoc group comparison was tested with Tukey’s test.
** p< 0.001.
* p< 0.05.
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Statistical analyses

The main analyses were conducted in two steps: (1)
Identification of the latent predictors of IADL composed of
brain structure measure (Figure 1A) or cognitive and behav-
ioral measures (Figure 1B) and (2) testing the mediation
model using the latent component scores (Figure 1C).

Partial least square regression

To effectively summarize the multiple correlates of IADL, we
constructed a cross-validated partial least square (PLS)
regression model using the caret package for R (Kuhn,
2015). The PLS regression reduces high-dimensional data
into orthogonal components with the greatest covariance with
the output (the target of the prediction, namely IADL) before
regression analysis. In contrast to reducing dimensions with
principal component analysis, PLS decomposes orthogonal
components in a way that is more relevant to the target var-
iable in the model construction stage. The PLS method is uti-
lized in neuroimaging studies to effectively summarize the
highly collinear data structures observed across brain regions
(Giorgio, Landau, Jagust, Tino, & Kourtzi, 2020; Krishnan,
Williams, McIntosh, & Abdi, 2011; Rudolph et al., 2018). In
this study, the PLS regression model was constructed to find
linearly combined latent components which are predictive of
the IADL of an individual. The PLS regression was sepa-
rately conducted using the set of cognitive–behavioral mea-
sures and brain structural measures. We identified the latent
predictors of IADL composed of brain structure measures
(Figure 1A) and cognitive–behavioral measures (Figure 1B).
After identifying latent factors of cognitive–behavioral and
brain structural factors that predict IADL, we conducted a
path analysis that tests the mediating effect of cognitive–
behavioral function in the relationship between brain struc-
ture and IADL (Figure 1C).

In order to find a model generalizable to the independent
dataset, the optimal number of latent components was
selected based on the lowest accuracy in the leave-one-out
cross-validation (LOOCV). Although sequentially adding
more components of predictors produces a more complex
model in explaining the given data, cross-validation proce-
dures scrutinize whether such complexity provides additive
accuracy in explaining the novel data independent of training
data. Using the LOOCV procedure, we iteratively partitioned
the training data to construct a model and predicted the left-
out single-subject data. With a differing number of compo-
nents within each model, the root mean squared error
(RMSE) and explained variance (R2) across the iterated
LOOCV procedures were calculated. Examining the out-
of-sample prediction error for each number of PLS compo-
nents, the optimal model is selected between underfitted
(fewer components) and overfitted (more components) mod-
els that show the lowest RMSE in predicting IADL. For the
visualization purpose, 10-folded training and testing dataset
generated the predicted value of the IADL score. The loading
weights of the latent components were described with

Pearson’s correlation coefficient between the component
score and the raw input measures.

Path analysis

After identifying latent scores of cognitive–behavioral and
brain structural factors that predict IADL, we conducted a
path analysis that tests the mediating effect of cognitive–
behavioral function in the relationship between brain struc-
ture and IADL (Figure 1C). We used the lavaan package
in R to calculate the path coefficients, direct effect, and indi-
rect effect (Rosseel, 2012). The extent of the mediation effect
was assessed with the proportion of indirect effect within the
total effect (Kievit et al., 2014). The standard error of the
effects was calculated with 1000 resamplings of bootstrap.

Multiple regression analysis

We used multiple linear regression to see the incremental pre-
dictive value and the unique association between the PLS
latent scores. The explained variance (R2) across the models
(model 1: Demographic, model 2: Brain components, model
3: Cognitive–behavioral components, model 4: Brain þ
Cognitive–behavioral components, model 5: Demographic
þ Brain components þ Cognitive–behavioral components).
By comparing the changes in the model’s explained variance
(R2), the extent of unique and overlapping variances of the
predictive components was assessed.

RESULTS

We first conducted a PLS regression analysis that predicts
IADL scores with brain structural measures. The leave-
one-out cross-validation identified the optimal number of
the components to be fitted in the final model. We found that
the PLS regression model with three brain components
showed the lowest error in predicting the IADL of the testing
dataset (Figure 2A; RMSE = 2.007, R2= 0.182). On the con-
trary, the model with fewer or greater components produced
lower prediction accuracy, indicating a underfitted or overfit-
ted results in other models (two components: RMSE= 2.025,
R2= 0.167; four components: RMSE= 2.018, R2= 0.176).

We explored the regional brain contribution by calculating
the correlation between the latent component scores and raw
gray matter density measures. The distribution of multiple
brain measures was plotted across the predefined functional
networks or anatomical labels (Figure 3). We found that the
first PLS brain component was associated with the gray mat-
ter density in cerebellar regions. The first brain component
also showed relatively weak and widely distributed loadings
on overall cortical regions (Figure 1A, Table 3). The second
PLS brain component was highly comprised of the medial
temporal lobe (hippocampus, amygdala) and subcortical
(thalamus) regions (Table 3). In the cortical regions, gray
matter densities within the limbic and default mode network
showed relatively higher loadings on the second component
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(Figure 1B). The third PLS brain component was highly com-
prised of the medial temporal lobe, inferior parietal lobule,
and orbitofrontal cortex regions (Table 3). Overall, the
strength of loading was relatively lower than the former com-
ponents, and the brain regions of limbic and default mode

networks largely comprised the third component
(Figure 1C). Unexpectedly, the positive loadings in the
regions of striatal structures (caudate, putamen, pallidum)
were observed possibly due to the misclassified tissue labels
of white matter hypointensities.

Fig. 1. Analysis scheme. (A and B) Partial Least Square Regression (PLSR) identifies latent components (colored circles) that are composed
of the observed measures (blue squares). The combinations of the latent scores explain the target variable (IADL). The total number of com-
ponents in the regression model is selected with the cross-validation that achieves the highest prediction accuracy. (A) PLSR with brain struc-
tural measures. (B) PLSR with cognitive and behavioral measures. (C) The latent scores identified in the previous PLSR are used to test the
multiple mediational effects. Path analysis tests the extent to which the association between brain structural components and the IADL is
mediated by the cognitive and behavioral components.

Fig. 2. PLSR result of cross-validation and the visualized prediction with (A) brain measures and (B) cognitive–behavioral measures. Left
panel: Averaged prediction error (root mean squared error, RMSE) of 10-fold cross-validation across the number of latent components. The
optimal number of components in the PLSRmodel is identified showing the lowest error. Right panel: Each dot notes the predicted IADL value
estimated with the 10 times folded training dataset.
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We next conducted a PLS regression analysis that explains
the IADL score with the multiple cognitive and behavioral
measures (test performances and neuropsychiatric symptoms).
We found that the PLS regression model with four cognitive
components showed the optimally lowest error in predicting
IADL (Figure 2B; RMSE= 1.830, R2= 0.320), whereas the
model with fewer or greater components showed a lower
prediction accuracy (three components: RMSE= 1.897,
R2= 0.269; five components: RMSE= 1.840, R2= 0.316).

We explored cognitive–behavioral measures’ relative
loadings by calculating the correlation between the latent
component scores and the raw scores (Table 4). The first
component comprised the performances of TMT-A and
overall cognitive test scores, including episodic memory,

language, learning, and visuospatial construction domains,
while NPI was weakly associated. The second component
was primarily comprised of TMT-B. The third component
indicated lower episodic memory performances and higher
neuropsychiatric symptoms (NPI positive). On the contrary,
the fourth component indicated poorer episodic memory
performances and inversely intact neuropsychiatric symp-
toms (NPI negative).

Using the latent scores of each PLS model, the path
analysis explored the explanatory strength of each identified
component on IADL and the systematic relationship
between brain structure and cognitive–behavioral factors.
The scores of the three brain component scores and four cog-
nitive–behavioral scores optimized in the previous PLS

Fig. 3. The loading weights (Pearson’s correlation coefficient r) of the 424 gray matter density measures on each PLSR component score. The
colored dots represent the membership of the regional loading across the functional network parcellation (Schaefer et al., 2018) or the neuro-
anatomical label. Horizontal dashed line notes the range of 15 regions with the highest weights. TempPar = Temporoparietal; SomMot =
Somatosensory and Motor; SalVentAttn = Salience and Ventral Attention; DorsAttn = Dorsal Attention; Default =Default Mode; Control =
Cognitive control; MTL = Medial temporal lobe.

Multiple factors of IADL 679

https://doi.org/10.1017/S1355617721000916 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617721000916


cross-validation were used in the path analysis (Figure 1C).
We showed that the first brain component (cerebellar) had
relatively strong path coefficients on the first (General,
TMT-A) and fourth (Memory, NPI negative) cognitive–
behavioral components. The second brain component
(MTL, subcortical) showed a strong path coefficient on
the episodic memory components (3 and 4), while the over-
all components likewise showed significant coefficients
(Figure 4). The third brain component (MTL, Default mode
network, Limbic network) showed a strong path on the third
(memory, NPI positive) component, indicating a relatively
independent role of parietal and ventral prefrontal regions in
explaining the cognitive components that comprise neuro-
psychiatric symptoms.

The total effect of brain structural components was
decomposed into the indirect and direct effects: the effects
that indirectly explain IADL by mediating the cognitive–
behavioral components and the effects that directly explain
IADL regardless of the cognitive–behavioral components,
respectively (Figure 5). The mediational analysis showed
that the first and third cognitive–behavioral components
mostly mediated the brain components (Table 5). The indi-
rect effect of the cognitive component comprised more than
half of the total effect.

Lastly, hierarchical multiple regression models were tested
to check the incremental value of predictors (Table 6).We first
confirmed that most of the demographic effects were account-
able to the brain and cognitive–behavioral components.

Table 3. The loading weights (Pearson’s correlation coefficient r) of the brain structural measures on PLSR components. The 15 regions with
the highest loading weights are listed in descending order. Neuroanatomical and functional network labels of the gray matter density measures
are noted.

Component 1 Component 2 Component 3

Exterior Cerebellum Hippocampus (Subcortical) Hippocampus (Subcortical)
Exterior Cerebellum Hippocampus (Subcortical) Hippocampus (Subcortical)
Cerebellar Lobule 8–10 Thalamus (Subcortical) Inferior Parietal Lobule (Default)
Cerebellar Lobule 8–10 Thalamus (Subcortical) Amygdala (Subcortical)
Cerebellar Lobule 1–5 Amygdala (Subcortical) Orbitofrontal (Limbic)
Cerebellar Lobule 1–5 Amygdala (Subcortical) Inferior Parietal Lobule (Default)
Cerebellar Lobule 6–7 Inferior Parietal Lobule (Default) Orbitofrontal (Limbic)
Cerebellar Lobule 6–7 Inferior Parietal Lobule (Default) Amygdala (Subcortical)
Thalamus (Subcortical) Orbitofrontal (Limbic) Orbitofrontal (Limbic)
Thalamus (Subcortical) Basal Forebrain (Subcortical) Orbitofrontal (Limbic)
Extrastriate (Visual) Orbitofrontal (Limbic) Orbitofrontal (Limbic)
Inferior Parietal Lobule (Default) Basal Forebrain (Subcortical) Inferior Parietal Lobule (Default)
lateral Prefrontal (SalVentAttn) Orbitofrontal (Limbic) Inferior Parietal Lobule (Default)
Hippocampus (Subcortical) Orbitofrontal (Limbic) Superior Extrastriate (Visual)
Extrastriate (Visual) Inferior Parietal Lobule (Default) Cuneous (Control)

SalVentAtt = Salience and Ventral Attention; Default = Default Mode; Control = Cognitive control.

Table 4. The loading weights (Pearson’s correlation coefficient r) of the cognitive and behavioral measures on PLSR components.

Component 1
(General, TMT-A)

Component 2
(TMT-B)

Component 3
(Memory, NPI pos)

Component 4
(Memory, NPI neg)

Semantic Fluency −0.51 −0.23 −0.37 −0.38
Boston Naming −0.62 −0.15 −0.26 −0.21
Word List Recall – Immediate −0.50 −0.19 −0.52 −0.52
Word List Recall – Delayed −0.34 −0.19 −0.47 −0.51
Word List Recognition −0.29 −0.14 −0.45 −0.45
Construction – Copy −0.64 −0.08 −0.09 −0.08
Construction – Delayed −0.42 −0.24 −0.32 −0.39
Trail Making Test A † 0.98 −0.21 0.01 0.00
Trail Making Test B† 0.57 0.82 −0.08 0.00
Neuropsychiatric Inventory†† 0.10 0.09 0.69 −0.71

Loadings correlation coefficient higher than 0.40 were noted as bold. NPI pos/neg: High positive/negative loadings on neuropsychiatric symptom inventory.
†Higher scores indicated poorer performance (seconds).
††Higher scores indicated poorer and more severe functioning.
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Moreover, when comparing the explained variance of the hier-
archical models, cognitive–behavioral components added
larger explaining variances compared to the brain components
(Model 2–Model 4: R2 change= 0.032; Model 3–Model 4:
R2 change= 0.157).

The IADL consists of different types of daily activities,
and further subitem analysis was conducted (Table 7). The
spearman correlations between latent scores of PLSR models
were assessed to compare the relative contribution of the
brain and cognitive–behavioral components. Overall, the
association with the component scores was not noticeably dif-
ferent across IADL items. Specifically, the functional capac-
ity of transportation use was more predicted with the
cerebellar component, while activities with financial manage-
ment were more associated with MTL and subcortical com-
ponents. Managing medicine intake was highly reflective of
MTL and DMN components.

DISCUSSION

In the current study, we identified multiple latent components
of gray matter density and cognitive–behavioral test measures
that are predictive of daily functional abilities. We first identi-
fied three distinct patterns of brain structural components,
including cerebellar (component 1), hippocampal and subcort-
ical (component 2), and limbic and default network regions
(component 3). We also showed that distinct patterns of gen-
eral cognitive ability, processing speed (components 1 and 2),
episodic memory, and neuropsychiatric symptoms (compo-
nents 3 and 4) were predictive of IADL. In the path analysis,
more than half of the effects of brain structural measures on
IADL were mediated by the components of cognitive–behav-
ioral measures. When comparing the explanatory size of the
brain and cognitive–behavioral components across multiple
regression models, brain measures minimally added the

Fig. 4. Mediational path model. Standardized coefficients and the p-values are noted. Solid or dashed lines indicate the statistical significance.
Major brain regions/networks or cognitive domains are labeled in parenthesis. MTL = Medial temporal lobe; NPI = Neuropsychiatric
Inventory. ** p< 0.001, * p< 0.005.

Fig. 5. Schematic mediational effects of the path model. The total effect (brain components to IADL) is decomposed into multiple indirect
effects of cognitive and behavioral components (m1–m4) and direct effects of the brain component (c). NPI pos=Neuropsychiatric symptom-
positive; NPI neg = Neuropsychiatric symptom-negative; Cog-Beh = Cognitive and Behavioral.

Multiple factors of IADL 681

https://doi.org/10.1017/S1355617721000916 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617721000916


information in predicting the IADL on the basis of the effects
of cognitive–behavioral measures.

Our exploratory analysis of PLS regression with the brain
structural measures identified a component of non-cortical
regions in addition to the medial temporal lobe component.
We found that the cerebellar structure showed a notable con-
tribution in the first latent component alongside other cortical
regions. According to the path analysis results, the first brain
component may account for the variabilities in IADL via the
components of general cognitive ability and processing speed
function. The neural significance of cerebellar structure has
been well-documented, in that cerebellum has widely con-
nected with the cerebral regions of higher order cognition,
other than mere somatosensory regions (Marek et al.,
2018). The cerebellar cortex is commonly affected by AD
pathology, and such changes may lead to aberrant functional
responsivity in cerebellar regions (Guo et al., 2016; Jacobs
et al., 2018; Reiman et al., 2012). The atrophy in the cerebel-
lar region is typically observed not only in the normal aging
population but also in sporadic AD or MCI (Fjell et al., 2013;
Möller et al., 2013; Thomann et al., 2008). Our finding sug-
gests that the cerebellar pathology is not a bystander in the
process of late-life cognitive impairment, especially in the rel-
evance to real-world functioning.

In particular, the cerebellar component explained IADL
mainly through the first cognitive–behavioral component,
which primarily reflected general cognition and processing
speed function. Although the cognitive tests that reflect the
processing speed domain have not been a primary marker
in distinguishing the dementia of Alzheimer’s type, it is
notable in our finding that TMT-A was a critical measure
in explaining the functioning ability. The previous studies
have shown that the tests of processing speed appear to reflect
subtle changes from the very early stages of dementia (Albert
et al., 2018; Amieva et al., 2014; Johnson, Lui, & Yaffe,
2007; Younes et al., 2019). Our finding suggests that episodic
memory is not a sole cognitive domain in explaining func-
tional status during the process of dementia.

The subsequent brain components showed that medial
temporal, subcortical, limbic network, and default network

Table 5. Mediational path analysis result.

Coefficient
(SE)

Mediation
Effect Size:
(In) Direct/

Total Ratio (%)

Brain components → Cog–Behav component (m) → IADL
Indirect total 0.78 (0.08) 50.3
m1 (General, TMT-A) 0.29 (0.05) 18.7
m2 (TMT-B) 0.03 (0.02) 2.1
m3 (Memory, NPI pos) 0.29 (0.05) 18.6
m4 (Memory, NPI neg) 0.17 (0.04) 10.9

Brain components → IADL
Direct effect (c) 0.77 (0.13) 49.7
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plays a role in explaining IADL. The second and third brain
components that mainly consisted of the hippocampal and
amygdala volume showed strong paths on the memory-
related cognitive components. On the other hand, it is notable
that cortical regional volume of higher order function (orbi-
tofrontal, inferior parietal) was associated with IADL specifi-
cally through the third component that accompanies
neuropsychiatric behavioral symptoms. We speculate that
older adults with additive neurodegeneration in prefrontal
and parietal cortical regions may indicate AD variants with
additional behavioral symptoms (Ossenkoppele et al., 2015).

Our study identified relatively weak but distinct compo-
nents that are associated with neuropsychiatric symptoms
concomitant with episodic memory function. The previous
studies have reported the importance of behavioral symptoms
(e.g., apathy, agitation, disinhibition, etc.) as uniquely
explaining functional impairment (Burton, O’Connell, &
Morgan, 2018; You, Walsh, Chiodo, Ketelle, & Miller,
2015). The changes in neuropsychiatric symptoms are typi-
cally observed in MCI or mild stages of dementia and consti-
tute a distinct feature of dementia progression (Delgado et al.,
2019). It is possible that performance-based measures were
insufficient to characterize disturbances in socio-emotional
function, which is crucial in obtaining adequate help from
caregivers or maintaining basic social activities in daily life.

It should be noted, however, that the current multivariate
mediation models are based on the specific population of
older adults. It remains untested whether these patterns of pre-
diction generalize to other types of dementia or neurological
diseases. When examined in populations with other types of
neuropathology, the relevant neurocognitive function may
play a different role in explaining IADL.

In the current study, we assessed the predictive accuracy of
multiple cognitive and brain structural correlates and evalu-
ated the practical utility of our predictive model. The overall
accuracy showed a modest strength of association which was
slightly higher than the previous reports in older adults
(R2= 0.30; de Paula et al.) or various clinical populations
(R2 median/average= 0.15/0.22; Royall et al.) (de Paula
et al., 2015; Royall et al., 2007). One of our study interests
was to also evaluate the ecological significance of predictabil-
ity. However, since numerous factors that influence the met-
ric (i.e., the inclusion of cross-validation procedure, range of
age, the proportion of the clinical population, etc.) differs

across studies, direct comparison with the previous reports
may be inadequate. It remains unclear, whether the unex-
plained proportion of IADL variance is due to the inherent
properties of IADL (e.g., inaccurate reports or indefinite
boundary between ability and propensity) or insufficiency
of predictive information (e.g., other neuroimaging modal-
ities, cognitive domains, physical capabilities). Moreover,
previous literature scarcely reported the explanatory strength
as amultivariate model using neuroimagingmeasures (Chang
et al., 2011). Future studies are needed to assess the accuracy
of predictive models of IADL across various clinical popula-
tions with unified predictors (Lindbergh et al., 2016;
Pellegrini et al., 2018; Rathore, Habes, Iftikhar, Shacklett,
& Davatzikos, 2017).

While the overall accuracy showed a modest strength of
predictability, a large proportion of the variance remains
unexplained. This may raise the issue that classical neuro-
psychological tests may be still insufficient in depicting
real-life functioning. Contrary to the classical conception that
neuropsychological test focuses on detecting brain lesions,
multi-modular cognitive tests that are not specific to a certain
region or types of neuropathology may be adequate for
depicting the ecological valid function. It has been suggested
that the tests that encompass more general and broad cogni-
tive domains tend to correlate more strongly with real-world
functioning (Bilder & Reise, 2019). Our current composition
of the cognitive tests may have omitted domains of verbal
communication, social judgment, spatial navigation, which
has not been the focus of dementia assessment protocols
(Harrison et al., 2007; Howieson, 2019). We expect a more
accurate prediction on IADL when the neuropsychological
battery comprises ecological and relevant test measures.

Lastly, our path analysis revealed the relative importance
of neuropsychological assessment on the contrary to the brain
morphological features. We found that more than half of the
brain structural effects on IADL were mediated by the
composite scores of cognitive and behavioral scores.
Moreover, the hierarchical regression model also showed that
the effect of brain structural components added minimal
information to the neuropsychological test model. This find-
ing supports the disability process model that maps the path-
ophysiological consequences of dementia (Royall et al.,
2007; Verbrugge & Jette, 1994). It seems that the predictabil-
ity gap between functional disability and brain structure is

Table 7. Spearman correlation (rho) between latent scores of PLSR and IADL items.

IADL items

Brain components Cognitive–behavioral components

1 (Cerebellar) 2 (MTL,Subc) 3 (MTL, DMN) 1 (General) 2 (TMT-B) 3 (Mem, NPIþ) 4 (Mem, NPI−)

Phone use 0.20 0.28 0.07 0.33 0.03 0.25 0.28
Buying goods 0.21 0.32 0.10 0.35 0.05 0.27 0.28
Transportation use 0.25 0.31 0.13 0.42 −0.02 0.23 0.28
Taking medicine 0.18 0.24 0.14 0.26 0.06 0.27 0.29
Financial 0.18 0.32 0.10 0.39 0.03 0.27 0.29

Subc = subcortical; MTL = medial temporal lobe; DMN = default mode network; Mem = memory; NPIþ/− = neuropsychiatric symptom positive/negative.
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due to multiple buffering and moderating factors. The path-
ophysiological changes lead to disabilities after sufficient
processes are undergone. According to the concept of reserve
and resilience, the effect of neuropathology does not directly
manifest in the functional impairment due to protective fac-
tors of reserve and resilience (Arenaza-Urquijo & Vemuri,
2018; Stern et al., 2018). The older adults with larger protec-
tive factors and premorbid function would have delayed or
buffer against neuropathology, leaving intact IADL and a
large predictability gap of brain structural measures.

One of the fundamental limitations of our study is the val-
idity of the IADL measurement. The five items of IADL may
have under-specified the wide variety of daily activities, and
the significance of each activity differs across the lifestyle
context of individuals. In addition, the validity highly
depends on the source of information including the awareness
of subtle difficulties, qualities of the informant relationship,
and the levels of functional support available. The quality of
caregivers’ reports is an exogenous factor of the actual dis-
ease process and may degrade the overall accuracy of our
model. Another conceptual limitation of IADL is complica-
tions in physical status (walking, bathing, other self-cares).
While the current study attempted to rule out the subjects with
a significant physical disability assessed with Barthel ADL,
there remain possibilities that IADL may have been impaired
due to the presence of mild forms of physical distress or
frailty. On the other hand, changes in basic self-care can also
be affected by cognitive impairment. Excluding some propor-
tion of dementia with moderate severity may omit significant
variability in IADL. The unexplained variance of IADL,
which was unrelated to cognitive–behavioral or brain struc-
tural predictors may indicate the remaining importance of
the general physical function in cognitive disorders
(Borges, Canevelli, Cesari, & Aprahamian, 2019).

Despite the emerging discussions regarding the values of
using biological markers of dementia (Jack et al., 2018;
Rathore et al., 2017), our study suggests a relatively weak
predictive value of brain structural markers and warrants cau-
tion in interpreting such markers in terms of predicting real-
world functioning. Also, neuropsychological tests can be
conceptualized as a structured predictor of the later real-world
functional ability, rather than to be lumped together as a clini-
cal outcome (Jack & Holtzman, 2013). We suggest that the
utility of neuroimaging markers can be more accentuated
when examining the prognostic changes of brain pathology,
rather than identifying current levels of clinical functioning.
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