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Abstract We give a simple set of geometric conditions on curves η, η̃ in H from 0 to∞ so that if ϕ : H→ H
is a homeomorphism which is conformal off η with ϕ(η) = η̃ then ϕ is a conformal automorphism of H.

Our motivation comes from the fact that it is possible to apply our result to random conformal welding
problems related to the Schramm–Loewner evolution (SLE) and Liouville quantum gravity (LQG). In

particular, we show that if η is a non-space-filling SLEκ curve in H from 0 to∞, and ϕ is a homeomorphism

which is conformal on H \ η, and ϕ(η), η are equal in distribution, then ϕ is a conformal automorphism
of H. Applying this result for κ = 4 establishes that the welding operation for critical (γ = 2) LQG is

well defined. Applying it for κ ∈ (4, 8) gives a new proof that the welding of two independent κ/4-stable

looptrees of quantum disks to produce an SLEκ on top of an independent 4/
√
κ-LQG surface is well

defined.
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1. Introduction

1.1. Overview

Suppose that D1, D2 are copies of the unit disk D and φ is a homeomorphism from

∂D1 to ∂D2. A conformal welding of D1, D2 using the identification φ is a conformal

structure on the sphere S2 obtained by identifying ∂D1 with ∂D2 according to φ. More

precisely, it corresponds to a simple loop η on S2 and two conformal transformations

ψ1, ψ2 which take D1, D2 to the two components of S2
\ η with φ = ψ1 ◦ψ

−1
2 . Given

such a homeomorphism φ, the two basic questions that one is led to ask are: (i) Does a

conformal welding exist? (ii) If so, is it unique? The main focus of the present article is

on the latter question.

Recall that a set K ⊆ C is said to be conformally removable if it has the property

that whenever U, V ⊆ C are domains with K ⊆ U and ϕ : U → V is a homeomorphism

which is conformal on U \ K then ϕ is conformal on all of U . The uniqueness of a

conformal welding is equivalent to the conformal removability of the interface η. There

are several geometric conditions associated with a curve η which are known to imply
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that it is conformally removable. For example, it was shown by Jones and Smirnov [26]

that boundaries of Hölder domains are conformally removable. We recall that a simply

connected domain D ⊆ C is a Hölder domain if there exists a conformal transformation

ϕ : D→ D which is Hölder continuous up to ∂D. See also the works [25, 29, 31, 44]

for other conditions which imply conformal removability. In the present work, we will

prove uniqueness results for conformal weldings in the setting in which the interface η is

not the boundary of a Hölder domain or even a connected domain. As we will explain

in more detail below, our uniqueness results apply for conformal weldings under which

the interface satisfies some regularity conditions and are therefore weaker than proving

conformal removability. Conformal removability questions in the setting in which the

interface is not the boundary of a connected domain are subtle; it has long been known

that the standard Sierpinski carpet is not conformally removable (see the introduction

of [44]) and it has been recently shown that the Sierpinski gasket is not conformally

removable [45]. The regularity conditions that we impose will allow us to circumvent

some of the challenges associated with domains which are the complement of a carpet,

but at the same time yield uniqueness results in the setting in which we are interested.

In recent years, there has been considerable interest in random conformal weldings.

We will be focused on the case in which the welding interface η is an instance of the

Schramm–Loewner evolution (SLE). We recall that SLE is a random fractal curve defined

in a simply connected planar domain D. It was introduced by Schramm [52] in 1999 as

a candidate to describe the scaling limits of lattice models in two-dimensional statistical

mechanics. SLEs have found many other applications in the intervening years, one of

which is in the study of a certain theory of random surfaces called Liouville quantum

gravity (LQG). In this context, SLEs arise as the gluing interface when one conformally

welds two such surfaces with boundary [10, 55]. (Let us also mention the work [3]

which considers the conformal welding of an LQG (random) surface to a Euclidean

(deterministic) disk; it turns out in this case that the resulting interface is not an SLE.)

It is explained in [55] that one has uniqueness in this context when the gluing interface is

an SLEκ for κ ∈ (0, 4) and in [10] when κ ∈ (4, 8). (Recall that SLEκ curves are simple for

κ 6 4, self-intersecting but not space-filling for κ ∈ (4, 8), and space-filling for κ > 8 [51].)

Prior to the present work, uniqueness had not been established for κ = 4. We will describe

this in more detail and provide additional background below. The purpose of the present

work is to give a unified treatment of the uniqueness question for such conformal weldings

which will be applicable for all κ ∈ (0, 8), and in particular κ = 4.

1.2. Main results

The following theorem is one of the main results of this paper, which implies that there

is at most one solution to any random conformal welding problem among the set of laws

in which the gluing interface is a non-space-filling SLE curve.

Theorem 1.1. Fix κ ∈ (0, 8). Let η be an SLEκ curve in H from 0 to ∞. Suppose that

ϕ : H→ H is a homeomorphism which is conformal in H \ η and such that ϕ(η)
d
= η. Then

ϕ is a.s. a conformal automorphism of H.

https://doi.org/10.1017/S1474748019000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000331


Uniqueness of the welding problem for SLE and Liouville quantum gravity 759

We note that studying the welding problem in the context of H is equivalent to

studying the welding problem in S2 except one only welds part instead of all of the

boundary. In particular, we described conformal welding as the operation of gluing a

pair of copies D1,D2 of the unit disk to produce S2 decorated by a path according to

some homeomorphism φ from ∂D1 to ∂D2. However, if we only weld a connected segment

I1 ⊆ ∂D1 (which is not all of ∂D1) with its image I2 = φ(I1), then we can obtain a simply

connected domain which we can take to be H and we can take the gluing interface to be

a curve from 0 to ∞.

Theorem 1.1 also applies to a more general type of welding problem when κ ∈ (4, 8). In

this range, SLEκ a.s. intersects (without crossing) itself, and arises as the gluing interface

of a countable number of disks (or of stable looptrees, see § 2 for more details).

We remark that the part of Theorem 1.1 for κ ∈ (0, 4) is not new. The reason is that

the work [51] implies that the complementary components of an SLEκ curve for κ ∈ (0, 4)
are a.s. Hölder domains and, as mentioned above, [26] implies that boundaries of Hölder

domains are conformally removable. The range κ ∈ [4, 8) in Theorem 1.1, however, is new.

Indeed, it is not known whether SLE4 curves are conformally removable. In particular, it

is shown in [21] that an SLE4 curve a.s. does not form the boundary of a Hölder domain.

[26, Corollary 4] contains a weaker modulus of continuity condition than being the

boundary of a Hölder domain which was further improved upon in [31] but it is not known

whether SLE4 satisfies the sufficient conditions for conformal removability from [26, 31].

For κ ∈ (4, 8), since SLEκ has double points, they have a carpet-like structure and

conformal removability in this context is not well-understood (see [44, 45]).

Theorem 1.1 in fact follows from a more general result, where the condition of η and

ϕ(η) being SLE curves can be weakened to a pair of deterministic geometric conditions.

Before describing these conditions, let us mention that the first condition is stable under

the application of a locally bi-Hölder continuous homeomorphism H→ H, the second

condition is stable under the application of a diffeomorphism H→ H, and we require

that η satisfies one of the conditions and ϕ(η) satisfies the other one. Since both of these

conditions are satisfied by SLEκ curves with κ ∈ (0, 8), we can formulate stronger versions

of Theorem 1.1. For example, Theorem 1.1 remains true if we assume that ϕ(η) is given

by the image of an SLEκ curve (for any value of κ ∈ (0, 8)) under a locally bi-Hölder

continuous homeomorphism H→ H. We also do not have to assume a priori that η,

ϕ(η) have the same κ values. There are also other versions of Theorem 1.1 which hold

under even weaker hypotheses. As we will explain in more detail in § 2, the particular

formulation given in Theorem 1.1 is the one most relevant in the context of LQG.

We will now describe the conditions required for the general theorem statement.

Let η be a curve in H from 0 to ∞, i.e., η : R+→ H is continuous with η(0) = 0
and limt→∞ η(t) = ∞. We also assume that η is non-self-crossing, but allow it to be

self-intersecting. Let us first fix some notation.

(1) For any t > 0 and δ > 0, let τ (respectively σ ) be the first (respectively last) time

after (respectively before) t that η reaches ∂B(η(t), δ) and we denote by η(t; δ) the

excursion η[σ, τ ].
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Figure 1. (H1) bounded number of crossings across annuli. Here we depict three different crossings in
three different colors. The curve can intersect itself, but never crosses itself.

Figure 2. (H2) existence of a ball near an excursion (depicted in red) but ‘far away’ from other parts of
the curve (depicted in gray) in the sense that any path connecting y to the gray parts of the curve must
either intersect η(t; δ) or exit the ball B(y, δξ ).

(2) For any z ∈ H and ε ∈ (0, δ), let us define the excursions of η between ∂B(z, ε) and

∂B(z, δ): if there exists t such that η(t) ∈ B(z, ε), then we let τ (respectively σ ) be

the first (respectively last) time after (respectively before) t that η reaches ∂B(z, δ)
and we say that η[σ, τ ] is an excursion between ∂B(z, ε) and ∂B(z, δ). The number

of excursions of η between ∂B(z, ε) and ∂B(z, δ) is always finite, because η is a

continuous curve with η(t)→∞ as t →∞.

Let us now describe the following hypotheses on η:

(H1) Bounded number of crossings (see Figure 1): for any compact rectangle K ⊆ H and

any β ∈ (0, 1), there exist M > 0 and ε0 > 0, such that for all ε ∈ (0, ε0), and for all

z ∈ K , the number of excursions of η between ∂B(z, εβ) and ∂B(z, ε) is at most M .

(H2) Non-self-tracing (see Figure 2): for any compact rectangle K ⊆ H and any α > ξ >

1, there exists δ0 > 0 such that for any δ ∈ (0, δ0), for any t > 0 such that η(t) ∈ K ,
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one can find a point y such that

(i) B(y, δα) ⊆ B(η(t), δ) \ η and B(y, 2δα)∩ η 6= ∅.

(ii) Let O be the connected component of B(η(t), δ) \ η that contains y. For any

point a in ∂O \ η(t; δ), any path contained in O ∪ {a} which connects y to a
must exit the ball B(y, δξ ).

Theorem 1.2. Let η be a non-self-crossing curve in H from 0 to ∞. Suppose that ϕ : H→
H is a homeomorphism which is conformal in H \ η. If η satisfies (H1) and has zero

Lebesgue measure, ϕ(η) satisfies (H2) and has upper Minkowski dimension d < 2, then

ϕ is a conformal automorphism of H.

Let us emphasize that the conditions (H1) and (H2) involve no randomness; hence

Theorem 1.2 is a statement for deterministic curves. In particular, the proof of

Theorem 1.2 does not involve SLE or LQG. We will then prove Theorem 1.1 by checking

that SLEκ curves with κ ∈ (0, 8) a.s. satisfy the hypotheses (H1) and (H2). We note that

SLEκ for κ ∈ (0, 8) in fact satisfies much stronger geometric conditions than are assumed

in (H1) and (H2). We believe that it is also possible to check the hypotheses (H1) and (H2)

for any type of non-space-filling SLE-type process, such as the exotic SLEβκ (ρ) processes

considered in [34, 36, 42] or the conformal loop ensembles (CLEs) for κ ∈ (8/3, 8) [54, 57],

but we will not carry this out here.

1.3. Outline

The remainder of this article is structured as follows. In § 2, we will describe the main

application of Theorem 1.1, which is in the context of LQG. In § 3, we will prove

Theorem 1.2. In § 4, we will show that SLEκ curves with κ ∈ (0, 8) a.s. satisfy the

hypotheses (H1) and (H2), hence proving Theorem 1.1. We emphasize that the proof of

Theorems 1.1 and 1.2 will not use LQG. In particular, it is not necessary to understand

§ 2 in order to understand the proofs of the main results.

2. Applications to Liouville quantum gravity

We will now provide some additional motivation and consequences of Theorem 1.1. The

contents of this section are not needed for the proof of Theorems 1.1 and 1.2.

2.1. Liouville quantum gravity review

Suppose that D ⊆ C is a planar domain, h is an instance of (some form of) the Gaussian

free field (GFF) on D, and γ ∈ (0, 2] is a fixed parameter. The LQG surface parameterized

by D and described by h formally corresponds to the metric tensor

eγ h(z)(dx2
+ dy2), (2.1)

where dx2
+ dy2 represents the Euclidean metric on D. The expression (2.1) does not

make literal sense since h is a distribution and does not take values at points.

In the case that γ ∈ (0, 2), the volume form associated with (2.1) was constructed

in [13]. The approach taken in [13] involves a certain regularization procedure. Namely,
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for each ε > 0 and z ∈ D such that B(z, ε) ⊆ D we let hε(z) denote the average of h on

∂B(z, ε). One then takes

µ
γ

h = lim
ε→0

εγ
2/2eγ hε(z) dz, (2.2)

where dz denotes the Lebesgue measure on D. The normalization factor εγ
2/2 is necessary

to obtain a non-trivial limit. It is also possible to construct a measure in the critical case

γ = 2 [11, 12]. In order to get a non-trivial limit, one has to introduce an extra correction

in the normalization. Following [24, 27, 46], one takes

µ
γ=2
h = lim

ε→0
ε2
√

log ε−1e2hε(z) dz, (2.3)

where dz again denotes the Lebesgue measure on D. (The works [11, 12] construct the

critical LQG measure using a different approximation scheme.)

The regularization procedures in (2.2), (2.3) lead to a certain change of coordinates

formula for the measure µ
γ

h . Namely, suppose that ϕ : D̃→ D is a conformal

transformation and

h̃ = h ◦ϕ+ Q log |ϕ′| where Q =
2
γ
+
γ

2
, (2.4)

then it is a.s. the case that for all Borel sets A one has that µ
γ

h (ϕ(A)) = µ
γ

h̃
(A).

We say that two domain/field pairs (D, h), (D̃, h̃) are equivalent as quantum surfaces

if h, h̃ are related as in (2.4). A quantum surface is an equivalence class under this

equivalence relation. A choice of representative of a quantum surface is referred to as

an embedding of the quantum surface. One can similarly extend these definitions to the

setting of surfaces with extra marked points or a distinguished path.

We remark that whether two embeddings describe an equivalent quantum surface can

in some cases be a subtle question. For example, two definitions of LQG on the sphere

are respectively given in [10] and [6] which on the surface appear to be very different. It

was later proved in [2] that the constructions of [6, 10] give rise to equivalent quantum

surfaces.

In the case that h has free boundary conditions on a linear boundary segment L ⊆ ∂D,

one can similarly define a boundary length measure ν
γ

h by setting

ν
γ

h = lim
ε→0

εγ
2/4eγ hε(z)/2 dz for γ ∈ (0, 2) (2.5)

ν
γ=2
h = lim

ε→0
ε

√
log ε−1ehε(z) dz for γ = 2, (2.6)

where in each case dz denotes the Lebesgue measure on L. In the case that h has free

boundary conditions on part of ∂D which is not a linear segment, one can conformally

map D to a domain which has piecewise linear boundary, define the boundary measure

as above, and then map back using (2.4).

We remark that a general theory of random measures which have the same law as µ
γ

h
and ν

γ

h was developed earlier by Kahane and is referred to as Gaussian multiplicative

chaos [28]. See also [49] for a more recent review. See also [5, 50]. Similar measures also
appeared earlier in [22].
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Figure 3. Left: it is shown in [55] that it is possible to conformally weld two independent LQG surfaces
called quantum wedges along their boundary rays to produce an LQG surface decorated by a simple
SLEκ curve. Right: it is shown in [10] that if one glues together two independent κ ′/4-stable looptrees of

quantum disks, κ ′ = 4/γ 2
∈ (4, 8), then one obtains an LQG surface decorated by a self-interesting but

non-space-filling SLEκ ′ curve.

We also remark that the metric (i.e., distance function) for LQG was first constructed

in the case that γ =
√

8/3 in [35, 39, 40] and recently for all γ ∈ (0, 2) in [7, 9, 17–20].

The study of LQG surfaces is motivated in part because they have been conjectured

to describe the scaling limits of random planar maps decorated by an instance of a

statistical physics model. There are a number of different ways of formulating such a

conjecture depending on the topology that one chooses. Scaling limit results of this type

have now been proved in a number of cases using the so-called peanosphere topology

[14, 30, 33, 56] and in the Gromov–Hausdorff topology [15, 16]. For example, the cases

γ = 1,
√

4/3,
√

2,
√

8/3,
√

3 respectively correspond to random planar maps decorated by

a Schnyder woods, bipolar orientation, uniform spanning tree, percolation configuration,

Ising (or FK-Ising) model. The case γ = 2, which is one of the main motivations for

the present article, conjecturally corresponds to a random planar map decorated by an

instance of the 4-state Potts model.

2.2. Welding quantum surfaces

A number of different welding operations for quantum surfaces are considered in [10, 55]

(see Figure 3). Fix γ ∈ (0, 2) and let κ = γ 2. In this case, SLEκ is a.s. a simple curve. The

basic idea is that if one takes an appropriate type of γ -LQG surface W = (H, h, 0,∞)
parameterized by H and with marked points at 0 and∞ and then draws an independent

SLEκ process η in H from 0 to ∞ on top of it, then the quantum surfaces W1, W2
parameterized by the components of H \ η which are to the left and right of η and

marked by 0 and ∞ are independent. Moreover, the path-decorated quantum surface

(W, η) can be recovered as a conformal welding of W1, W2, where the boundary welding

homeomorphism is provided by the γ -LQG boundary measure. The uniqueness of the

welding follows from the conformal removability of SLEκ for κ ∈ (0, 4). Indeed, suppose

that (W̃, η̃) is another path-decorated quantum surface such that the quantum surfaces

W̃1, W̃2 parameterized by the components of H \ η̃ which are to the left and right of

η̃ are equivalent as quantum surfaces to W1, W2, respectively. This means that there

exist conformal maps ϕ j , j = 1, 2, from W j to W̃ j so that if h j (respectively h̃ j ) is the
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field which describes W j (respectively W̃ j ) then we have that h j = h̃ j ◦ϕ j + Q log |ϕ′j |.
If W̃1, W̃2 are identified according to γ -LQG boundary length, then ϕ1, ϕ2 extend to

a homeomorphism ϕ : W → W̃ which is conformal off η. The conformal removability of

SLEκ for κ ∈ (0, 4) implies that ϕ is conformal everywhere; hence (W, η), (W̃, η̃) are

equivalent as path-decorated quantum surfaces. Extensions of the same idea also apply

when one considers quantum surfaces with other topologies (e.g., C and decorated by an

independent whole-plane SLEκ).

The existence of the welding in the critical case γ = 2 was recently proved in [23]. The

uniqueness of the welding in the case γ = 2 follows from Theorem 1.1. Combined, this

implies that the welding operation for critical (γ = 2) LQG is well defined. To explain this

in more detail, suppose that W = (H, h, 0,∞) is a quantum surface parameterized by H
with marked points at 0 and∞ and that η is an independent SLE4 on H from 0 to∞. Let

W1, W2 be the quantum surfaces parameterized by the components of H \ η which are to

the left and right of η. Suppose that (W̃, η̃) is another path-decorated quantum surface

which has the same law as (W, η) so that the quantum surfaces W̃1, W̃2 parameterized

by the components of H \ η̃ which are to the left and right of η̃ are equivalent to W1,W2
and that W̃1, W̃2 are identified according to LQG boundary length. Then there exists a

homeomorphism ϕ : H→ H which is conformal on H \ η which takes W j to W̃ j for j =
1, 2. In particular, ϕ(η) = η̃ has the same law as η. Theorem 1.1 implies that ϕ is conformal

everywhere so that (W, η) and (W̃, η̃) are equivalent as path-decorated quantum surfaces.

Consequently, (W, η) is a.s. determined by W1,W2 (as the argument we have just

described above implies that conditionally independent samples from the law of (W, η)

given W1,W2 must be a.s. the same). This argument shows that there can be a.s. at most

one conformal welding of W1, W2 in which the welding interface is an SLE4 type curve

(or more generally any curve which satisfies the hypotheses of Theorem 1.2). However,

it does not rule out the existence of conformal weldings in which the welding interface

exhibits much wilder behavior (i.e., the possibility that η̃ does not satisfy the hypotheses

of Theorem 1.2). Indeed, this would require us to establish the removability of SLE4.

In [10, 55] it is shown that it is also possible to consider κ ′ = 16/γ 2 > 4 processes

on top of LQG surfaces. Suppose that we are in the setting that γ ∈ (
√

2, 2) so that

κ ′ ∈ (4, 8). As such an SLEκ ′ process has double points and separates non-trivial regions

from its target point, the quantum surfaces which are cut out on the left and right sides

of the path are not simply connected but rather have a tree-like structure. The reader

familiar with the results of [10] will recall that the entire path-decorated quantum surface

can be mathematically described as a welding of independent κ ′/4-stable looptrees of

quantum disks. Since it is not known if such SLEκ ′ processes are conformally removable,

a different type of argument for showing the conformal welding is well defined, which is

given in [10]. The statement given in [10] is an abstract measurability result which says

that the overall path-decorated quantum surface (W, η′), where η′ is an independent

SLEκ ′ process and W is an appropriate type of quantum surface, is a.s. determined

by the κ ′/4-stable looptrees of quantum disks T1, T2 which are parameterized by the

components cut off by η′ on its left and right sides. Arguing as in the previous two

paragraphs, Theorem 1.1 gives another proof of this fact. Moreover, it implies that this

measurable function satisfies some properties which are not obvious from the proof given

https://doi.org/10.1017/S1474748019000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000331


Uniqueness of the welding problem for SLE and Liouville quantum gravity 765

in [10]. For example, it is not obvious that the abstract measurable function constructed

in [10] behaves well under the operation of time reversal. More precisely, suppose that

one has two independent κ ′/4-stable loop trees T1, T2 of quantum disks, then the welding

of T1, T2 together determines a path-decorated surface (W, η′). One can also reverse the

orientations of T1, T2 to obtain another pair T̂1, T̂2 of κ ′/4-stable looptrees (since the law

of a stable looptree is preserved when switching the orientation). Then the welding of

T̂1, T̂2 also determines a path-decorated surface (Ŵ, η̂′). It follows from [10] that (Ŵ, η̂′)

has the same law as (W, η′) but it does not follow directly from [10] that (Ŵ, η̂′R),

where η̂′R is the time reversal of η̂′, is equal to (W, η′) as a path-decorated quantum

surface (one would need to use the reversibility of SLEκ ′ for κ ′ ∈ (4, 8) proved in [38] to

obtain these statements). However, since the geometric hypotheses of Theorem 1.2 are

satisfied by the time reversal of any curve that satisfies them in the forward direction,

the uniqueness statement obtained from the present article also behaves well with respect

to time reversal. For example, Theorem 1.1 holds if we assume that η is an SLEκ curve

and ϕ(η) has the law of the time reversal of an SLEκ curve. These are now known to be

the same, but we expect that one could use this argument to give a new proof of the

reversibility of SLEκ ′ for κ ′ ∈ (4, 8) (although we do not carry this out here since our

proof that SLE satisfies the hypotheses of Theorem 1.2 uses the reversibility of SLE for

simplicity).

There is forthcoming work of the second author together with Sheffield and Werner [43]

which will study CLEs on LQG. We expect that the results established here will also lead

to uniqueness results for weldings considered in that context.

We remark that the uniqueness results for the welding fall into the wider class of results

which are concerned with showing that a certain object coupled with the GFF is in fact

a.s. determined by the GFF. Other important examples include:

• The level lines [53] and flow lines of the GFF [8, 37, 41].

• The matings of correlated continuum random trees to produce space-filling SLEκ for

κ > 4 on an LQG surface from [10].

• The metric measure space structure of the Brownian map determines its embedding

as the
√

8/3-LQG sphere [35, 39, 40].

3. Proof of Theorem 1.2

In this section, we assume that η and η̃ are non-self-crossing curves in H from 0 to∞. We

assume that η satisfies (H1) and has zero Lebesgue measure and that η̃ satisfies (H2) and

has upper Minkowski dimension d < 2. Let ϕ be a homeomorphism from H onto itself

that is conformal on H \ η and such that η̃ = ϕ(η). We want to show that ϕ is conformal

everywhere.

3.1. Outline of the proof

We know by the hypotheses that ϕ is a homeomorphism which is a.e. conformal. In order

to show that ϕ is conformal everywhere, it suffices to show that it in addition has the

ACL (absolutely continuous on lines) property (see [1, Ch. II]), namely ϕ is absolutely
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continuous on a.e. line which is parallel to one of the coordinate axes (i.e., the x-axis or

the y-axis).

To show that ϕ is absolutely continuous on a given line L, we need to show that for

each compact interval I of L and every ε > 0 there exists δ > 0 so that if x1, y1, . . . , xk, yk
are points in I with

∑k
j=1 |y j − x j | < δ then

∑k
j=1 |ϕ(x j )−ϕ(y j )| < ε. To prove that this

is the case, we will rely on Lemma 3.1 and Proposition 3.2.

Lemma 3.1. For any compact set K ⊆ H, the function ϕ′ is L1 on K .

Proof. Note that ϕ′ is only well defined away from η, but since η has zero Lebesgue

measure, the integral of |ϕ′| on K is well defined. By the Cauchy–Schwarz inequality, we

have∫
K
|ϕ′(w)| dw 6

(∫
K
|ϕ′(w)|2 dw

)1/2

area(K )1/2 = area(ϕ(K ))1/2 area(K )1/2 <∞,

where the equality is due to the area transformation formula for the conformal map ϕ

and we have used that area(ϕ(K )) = area(ϕ(K \ η)) as η̃ has upper Minkowski dimension

d < 2.

Note that Lemma 3.1 allows us to control the variation of ϕ away from η. We will need

the following proposition to control the variation of ϕ across the curve η.

Proposition 3.2. Suppose that K ⊆ H is a compact rectangle and let z ∈ K be chosen

uniformly at random. Then for any ι > 0, we have

E[diam(ϕ(B(z, ε)))1d(z,η)<ε] = O(ε2/d−ι). (3.1)

We emphasize that the expectation in Proposition 3.2 is over the randomness in z.

We will prove Proposition 3.2 in the later subsections. Let us first prove Theorem 1.2

assuming Proposition 3.2.

Proof of Theorem 1.2. As we have explained earlier, it is enough to prove that ϕ is

absolutely continuous on a.e. line which is parallel to one of the coordinate axes. We will

show this for horizontal lines, since it works the same way for vertical lines.

Fix a2 > a1, b2 > b1 > 0, and let K be the compact rectangle [a1, a2]× [b1, b2]. We

randomly choose b ∈ [b1, b2] according to the uniform measure on [b1, b2]. Let L be the

random horizontal line at height b. It suffices to prove that ϕ is a.s. absolutely continuous

on L and to this end it is enough to control the behavior of ϕ on the compact interval

I := L ∩ K , since we can take any a2 > a1.

Fix δ > 0 and let x1, y1, . . . , xk, yk be points in I such that
∑k

j=1 |y j − x j | < δ. We

aim to bound the quantity 1 :=
∑k

j=1 |ϕ(x j )−ϕ(y j )|. For any n ∈ N, we divide I into n
intervals I1, . . . , In of length αn := (a2− a1)/n. Let

Sn :=

n∑
j=1

diam(ϕ(I j ))1η∩I j 6=∅.

Then

1 6 Sn +

k∑
j=1

∫
[x j ,y j ]

|ϕ′(w)| dw for all n ∈ N. (3.2)
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If we choose a uniformly in [a1, a2], then the point z = (a, b) is a uniformly random

point in K . For any n ∈ N, we divide K into n× n rectangles of size αn ×βn where

αn = (a2− a1)/n and βn = (b2− b1)/n. For 1 6 u, v 6 n, we denote by Ru,v the rectangle

with corners (a1+ (u− 1)αn, b1+ (v− 1)βn) and (a1+ uαn, b1+ vβn).

Letting E denote the expectation w.r.t. the random point z = (a, b), we have that

E[diam(ϕ(B(z, αn +βn)))1d(z,η)<αn+βn ] >
n∑

u=1

n∑
v=1

E[diam(ϕ(Ru,v))1η∩Ru,v 6=∅1z∈Ru,v ]

=
1
n2

n∑
u=1

n∑
v=1

diam(ϕ(Ru,v))1η∩Ru,v 6=∅. (3.3)

On the other hand, we know that

E[Sn] 6
n∑

u=1

n∑
v=1

E[diam(ϕ(Ru,v))1η∩Ru,v 6=∅1(v−1)βn6b−b1<vβn ]

=
1
n

n∑
u=1

n∑
v=1

diam(ϕ(Ru,v))1η∩Ru,v 6=∅. (3.4)

Combining (3.3) and (3.4) and applying Proposition 3.2 in the second to last equality,

we see that

E[Sn] 6 nE[diam(ϕ(B(z, αn +βn)))1d(z,η)<αn+βn ] = n× O(nι−2/d) = o(1) as n→∞.

This implies that Sn converges to 0 in probability; hence we can find a subsequence n(r)
along which Sn(r) converges to 0 a.s.

Putting the sequence Sn(r) into (3.2) and letting r go to ∞, we get that a.s.

1 6
k∑

j=1

∫
[x j ,y j ]

|ϕ′(w)| dw. (3.5)

We know by Lemma 3.1 that ϕ′ is L1 on K ; hence ϕ′ is a.s. L1 on I (as the height of

I is uniformly random). This implies that for any ε > 0, we can find δ0 > 0, such that

for all δ ∈ (0, δ0) and all points x1, y1, . . . , xk, yk in I such that
∑k

j=1 |y j − x j | < δ, the

right-hand side of (3.5) is smaller than ε. This proves that it is a.s. the case that for such

a randomly chosen line L, the function ϕ is absolutely continuous on L.

Our main goal in the rest of the section will be to prove Proposition 3.2. This will be

accomplished in two steps in §§ 3.2 and 3.3. We will first estimate in § 3.2 the distortion

under ϕ of a small ball B(z, ε) which intersects η. Then in § 3.3, we will finally prove

Proposition 3.2 using the results in § 3.2 and the fact that the upper Minkowski dimension

of η̃ is strictly less than 2.

3.2. Distortion along the curve

Throughout, we fix α > 1 > β ′ > β > ρ > 0 and a compact rectangle K ⊆ H. The goal of

this section is to prove that provided ε > 0 is sufficiently small, if a ball B(z, ε) with z ∈ K
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Figure 4. On the left, η makes three excursions e1, e2, e3 between ∂B(z, εβ
′
) and ∂B(z, εβ ). On the right,

we depict the parts of η̃ in B(z1, δ̂1), with η̃(t1; δ̂1) in red (which is a subset of ϕ(e1)) and the other parts
in gray. Note that the definition of δ̂i is given in the proof of Lemma 3.4. Also note that here and in all
later figures, we depict the curve as simple for clarity, even if it is in fact allowed to be self-intersecting
(but not self-crossing).

intersects η, then ϕ(B(z, ερ)) (as long as the image is also small) contains a Euclidean

ball with diameter at least diam(ϕ(B(z, ε)))α.

Let us first recall the Beurling estimate (see, e.g., [4, Theorem V.4.1]), which is a basic

tool that we will use multiple times in the sequel.

Lemma 3.3 (Beurling estimate). There exists a constant c > 0 such that for any curve

γ from ∂B(0, ε) to the unit circle, the probability that a Brownian motion starting at −ε

reaches the unit circle without hitting γ is bounded above by cε1/2. By inversion symmetry,

the probability that a Brownian motion starting at 1 reaches ∂B(0, ε) without hitting γ is

also bounded above by cε1/2.

Let us now come back to the estimates of the distortion along the curve. Let ε > 0. For

any z ∈ K such that η intersects B(z, ε), let N be the number of excursions of η between

∂B(z, εβ
′

) and ∂B(z, εβ). By (H1), we know that there exist M > 0 and ε0 > 0 such that

for all ε ∈ (0, ε0) we have N 6 M . Denote the excursions by e1, . . . , eN . See Figure 4 for

an illustration of the definitions. Let δi be the diameter of ϕ(ei ). Let δ̂ := max(δ1, . . . , δN ).

Lemma 3.4. There exist ε0, δ0 ∈ (0, 1) such that for any z ∈ K and ε ∈ (0, ε0) with η∩

B(z, ε) 6= ∅ there exists y such that

B(y, 2δα)∩ η̃ 6= ∅ and B(y, δα) ⊆ ϕ(B(z, ερ)) where δ := min(̂δ, δ0). (3.6)

Proof. Note that for all i ∈ [1, N ], since ϕ(ei ) has diameter δi , there exists ti so that

η̃(ti ) ∈ ϕ(ei ) and η̃(ti ; δi/4) ⊆ ϕ(ei ) (recall that the notation η̃(ti ; δi/4) is defined in (1)).

Let zi := η̃(ti ). Let K̃ ⊆ H be some compact set that contains ϕ(η∩ K ). Applying (H2)

to η̃ and K̃ with some 1 < ξ < α fixed, we get that there exists δ0 > 0 such that for every

i , if we let δ̂i := min(δi/4, δ0), then there exists yi ∈ B(zi , δ̂i ) such that B(yi , δ̂
α
i )∩ η̃ = ∅
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and B(yi , 2̂δαi )∩ η̃ 6= ∅. Moreover, if we let Oi be the connected component of B(zi , δ̂i ) \ η̃

that contains B(yi , δ̂
α
i ), then for any point a in ∂O \ϕ(ei ), any path contained in O ∪ {a}

which connects yi to a must exit the ball B(yi , δ̂
ξ
i ).

We now show that we can choose ε0, δ0 > 0 small enough so that ϕ−1(B(yi , δ̂
α
i )) ⊆

B(z, ερ) for all i , which will imply the lemma. If one starts a Brownian motion from any

point w ∈ B(yi , δ̂
α
i ) and stops it upon hitting η̃∪R, then in order for it not to stop in

ϕ(ei ), by the previous paragraph, the Brownian motion must exit the ball B(yi , δ̂
ξ
i ). It

follows from the Beurling estimate that the probability that the Brownian motion stops in

ϕ(ei ) is 1− O (̂δ(α−ξ)/2i ). Since ϕ−1 is conformal on H \ η̃, if one starts a Brownian motion

B from ϕ−1(w) and stops it upon hitting η∪R, then the probability that it stops in ei
is also 1− O (̂δ(α−ξ)/2i ). However, if ϕ−1(w) is outside of B(z, ερ), then by the Beurling

estimate, the probability that B stops in ei is O(ε(β−ρ)/2). This is impossible as long as

ε0, δ0 > 0 are small enough.

Lemma 3.4 implies the following lemma.

Lemma 3.5. For any C > 0, there exist ε0, δ0 ∈ (0, 1), such that for any z ∈ K and ε ∈

(0, ε0) with η∩ B(z, ε) 6= ∅, for any δ 6 C min(̂δ, δ0), there exist y ∈ δαZ2 such that

B(y, 2δα)∩ η̃ 6= ∅ and B(y, δα) ⊆ ϕ(B(z, ερ)).

Proof. Lemma 3.4 implies that for ε0, δ0 small enough, ϕ(B(z, ερ)) contains some

B(y,min(̂δ, δ0)
α) such that (3.6) is satisfied.

For any α′ > α, one can always make δ0 small enough, so that for any δ 6 C min(̂δ, δ0),

we have δα
′

6 min(̂δ, δ0)
α. In this case, ϕ(B(z, ερ)) must also contain some ball B(y′, δα

′

)

where y′ ∈ δα
′Z2 and B(y′, 2δα

′

)∩ η̃ 6= ∅. This proves the present lemma with α′ instead

of α. However, since α is an arbitrary number in (1,∞), so is α′; hence we are done.

In the following lemma, we will compare the diameters δi of the excursions to

the diameter of ϕ(B(z, ε)), which will later allow us to apply Lemma 3.5 for δ =

diam(ϕ(B(z, ε))).

Lemma 3.6. There exist C0 > 0 and ε0 ∈ (0, 1) such that, for any z ∈ K and ε ∈ (0, ε0)

with η∩ B(z, ε) 6= ∅, for C = M(2C0+ 1), we have

diam(ϕ(B(z, ε))) 6 (2C0+ 1)
N∑

i=1

δi 6 C δ̂. (3.7)

Proof. We would like to show that one can choose C0 > 0 big enough and ε0 > 0 small

enough, such that for all ε ∈ (0, ε0) with η∩ B(z, ε) 6= ∅, if D is any connected component

of B(z, εβ) \ η that intersects B(z, ε), then we have

ϕ(D ∩ B(z, ε)) ⊆
N⋃

i=1

B(ϕ(ei ),C0δi ), (3.8)

where B(ϕ(ei ),C0δi ) denotes the C0δi neighborhood of the set ϕ(ei ). If this is true for
any such D, then we would have proven that ϕ(B(z, ε)) is included in the closure of
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the right-hand side of (3.8). Note that each of the B(ϕ(ei ),C0δi ) has diameter at most

(2C0+ 1)δi ; hence any connected component of the closure of the right-hand side of (3.8)

has diameter at most
∑N

i=1(2C0+ 1)δi . Since ϕ(B(z, ε)) is connected, we see that (3.8)

implies that (3.7) holds.

Now, let D be a connected component of B(z, εβ) \ η that intersects B(z, ε). For any

point y ∈ D ∩ B(z, ε), the Beurling estimate implies that a Brownian motion started from

y and stopped upon hitting η∪R hits
⋃N

i=1 ei with probability 1− O(ε(1−β
′)/2). The map

ϕ is conformal on D; hence a Brownian motion B started from ϕ(y) and stopped upon

hitting η̃∪R also hits
⋃N

i=1 ϕ(ei ) with probability 1− O(ε(1−β
′)/2). If ϕ(y) is outside of

B(ϕ(ei ),C0δi ), then the Beurling estimate implies that the probability that B ends at

ϕ(ei ) is smaller than cC−1/2
0 where c > 0 is some absolute constant. Hence if ϕ(y) is

outside of
⋃N

i=1 B(ϕ(ei ),C0δi ), then the probability that B stops in
⋃N

i=1 ϕ(ei ) is smaller

than NcC−1/2
0 6 McC−1/2

0 . If we choose C0 big enough and ε0 small enough, then this is

impossible; hence (3.8) is true, so we are done.

3.3. Proof of Proposition 3.2

We are now ready to prove Proposition 3.2. Recall that 1 6 d < 2 is the upper Minkowski

dimension of η̃. Choose some r0 ∈ (1, 1/(d − 1)) (where we take the interval to be (1,∞)
in the case d = 1). Let δ0 ∈ (0, 1) be the one chosen in Lemma 3.4. For any r ∈ (0, r0),

let

E(r, ε) := {z ∈ K : B(z, ε)∩ η 6= ∅, diam(ϕ(B(z, ε))) ∈ (εr , 2εr
]}.

We also define

F(r0, ε) := {z ∈ K : B(z, ε)∩ η 6= ∅, diam(ϕ(B(z, ε))) 6 εr0},

G(δ0, ε) := {z ∈ K : B(z, ε)∩ η 6= ∅, diam(ϕ(B(z, ε))) > δ0}.

If we take rn := r0− n log 2/ log ε−1 for all 0 6 n 6 m where m = r0 log ε−1/ log 2, then we

have

{z ∈ K : B(z, ε)∩ η 6= ∅} = G(δ0, ε)∪F(r0, ε)∪

m⋃
n=0

E(rn, ε).

Lemma 3.7. For any ι > 0, the area of G(δ0, ε) is O(ε2−ι).

Proof. For any z ∈ G(δ0, ε), diam(ϕ(B(z, ε))) > δ0. We also know by Lemma 3.6 that

diam(ϕ(B(z, ε))) 6 C δ̂. This implies δ0 6 C min(̂δ, δ0). We can therefore apply Lemma 3.5

and deduce that ϕ(B(z, ερ)) contains some ball B(y, δα0 ) where y belongs to the following

set

Y := {y ∈ (δα0 Z2)∩ϕ(K ) : B(y, 2δα0 )∩ η̃ 6= ∅}.

Therefore, the union of the balls B(ϕ−1(y), ερ) for all y ∈ Y covers G(δ0, ε). Since η̃ has

upper Minkowski dimension d, we have |Y | = O((δα0 )
−d−ι′) for any ι′ > 0. The area of

G(δ0, ε) is therefore at most πε2ρ
|Y | = ε2ρO((δα0 )

−d−ι′). Since ρ, α are arbitrarily close

to 1 and ι, ι′ are arbitrarily close to 0, we get the bound in the lemma.
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Lemma 3.8. For any r ∈ (0, r0) and any ι > 0, the area of E(r, ε) is O(ε2−rd−ι).

Proof. We already know that the area of E(r, ε)∩G(δ0, ε) is O(ε2ρ) for any ρ < 1.

Hence we only need to consider the case diam(ϕ(B(z, ε))) < δ0. Lemma 3.6 implies that

diam(ϕ(B(z, ε))) 6 C δ̂. Therefore we have that εr 6 diam(ϕ(B(z, ε))) 6 C min(̂δ, δ0). We

can therefore apply Lemma 3.5 and deduce that ϕ(B(z, ερ)) contains some ball B(y, εrα)

where y belongs to the following set

Yr := {y ∈ (εrαZ2)∩ϕ(K ) : B(y, 2εrα)∩ η̃ 6= ∅}.

Therefore, the union of the balls B(ϕ−1(y), ερ) for all y ∈ Yr covers E(r, ε) \G(δ0, ε). Since

η̃ has upper Minkowski dimension d, we have |Yr | = O((εrα)−d−ι′) for any ι′ > 0. The

area of E(r, ε) is therefore at most πε2ρ
|Yr | = ε

2ρO((εrα)−d−ι′). Since we can choose ρ, α

arbitrarily close to 1 and ι, ι′ arbitrarily close to 0, we get the bound in the lemma.

For z uniformly chosen in K , we can compute the following expectation:

E[diam(ϕ(B(z, ε)))1d(z,η)<ε]

6
m∑

n=0

P[z ∈ E(rn, ε)]2εrn +P[z ∈ F(r0, ε)]ε
r0 +P[z ∈ G(δ0, ε)] diam(ϕ(K )).

Applying Lemma 3.8 to bound the probabilities in the sum above, Lemma 3.7 to bound

the probability in the last term above, and using the trivial bound of 1 for the probability

in the middle term above, we see that

E[diam(ϕ(B(z, ε)))1d(z,η)<ε] 6
m∑

n=0

O(ε2−rnd−ι)2εrn + εr0 + O(ε2−ι). (3.9)

Note that εrn = εr02n ; hence the right-hand side of (3.9) is equal to

O(ε2−ι)

m∑
n=0

(εr02n)1−d
+ εr0 + O(ε2−ι). (3.10)

If d = 1, then choose r0 = 2. For any ι′ > ι, (3.10) is at most

mO(ε2−ι)+ εr0 + O(ε2−ι) = O((log ε−1)ε2−ι) = O(ε2−ι′) = O(ε2/d−ι′).

Note that ι, ι′ can be chosen arbitrarily close to 0; hence the above equation proves

Proposition 3.2 for d = 1.

Otherwise if d ∈ (1, 2), then choose r0 = 2/d, which is in the interval (1, 1/(d − 1)).
Then (3.10) is equal to

O(ε2/d−ι).

This completes the proof of Proposition 3.2.

4. Checking the hypotheses for SLE

In this section, we fix κ ∈ (0, 8) and let η be an SLEκ curve in H from 0 to∞. By definition,

η is non-self-crossing. By [51], we have that η a.s. has upper Minkowski dimension at

most d for any d > 1+ κ/8 ∈ (1, 2) and zero Lebesgue measure. (In fact, by [32], η a.s.

has Minkowski dimension 1+ κ/8, but we will not need this stronger result.) We will

show that η a.s. satisfies (H1) and (H2).
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4.1. Hypothesis (H1)

The following lemma says that η a.s. satisfies (H1).

Lemma 4.1. For each β ∈ (0, 1) and compact rectangle K ⊆ H, there a.s. exist M > 0
and ε0 > 0, such that for all ε ∈ (0, ε0), and for all z ∈ K , the number of excursions of η

between ∂B(z, εβ) and ∂B(z, ε) is at most M.

Proof. For any fixed z, the probability that η makes k excursions between ∂B(z, 4ε) and

∂B(z, εβ/2) decays exponentially. A rough upper bound of this probability can be found

in [58, Theorem 5.7], which is

O(εc0(1−β)k), (4.1)

where c0 > 0 is some constant depending only on κ. One can find k = M such that (4.1)

is O(ε4).

We can now apply the Borel–Cantelli arguments. Let εn = 1/n. Let Fn be the event that

there exists z ∈ K ∩ εnZ2 so that there are more than M excursions between ∂B(z, 4εn)

and ∂B(z, εβn /2). By the union bound, the probability of Fn is O(ε2
n), which is summable in

n. This implies that there a.s. exists n0 ∈ N such that for all n > n0, and all z ∈ K ∩ εnZ2,

η makes no more than M excursions between ∂B(z, 4εn) and ∂B(z, εβn /2).
We can now pick ε0 := εn0/2. For each ε ∈ (0, ε0), one can find n > n0, such that εn+1 6

ε < εn . For all z ∈ K , there exist z0 ∈ εnZ2 such that B(z, ε) ⊆ B(z0, 4εn) and B(z, εβ) ⊃
B(z0, ε

β
n /2). The number of crossings between ∂B(z, εβ) and ∂B(z, ε) is therefore at most

the number of crossings between ∂B(z0, 4εn) and ∂B(z0, ε
β
n /2), which is at most M .

4.2. Hypothesis (H2)

In this section, our goal is to show that η a.s. satisfies (H2). In § 4.2.1, we will first reduce

the proof of (H2) to that of Proposition 4.2 and then further boil it down to the proof of

Lemma 4.4. In § 4.2.2, we will focus on proving Lemma 4.4.

4.2.1. Outline of the proof. In order to prove that η a.s. satisfies (H2), we will show

that it is enough to prove Proposition 4.2. Heuristically speaking, (H2) says that one can

find a ball of size δα near an excursion η(t; δ) which is in a certain sense far away from

the other parts of η in B(η(t), δ). In Proposition 4.2, we show that one can find a small

ball near η(t; δ) which is shielded from the other parts of η by a well-chosen arc.

Throughout, we shall assume that we have fixed a compact rectangle K and the

parameters α > γ > ξ > λ > 1, µ > 1. We also introduce the following notation: For

t > 0 and δ > 0, the excursion η(t; δ) is defined in (1). For any excursion e of the type

η(t; δ), let B(w, r) be a ball that intersects e. For each y ∈ B(w, r) \ e, first note that,

the intersection of ∂B(w, r) with the boundary of the connected component of B(w, r) \ e
containing y is a closed arc, then let A(e, w, r, y) be the open arc obtained from taking

away the two endpoints of this closed arc. See Figure 5. We can now state Proposition 4.2.

Proposition 4.2. There a.s. exists δ0 > 0 such that for any δ ∈ (0, δ0), for any t > 0 such

that η(t) ∈ K , one can find w ∈ B(η(t), δ/2) and y that satisfy the following condition:
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Figure 5. Illustration of Proposition 4.2. The bold black arc represents A(η(t; δ), w, δξ , y).

B(y, δα) ⊆ B(w, δγ ) \ η, B(y, 2δα)∩ η 6= ∅, B(w, δγ )∩ η(t; δ) 6= ∅,

A(η(t; δ), w, δξ , y)∩ η = ∅. (4.2)

Lemma 4.3. If Proposition 4.2 holds, then η satisfies (H2).

Proof. Let y be a point chosen according to Proposition 4.2. Then it immediately satisfies

condition (i) of (H2). It then remains to check that it also satisfies condition (ii) of (H2).

Let O denote the connected component of B(η(t), δ) \ η which contains y. Fix ξ ′ ∈ (ξ, α).

We want to check that, for any point a in ∂O \ η(t; δ), any path from y to a which is

contained in O ∪ {a} must exit B(y, δξ
′

). This statement exactly describes the condition

(ii) of (H2), because it in fact holds for arbitrary α > ξ ′ > 1, since α > ξ > 1 can be chosen

arbitrarily. By the last condition of (4.2), such a path must cross A(e, w, δξ , y). Moreover,

since d(y, w) < δγ , it follows that this path also exits B(y, δξ
′

) for some ξ ′ ∈ (ξ, α). This

completes the proof.

The proof of Proposition 4.2 builds on the following key lemma. Assuming Lemma 4.4,

we can conclude using Borel–Cantelli arguments.

Lemma 4.4. Let E(z, δ) be the event that η∩ B(z, δµ) 6= ∅ and for any excursion e of η

between ∂B(z, δµ) and ∂B(z, δ), there exist w ∈ B(z, δ/2) and y that satisfy the following

condition:

B(y, δα) ⊆ B(w, δγ ) \ η, B(y, 2δα)∩ η 6= ∅, B(w, δγ )∩ e 6= ∅, A(e, w, δξ , y)∩ η = ∅.
(4.3)

For every z ∈ K , we have that E(z, δ) holds with probability 1− O(δ4).

Proof of Proposition 4.2. Let δn := 1/n. We define Fn to be the event that there exists

z ∈ K ∩ δµn Z2 such that E(z, δn) does not hold. By Lemma 4.4 and a union bound for all

z ∈ K ∩ δµn Z2, we get that

P[Fn] = O(δ−2µ
n × δ4

n).

The quantity above is summable whenever µ > 1 is sufficiently close to 1. By the

Borel–Cantelli lemma, we know that there a.s. exists n0 ∈ N such that for all n > n0,
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Fn does not occur. This means that for all n > n0 and all z ∈ K ∩ δµn Z2 such that η

intersects B(z, δµn ), for any excursion e of η between ∂B(z, δµn ) and ∂B(z, δn), one can find

w ∈ B(z, δn) and y that satisfy the condition (4.3) for e and δ = δn .

For any δ ∈ (0, δn0), we can find n > n0 such that δn 6 δ/4 6 δn−1. For any t > 0 such

that η(t) ∈ K , there must exist z ∈ K ∩ δµn Z2 such that η(t; δ) contains an excursion

e between B(z, δµn ) and B(z, δn). We know that there exist w ∈ B(z, δn) and y such

that B(y, δαn ) ⊆ B(w, δγn ) \ η, B(y, 2δαn )∩ η 6= ∅, B(w, δγn )∩ e 6= ∅ and A(e, w, δξn , y)∩ η =
∅. This last condition implies that

A(η(t; δ), w, δξn , y) = A(e, w, δξn , y).

It is then not difficult to change δn into δ in the statement (since this is a standard step

similar to what we did in the proof of the previous lemma, we omit it here). We can then

conclude.

4.2.2. Proof of Lemma 4.4. This section is dedicated to the proof of Lemma 4.4. We

will first prove Lemma 4.5 and deduce that for δ > 0 small enough, for any ball B(w, δγ ),
one can a.s. find a ball B(y, δα) contained in B(w, δγ ) \ η such that B(y, 2δα)∩ η 6= ∅.
Then we will need to find such a pair (w, y) which satisfies the additional condition that

B(w, δγ ) intersects η(t; δ) and A(η(t; δ), w, δξ , y) does not intersect η.

Lemma 4.5. There a.s. exists δ0 > 0 such that for any δ ∈ (0, δ0) and any w ∈ K , there

exists y such that

B(y, δα) ⊆ B(w, δγ ) \ η.

We remark that as a consequence of Lemma 4.5, for any w ∈ K such that B(w, δγ )∩ η 6=
∅, knowing that we can find a ball B(y, δα) contained in B(w, δγ ) \ η, we can then also

move the ball B(y, δα) inside B(w, δγ ) \ η so that we also have B(y, δα) ⊆ B(w, δγ ) \ η
and B(y, 2δα)∩ η 6= ∅.

Proof. Fix ζ ∈ (γ, α). For any m ∈ N, if δ > 0 is small enough, then for any w ∈ K we

can place m balls of radius 2δα in B(w, δγ /4) such that their mutual distances are greater

than δζ . Let Ẽ(w, δ) be the event that η intersects all of these m balls. Using the n-point

Green’s function for chordal SLE (see [47, Proposition 2.3]), we get that the probability

of Ẽ(w, δ) is at most an absolute constant times δm(2−d)(α−ζ ). We then choose m big

enough so that m(2− d)(α− ζ )+ 2γ > 2.

We will now use the Borel–Cantelli lemma to complete the proof. Let δn := 1/n. Let

F̃n be the event that there exists w ∈ K ∩ (δγn /4)Z2 such that the event Ẽ(w, δn) holds.

By the union bound, the probability of F̃n is at most a constant times n−m(2−d)(α−ζ )+2γ

which is at most a constant times n−2. The sequence n−2 is summable; hence there a.s.

exists n0 ∈ N such that for all n > n0, F̃n does not occur. That is, for all n > n0 and

w ∈ K ∩ (δγn /4)Z2, there exists B(y, 2δαn ) which is contained in B(w, δγn /4) and does not

intersect η. This implies that for all δ ∈ (0, δn0) and w ∈ K , the ball B(w, δγ ) a.s. contains

some ball B(y, δα) that does not intersect η.

The main idea in proving Lemma 4.4 is the following: Given an excursion η(t; δ), we

place a number of small balls near this excursion which are respectively shielded by
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disjoint arcs (thanks to Lemma 4.5). Then we will show that the future and past (w.r.t.

time t) parts of η have a very small probability to hit all of the shielding arcs. We first

establish this result for the future part of η and then show that it simultaneously holds

for the past of η, using reversibility of SLE [38, 59]. (We expect that one can prove this

result without using reversibility, but reversibility simplifies the proof.) More concretely,

we will make use of the spatial Markov property of SLE and rely on fine estimates of the

deformation of the relevant arcs under conformal maps.

Let us now start to prove Lemma 4.4. We will prove a series of lemmas, and the

proof of Lemma 4.4 will be completed at the very end of the paper. Suppose that η

makes N excursions between ∂B(z, δµ) and ∂B(z, δ) and we denote them by e1, . . . , eN
(in chronological order). For each i , let si < ti be such that ei = η[si , ti ]. Due to the

spatial Markov property of SLE, each ti is a stopping time for the filtration Ft generated

by η|[0,t].

Choose some constant L such that

L(8/κ − 1)(ξ − λ)/4 > 4. (4.4)

Let R := L L+1. For each i ∈ [1, N ], we will place a number of balls with radius δξ centered

at points in Wi , where Wi is defined in the following way: Let ẽi := ei ∩ B(z, δ/2). We want

to choose Wi to be a set of 2R points that are all in ẽi with mutual distances at least

δλ. We also want to choose Wi in a measurable way w.r.t. ei as a set (i.e., without the

time parameterization). We first choose w1 ∈ ẽi to be the leftmost point of ẽi , breaking

ties by taking the point with the smallest y-coordinate. For any j ∈ [1, 2R− 1], assume

that we have chosen the first j points, we will choose w j+1 to be the leftmost point

in ẽi \
⋃ j

k=1 B(wk, δ
λ), breaking ties by taking the point with the smallest y-coordinate.

Note that ẽi \
⋃ j

k=1 B(wk, δ
λ) is non-empty, because ẽi is a connected set with diameter

δ and each of the connected components of
⋃ j

k=1 B(wk, δ
λ) has diameter at most 4Rδλ

which is less than δ when δ > 0 is small enough. We have thus defined Wi .

For any w ∈ Wi , Lemma 4.5 implies that there exists some point y such that

B(y, δα) ⊆ B(w, δγ ) \ η.

First note that since ei ⊆ η, we have B(y, δα) ⊆ B(w, δγ ) \ ei . Since w ∈ ei , we can then

move the ball B(y, δα) inside B(w, δγ ) \ ei so that

B(y, δα) ⊆ B(w, δγ ) \ ei , B(y, 3δα/2)∩ ei 6= ∅. (4.5)

The set of y satisfying (4.5) is compact; hence we can choose yi (w) to be the leftmost y
that satisfies (4.5), breaking ties as above. We have thus defined yi as a function defined

on Wi . Note that this definition of yi is measurable w.r.t. the set ei .

Let us now list in the following Lemma 4.6 some properties of Wi and yi that follow

immediately from our construction. We recall that Wi and yi depend on δ. Moreover, we

will regard Wi as a set and forget about the order of its points given by our construction.

Lemma 4.6. For all δ > 0 and all i ∈ [1, N ], the set Wi and the function yi (defined on Wi )

are measurable w.r.t. the excursion ei as a set (i.e., without the time parameterization)

and there a.s. exists δ0 > 0 so that for all δ ∈ (0, δ0) it satisfies the following conditions:
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(i) Wi contains 2R points and they are all in ei ∩ B(z, δ/2).

(ii) For any w1, w2 ∈ Wi , dist(w1, w2) > δλ.

(iii) For any w ∈ Wi , we have that B(yi (w), δα) ⊆ B(w, δγ ) \ ei and B(yi (w), 2δα)∩ ei 6=

∅.

To prove Lemma 4.4, it now only remains to find at least one w ∈ Wi for each i such that

A(ei , w, δ
ξ , yi (w)) does not intersect η. Our first goal is to prove the following lemma.

Lemma 4.7. For all i ∈ [1, N ], conditionally on {ti <∞} and Fti , with conditional

probability 1− O(δ4) (here and in the sequel, by O(δ4), we mean that this term is a.s.

bounded by Cδ4 for some deterministic constant C which is independent of δ or i but

possibly dependent on R), one can find Si ⊆ Wi such that |Si | > R+ 1 and for all w ∈ Si ,

η|[ti ,∞) does not intersect A(ei , w, δ
ξ , yi (w)).

Proof. To prove Lemma 4.7, it suffices to prove that conditionally on Fti , for any R
points w1, . . . , wR ∈ Wi , the probability that η|[ti ,∞) intersects A(ei , w j , δ

ξ , yi (w j )) for

all j ∈ [1, R] is O(δ4). This will imply that conditionally on Fti , the probability of not

finding any set Si as required in Lemma 4.7 is at most(
2R
R

)
O(δ4) = O(δ4).

Hence it will imply Lemma 4.7.

Let Ji be the Loewner hull of η[0, ti ], i.e., the complement of the infinite connected

component of H \ η[0, ti ]. Let gti be a conformal map from H \ Ji onto H that fixes ∞

(such a conformal map is not unique because there is still the freedom of scaling and

translation, but we just choose any one of them). For any w ∈ Wi , if A(ei , w, δ
ξ , yi (w)) is

entirely contained in Ji (this is possible whenever κ > 4 for which case η is self-touching),

then it cannot intersect η[ti ,∞). Assume that there are at least R points in Wi whose

associated A(ei , w, δ
ξ , yi (w)) arcs are not entirely contained in Ji (otherwise we would

have already found the set Si as required in Lemma 4.7).

For any w ∈ Wi such that A(ei , w, δ
ξ , yi (w)) is not entirely contained in Ji , let Ai (w)

denote the arc which is the intersection between A(ei , w, δ
ξ , yi (w)) and the boundary of

the connected component of H \ (Ji ∪ A(ei , w, δ
ξ , yi (w))) containing∞. Note that η|[ti ,∞)

intersects A(ei , w, δ
ξ , yi (w)) if and only if it intersects Ai (w). Each Ai (w) is mapped by

gti to a deformed arc attached to the real line. See Figures 6 and 7. Since we have assumed

that there are at least R such points in Wi , they will get mapped by gti to R arcs attached

to the real line which are in addition disjoint, hence either one next to another or one

under another. The nesting of the image arcs forms a natural tree structure: in the image

plane, if an arc is directly under another arc (there is no other arc that separates them)

then the first arc is considered to be the child of the second arc. We also need to add

an artificial root vertex and assign all the outermost arcs as its children. We denote this

tree by T . By an abuse of language, the vertices of T can be either points in Wi , their

associated arcs or the images of these arcs, which will be clear in the context. Note that T
is measurable w.r.t. Fti (but not ei ). This tree contains R+ 1 = L L+1

+ 1 vertices; hence it

must contain either a branch of depth at least L + 1 or a vertex with at least L children.
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Figure 6. Illustration of Case 1. On the top, we depict the excursion ei (in red) and the balls B(w, δξ )
where w ∈ Wi . The green arc represents Ai,0. The blue and yellow arcs are the children of Ai,0. The
yellow arc centered at w j is chosen for the renormalization of gτ .

We will treat the two cases separately in the following. We will prove respectively in

Lemma 4.8 and Lemma 4.11 that for each of the two cases, conditionally on Fti , for any

R points w1, . . . , wR ∈ Wi , the probability that η|[ti ,∞) intersects A(ei , w j , δ
ξ , yi (w j )) for

all j ∈ [1, R] is O(δ4). This will complete the proof of Lemma 4.7.

Case 1: T contains a vertex with at least L children. Let us fix some notation which is

locally used in the present case. Let w0 be the vertex which has at least L children and

we arbitrarily pick L of its children w1, . . . , wL . For j ∈ [1, L], we denote the arcs Ai (w j )

by Ai, j . If w0 is not the root of T (i.e., an artificial vertex), then we denote Ai (w0) by

Ai,0 and let τ be the first time after ti that η hits Ai,0. We aim to show the following

lemma.

Lemma 4.8. Conditionally on {ti <∞} and Fti , the probability that η|[ti ,∞) visits all the

arcs Ai, j for j ∈ [1, L] is O(δL(8/κ−1)(ξ−λ)/4). In particular, if L satisfies (4.4), then this

probability is O(δ4).
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Figure 7. Illustration of Case 2. On the top, we depict the excursion ei (in red) and the balls B(w, δξ )
where w ∈ Wi . We depict a branch of depth 3: w1, w2, w3. The yellow arc centered at w j is chosen for
the normalization of gτ .

We will prove Lemma 4.8 for the case where w0 is not the root of T . When w0 is the

root of T , it is an artificial (virtual) vertex and its children are all the outermost arcs.

The proof for this case will follow from almost the same arguments with ti in the place

of τ ; hence we decide to leave it to the reader.

An important tool is the following lemma of Rezaei and Zhan [48]. We define the

function Py : [0,∞)→ R by

Py(x) = y8/κ−2+κ/8x1−κ/8 if x 6 y and Py(x) = x8/κ−1 if x > y.

Lemma 4.9 [48, Theorem 1.1]. Let a0, . . . , aL be distinct points in H such that a0 = 0. Let

y j = Im(a j ) > 0 and l j = dist(a j , {am : 0 6 m < j}), 1 6 j 6 L . Let r1, . . . , rL > 0. Let γ

be an SLEκ curve in H from 0 to ∞. Then there is a constant CL <∞ depending only

on κ and L such that

P[dist(γ, a j ) 6 r j , 1 6 j 6 L] 6 CL

L∏
j=1

Py j (r j ∧ l j )

Py j (l j )
.
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Let Jτ be the Loewner hull of η[0, τ ] and let gτ be a conformal map from H \ Jτ onto H
which fixes ∞ (as we will see later, we will aim to estimate a particular ratio which does

not depend on the choice of gτ ). We reorder the arcs Ai,1, . . . , Ai,L in a measurable way

w.r.t. Fτ so that the diameters of gτ (Ai, j ) are decreasing in j for j ∈ [1, L]. Let r j denote

the diameter of gτ (Ai, j ). Let a0 = 0 and for j ∈ [1, L], let a j be the leftmost point of

gτ (Ai, j )∩R. Then for all j ∈ [0, L], we have that y j = Im(a j ) = 0 and that Py j is equal

to the function x 7→ x8/κ−1. Let l j := dist(a j , {am : 0 6 m < j}) for 1 6 j 6 L. We first

prove the following estimate.

Lemma 4.10. For any j ∈ [1, L], we have

r j/ l j = O(δ(ξ−λ)/4). (4.6)

Proof. We emphasize that the ratio in the left side of (4.6) does not depend on the

renormalization of gτ (as long as gτ fixes ∞); hence we can choose any gτ that is the

most convenient for us. In fact, we will choose a different gτ for each j . Now fix j ∈ [1, L].
Let Oi, j denote the infinite connected component of H \ (Jτ ∪ Ai, j ). The two endpoints

of Ai, j and ∞ divide ∂Oi, j into three parts. There is a unique point a ∈ Oi, j such that

the harmonic measures seen from a in Oi, j of the three boundary parts are all equal to

1/3. See Figure 6 for an illustration. We can now fix gτ to be the conformal map that

sends a to i and∞ to∞. Then in the image upper half-plane, seen from i , the harmonic

measure of gτ (Ai, j ) is 1/3 and the harmonic measures of the parts of the real line to the

left and right of gτ (Ai, j ) are both 1/3.

Note that under our normalization there exist absolute constants 0 < c0 < c1 <∞ such

that c0 6 diam(gτ (Ai, j )) 6 c1. We also note that the distance between a and w j is at most

Cδξ for some absolute constant C > 0. This is because we can apply the Beurling estimate

to the circles of radii Cδξ and δξ around w j and get that if the distance from a to w j
is at least Cδξ for a large enough constant C , then a Brownian motion started from a
would have probability less than 1/3 to stop in Ai, j .

Without loss of generality, we can assume that Ai,0 is attached to the left side of Jτ .
Then the harmonic measure seen from a of the part of ∂(H \ Jτ ) which is to the right of

η(τ) is O(δ(ξ−λ)/2) as a ∈ B(w j ,Cδξ ) and if we start a Brownian motion at a and stop

it upon hitting ∂(H \ Jτ ), then in order for it to stop on ∂(H \ Jτ ) to the right of η(τ),

it has to travel distance at least δλ before exiting H \ Jτ . By the Beurling estimate, this

probability is O(δ(ξ−λ)/2).
Fix m ∈ [1, j − 1]. The harmonic measure seen from a of Ai,m in H \ (Jτ ∪ Ai,m) is

O(δ(ξ−λ)/2) for similar reasons. Indeed, we know that a ∈ B(w j ,Cδξ ) and if we start a

Brownian motion at a and stop it upon hitting ∂(H \ Jτ )∪ Ai,m , then in order for it to stop

on Ai,m , it has to travel distance at least δλ before exiting the domain. By the Beurling

estimate, this probability is O(δ(ξ−λ)/2). Since the diameters of gτ (Ai, j ) are decreasing

in j , we have that diam(gτ (Ai,m)) > diam(gτ (Ai, j )) > c0. We thus see that the distance

between gτ (Ai, j ) and gτ (Ai,m) is at least a constant times δ−(ξ−λ)/4. Since this is true for

all m ∈ [1, j − 1], we have proved that under this normalization, l j is at least a constant

times δ−(ξ−λ)/4. Since r j = O(1), this implies the lemma.
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Combining Lemmas 4.9 and 4.10, we get that conditionally on {τ <∞} (e.g., the event

that η|[ti ,∞) visits Ai,0) and on Fτ , the probability that η|[τ,∞) visits all the arcs Ai, j for

j ∈ [1, L] is at most

CL

L∏
j=1

(r j/ l j )
8/κ−1

= O(δL(8/κ−1)(ξ−λ)/4).

Since we further have that conditionally on {ti <∞} and on Fti , the probability of {τ <

∞} is at most 1, we have proved Lemma 4.8.

Case 2: T contains a branch of depth at least L + 1. Let us fix some notation that is

locally used in the present case. Let this branch be w0, w1, . . . , wL such that for all

j ∈ [1, L], w j is the child of w j−1. In order not to deal with the possibility of w0 being

the artificial root vertex, we will only look at the branch w1, . . . , wL . For j ∈ [1, L], we

denote the arcs Ai (w j ) by Ai, j . We aim to show the following lemma. See Figure 7.

Lemma 4.11. Conditionally on Fti , the probability that η|[ti ,∞) visits the arc Ai,L is O(δ4).

Proof. Note that Lemma 4.8 is in fact valid for any L ∈ N (where L need not satisfy (4.4)).

If we apply Lemma 4.8 to L = 1, then we have that for all j ∈ [1, L], conditionally on

Fti and on the event that η|[ti ,∞) visits Ai, j−1, the probability that η|[ti ,∞) visits Ai, j
is O(δ(8/κ−1)(ξ−λ)/4). In order for η[ti ,∞) to hit Ai,L , it must successively hit Ai, j for

j ∈ [1, L − 1]. Therefore, conditionally on Fti , the probability that η|[ti ,∞) intersects Ai,L
is

O(δL(8/κ−1)(ξ−λ)/4).

Due to (4.4), this is also O(δ4).

Now we have treated the two cases and consequently completed the proof of Lemma 4.7.

We can then deduce the following result on the set of all excursions of η between ∂B(z, δµ)
and ∂B(z, δ).

Lemma 4.12. For any z and δ > 0, the following event holds with probability 1− O(δ4):

for each of the excursions ei that η makes between ∂B(z, δµ) and ∂B(z, δ), for any (Wi , yi )

satisfying conditions (i)–(iii) of Lemma 4.6 with this value of δ, one can find Si ⊆ Wi
such that |Si | > R+ 1 and for all w ∈ Si , η|(ti ,∞) does not intersect A(ei , w, δ

ξ , yi (w)).

Proof. We can apply Lemma 4.7 iteratively for each excursion ei . Note that conditionally

on Fti , the probability that η|[ti ,∞) returns and makes an (i + 1)st excursion is O(δc0(µ−1)),

where c0 is the constant in (4.1) (see [58]). In order for the event in Lemma 4.12 to fail,

one either fails to find the set S1 for the first excursion which happens with probability

O(δ4), or η|[t1,∞) makes a second excursion but one fails to find the set S2 which happens

with probability O(δc0(µ−1))O(δ4), etc. The probability of failure is therefore at most

O(δ4)

∞∑
k=0

δc0(µ−1)k
= O(δ4).

This concludes the proof.
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Proof of Lemma 4.4. By the reversibility of SLE [38, 59] for κ ∈ (0, 8), Lemma 4.12

holds for the time reversal of η. Moreover, we can use the same (Wi , yi ) for both the

forward and reverse curves, since if (Wi , yi ) is measurable w.r.t. ei as a set, then it is also

measurable w.r.t. the time reversal of ei as a set. Thus with probability 1− O(δ4), the

following holds: In the forward direction, for each Wi , the number of w ∈ Wi such that

A(ei , w, δ
ξ , yi (w))∩ η(ti ,∞) 6= ∅ is at most |Wi \ Si | = R− 1. In the reverse direction, for

each Wi , the number of w ∈ Wi such that A(ei , w, δ
ξ , yi (w))∩ η(0, si ) 6= ∅ is also at most

R− 1. This implies that there is at least one point w ∈ Wi such that A(ei , w, δ
ξ , yi (w))∩

(η(0, si )∪ η(ti ,∞)) = ∅. This in fact means that A(ei , w, δ
ξ , yi (w))∩ η = ∅. The pair

(w, yi (w)) hence satisfies (4.3) for the excursion ei . This completes the proof.
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8. J. Dubédat, SLE and the free field: partition functions and couplings, J. Amer. Math.
Soc. 22(4) (2009), 995–1054.
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