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Abstract. We investigate the nature of stationary structures streaming at subfast
magnetosonic speeds perpendicular to the magnetic field in a bi-ion plasma consist-
ing of protons and a heavy ion species in which the magnetic field is frozen into the
electrons, whose inertia may be neglected. The study is based on the properties of
the structure equation for the system, which is derived from the equations of motion
and the Maxwell equations, and therefore reflects the coupling between the two ion
fluids and the electrons through the Lorentz forces and charge neutrality. The basic
features of the structure equation are elucidated by making use of conservation of
total momentum and charge neutrality, which provide relations between the ion
speeds in the unperturbed flow direction and the electron speed. This combination
of relations, which we call the momentum hodograph of the system, reveals the
structure of the flow and the magnetic field in a solitary-type pulse. In particular,
we find that in the initial portion of a compressive soliton, heavy ions run ahead
of the electrons and the protons lag between them until a point is reached where
they all once more attain the same speed, after which the protons run ahead and
are accelerated whereas the heavies now lag behind the continuously decelerating
electrons. The second half of the wave is a mirror image of the first portion. The
strength of the compression (the amplitude of the wave) is determined from the
momentum hodograph, and depends upon the initial Mach number, abundance ra-
tio of heavies to protons and the mass ratio. The analysis is relevant to subfast
flows of mass-loaded plasmas and pile-up boundaries, which appear near comets
and non-magnetic planets.

1. Introduction
In many space plasma phenomena, heavy ions are present in abundances that are
not negligible relative to protons. Cometary plasma is generally a mixture of the so-
lar wind, which is dominated by the protons, and cometary matter, which becomes
ionized by photoionization and charge-exchange processes. Multi-ion plasmas also
exist near non-magnetized planets, where the solar wind has direct access to iono-
spheric and atmospheric planetary shells.

The multicomponent nature of space plasmas gives rise to interesting new ef-
fects due to the coupling brought about the Lorentz forces and the quasi-charge-
neutrality constraint. For example, the fact that alpha particles are observed to
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flow faster than protons in the solar wind reveals specific features of stationary
flows in multi-ion plasmas. McKenzie et al. (1993) and McKenzie (1994) have shown
that a differential streaming between the protons and the alphas can lead to low-
frequency compressional instabilities. In addition, these studies provide a general-
ization of the idea of stationary waves and critical points in multi-ion plasmas that
may be applied to the flow of minor ions in the solar wind (Czechowsky et al. 1998).
The problem of critical points also appears in problems associated with the origin
of unexpected plasma boundaries found near comets and Mars (Sauer et al. 1994).
At some of these boundaries, the proton number density drops while the density of
the heavies either increases or remains essentially constant. This kind of transition
is accompanied by pile-up of the magnetic field (Sauer and Dubinin 2000).

Baumgärtel and Sauer (1992) and Sauer et al. (1992) have considered the simple
case of steady flow of a proton–electron plasma around a very heavy (immobile)
ion cloud. In the case of field-aligned flow, there is a critical peak density for the
heavies above which a steady-state solution for plasma flow does not exist. In the
case of a transverse magnetic field, the flow picture becomes more complicated
because of the appearance of the Lorentz force, and the singularity point occurs
when a critical column density is achieved. In the general case of mobile heavies, the
motion of all three populations (electrons, protons and heavies) becomes strongly
coupled. Motivated by the problem of stationary flows in multi-ion plasmas and, as
is believed, by the related problem of discontinuity-like boundaries observed near
comets and unmagnetized planets, which are not predicted in the single-ion MHD
approach, we examine the properties of nonlinear stationary structures in a bi-ion
plasma.

The addition of new ion species modifies the characteristics of plasma waves
(Smith and Brice 1964; Mann et al. 1997) by producing a new cutoff frequency
and the appearance of a new mode. Observations near comets provide not only
examples of ‘random’ wave phenomena associated with multi-ion plasmas but also
well-isolated, coherent events (Tsurutani et al. 1987; Russell et al. 1987; Glassmeier
et al. 1993). Certain types of nonlinear waves and solitons were theoretically studied
by Verheest (1990) and Hackenberg et al. (1998). Observations of strongly nonlinear
waves near comets Giacobini–Zinner and Grigg–Skjellerup led Verheest (1990) to
study soliton solutions for Alfvén waves propagating parallel to the magnetic field
when ion species stream differentially. In this case, the structure equation is of the
derivative nonlinear Schrödinger type. The relative streaming increases the width
and decreases the amplitude of the solitons. Hackenberg et al. (1998) have obtained
fast and slow soliton waves with compression and rarefaction characterized by
correlation and anticorrelation between the magnetic field and plasma density in
the case of oblique propagation.

Here we consider soliton-like solutions in a bi-ion plasma for the simple case where
the magnetic field is transverse to the flow (see also Sauer et al. 2000). The properties
of compression and rarefaction solutions may be deduced from the momentum
hodograph (see below).

The layout of the paper is as follows. The governing equations are presented in
Sec. 2. These are the fluid equations for each ion species, which are coupled to-
gether through the Lorentz force and the Maxwell equations. The magnetic field is
frozen into the electrons, so that Hall-current effects are automatically included
and differential streaming between the ion species automatically arises. In Sec. 3,
we consider the special case of a steady flow perpendicular to the magnetic field,
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and derive the structure equation for one-dimensional stationary nonlinear waves
(e.g. solitons). The idea of the momentum hodograph of the system is introduced
in Sec. 4 by using the combination of total momentum conservation and charge
neutrality, which provides algebraic relations between the ion velocities and the
electron velocity in the direction of the unperturbed flow at any point in the struc-
ture. This section shows how the hodograph plane proves to be a useful tool in
understanding the flow patterns and the magnetic field of the wave. The results are
summarized in Sec. 5, in which we discuss their relevance to pile-up boundaries.

2. Governing equations
The equations of continuity and motion for each ion species with density ni, velocity
ui, pressure pi, mass mi and charge eZi are

∂ni
∂t

+∇ · (niui) = 0 (1)

mini
Diui
Dt

= eZini(E + ui × B)−∇pi (2)

Di

Dt
≡ ∂

∂t
+ ui ·∇, (3)

where B and E are the magnetic and electric fields respectively. The latter may be
eliminated from the system through Ohm’s law,

E = −ue × B− ∇pe
ene

, (4)

which follows from the electron equation of motion, in which electron inertia is
neglected. The magnetic field evolves according to Faraday’s law, which, on using
(3) for E and assuming a functional relationship between pe and ne, may be written
in the form

DeB
Dt

= B ·∇ue − B∇ · ue, (5)

De

Dt
≡ ∂

∂t
+ ue ·∇. (6)

The magnetic field is frozen into the electron fluid. The remaining Maxwell equa-
tion, Ampère’s law, is

1
µ0
∇× B = J + ε0

∂E
∂t
, (7)

where, for the moment, the displacement current is retained. The current J and
charge density σ are given by

J =
∑
i

eZiniui − eneue, (8a)

σ =
∑
i

eZini − ne. (8b)

These quantities are related through continuity by

∇ · J +
∂σ

∂t
= 0, (9)
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so that the Poisson equation

ε0∇ · E = σ (10)

follows as a consequence of the continuity and Faraday equations. The total mo-
mentum equation for the system is obtained by adding (2) together with the electron
equation of motion to yield∑

i

mini
Diui
Dt

= −∇
(∑

i

pi + pe

)
+ ε0E∇ · E + J× B. (11a)

If we impose the quasi-charge-neutrality condition σ ≈ 0, the second term on the
right-hand side of (11a) may be neglected, and also, to be consistent, we neglect
the displacement current in (7) and expand J× B to obtain total momentum con-
servation in the form∑

i

mini
Diui
Dt

+∇
(∑

i

pi + pe +
B2

2µ0

)
− B ·∇B = 0. (11b)

In this form, the electric field stresses and the rate of change of momentum associ-
ated with the Poynting vector are relativistically small compared with the magnetic
field stress, and hence may be neglected. This is the standard MHD approximation,
except that B is frozen into the electrons, and therefore Hall-current effects are
automatically included in the system as a whole.

3. Stationary structures with variations perpendicular to the magnetic
field in a bi-ion system
Here we consider the special case of B = (0, 0, B), ui = (uix, uiy, 0),Di/Dt = ui d/dx;
that is, the ion flows are perpendicular to the magnetic field, variations are only in
the x-direction and the system is stationary (∂/∂t = 0). The continuity equation
becomes

niuix = ji, a constant (12a)

or

miniuix = Mi, a constant. (12b)

The total-momentum equation integrates immediately to yield∑
i

(Miuix + pi) + pe +
B2

2µ0
= Mx, a constant, (13a)

∑
i

Miuiy = My, a constant, (13b)

where Mx and My are the x and y components of the conserved momentum. Fara-
day’s law reduces to

uexB = Ey, a constant. (14)

In an adiabatic systems, we have
pi
nγii

= const or piu
γi
ix = const, (15a)

pe
nγee

= const or peu
γe
ex = const. (15b)
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Equations (12)–(15) represent the important conserved quantities of mass, momen-
tum, the y component of the electric field and entropy. In addition, the charge-
neutrality condition is

ne =
∑
i

Zini. (16)

The x and y components of the equations of motion (2) may be written as

1
Ωi

Diuix
Dt

= uiy − uey − 1
Ωi

(∇xpi
mini

+
∇xpe
mene

)
, (17a)

1
Ωi

Diuiy
Dt

= uex − uix, (17b)

in which Ωi, is the ion gyrofrequency,

Ωi = ZieB/mi. (17c)

In a bi-ion plasma, i = p (protons) or i = h (heavy ions), subtracting the x compo-
nents of the equations of motion from each other eliminates the transverse electron
velocity uey and the electron pressure-gradient term to yield

1
Ωp

(
1− u2

px

c2
p

)
Dpupx
Dt

− 1
Ωh

(
1− u2

hx

c2
h

)
Dhuhx
Dt

=
{
uhy(1 +Mh/Mp),
upy(1 +Mp/Mh),

(18)

in which transverse momentum with My = 0 has been used to eliminate either upy
or uhy on the right-hand side, and the adiabatic relations (15) eliminate pi in favour
of uix, where we have introduced the ion sound speed ci,

c2
i =

γipi
mini

∝ u−(γi−1)
ix . (19)

The operation of Dh/Dt on (18) and the use of (17b) with i = h eliminates uiy in
favour of uex − uhx to yield

Dh

Dt

[
1

Ωp

(
1− u2

px

c2
p

)
Dpupx
Dt

− 1
Ωh

(
1− u2

hx

c2
h

)
Dhuhx
Dt

]

= −jh
jp

(
1 +

Mp

Mh

)
Ωp(uex − uhx). (20)

Clearly an alternative equation may be obtained with the operation ofDp/Dt on the
left-hand side of (18), with the result that an equivalent right-hand side involving
Ωh(uex − upx) would appear. Equation (20), a second-order differential equation,
determines the structure of the transition. It is in fact a second-order differential
equation for uex. This is the natural (physical as well as mathematical) independent
variable of the system in the sense not only that a deceleration in uex measures
magnetic and electron pressure compressions but also because uhx and upx can be
expressed in terms of uex by using conservation of the x component of momentum
and the charge-neutrality condition, as we shall see subsequently.

4. The momentum hodograph and the structure equation
The charge-neutrality condition (16) together with the fact that Jx = 0 provides the
following relation between the x components of the electron, proton and heavy-ion
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velocities:

upx = uex +
jh
jp
upx

(
uex
uhx
− 1
)
. (21)

This simple relation tells us that if the heavy ions lag behind the electrons (uhx <
uex), the protons run ahead of the electrons (upx > uex), and vice versa. Moreover,
(21) combined with conservation of x momentum (13a) constitute two coupled
algebraic equations for the variables upx, uhx and uex. In principle, these may be
solved to give upx and uhx as functions of uex (and the parameters mh/mp, the
mass ratio, jh/jp, the flux number density ratio, and the fast Mach number). The
structure equation (20) may be written in the form

1
Ωp

d

dx

{[(
1− c2

p

u2
px

)(
1 +

jhupx
jpuhx

)
uhx

dupx
duex

+
uhx
Mp

d

duex

(
pe +

B2

2µ0

)]
1

Ωp

duex
dx

}

= −
(
jh
jp

)2(
1 +

Mp

Mh

)(
uex
uhx
− 1

)
, (22)

in which

dupx
duex

=
1 +

jhupx
jpuhx

+
mp

mh

uexupx
u2
hx

1
Mp

dP

duex

(
1− c2

h

u2
hx

)
1 +

jh
jp

(
uex
uhx
− 1
)
− mp

mh

uexupx
u2
hx

1− c2
p/u

2
px

1− c2
h/u

2
hx

, (23a)

1
Mp

dP

duex
≡ 1
Mp

d

duex

(
pe +

B2

2µ0

)
= −

[
1
M 2
A

(
u0

uex

)3

+
1
M 2
e

(
u0

uex

)γe+1]
(23b)

M 2
A =

u2
0

V 2
A

, M 2
e =

u2
0

V 2
e

, V 2
A =

B2
0

µ0mpnp0
, V 2

e =
γpe0

mpnp0
, (23c)

where (23a) follows from differentiating x momentum and charge neutrality with
respect to uex The subscript 0 refers to plasma values of the impinging flow
at infinity (x = −∞). Equation (22) is a second-order nonlinear differential equa-
tion for uex in which upx and uhx are functions of uex through the solution of
the momentum equation and the charge-neutrality condition. We shall call these
relations the momentum hodograph for the system. It proves to be a useful tool
in understanding the behaviour of the solutions of (23), all of which must lie on
the phase plane of the momentum hodograph. Thus, if we know how upx and
uhx vary with uex, the qualitative structure of the transition of a stationary wave
is readily understood. The natural length scale in the structure equation
is the Larmor radius of the protons enhanced by the abundance ratio, i.e.
(u0/Ωp0)np/nh.

However, before proceeding to a discussion of the solutions of the full nonlinear
structure equation, we note that the linearized version of (23) in a massive-ion limit
in the neighbourhood of the initial state yields solutions of the form exp(κx), where
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κ is given by

κ2 =

Ω2
p

u2
0

(
nh
np

)2

0

(
1 +

Mp

Mh

)
V 2
A + V 2

e

u2
0

−
(

1− c2
p

u2
0

)[
1 +

(
nh
np

)
0

](
dup
due

)
0

. (24a)

This is the stationary-wave dispersion equation for the system, and requires the flow
to be ‘subfast’ (u0 < (V 2

A + V 2
e )1/2/(1 + nh/np)0) to ensure exponential behaviour

(κ2 > 0), which in turn permits the build up of a nonlinear structure. The dispersion
equation for propagating waves (∝ exp(iωt − ikx)) follows from (24a) using the
transformations u0 → ω/k and κ → ik; and for the case of massive (mp/mh � 1)
cold ions and protons (cp = ch = 0), we obtain the simple and clear relation

ω2 =
(V 2
A + V 2

e )k2 + Ω2
p(nh/np)

2
0

[1 + (nh/np)0]2 . (24b)

This shows the existence of a cut-off frequency

ωc =
Ωp(nh/np)0

1 + (nh/np)0
, (24c)

below which the waves are evanescent and above which the wave propagates with
the fast-mode speed reduced by 1 + (nh/np), at long wavelengths. This tells us
that near the endpoints of the wave, the structure equation reduces to the Klein–
Gordon type. At very low frequencies and long wavelengths, the exact dispersion
equation shows there is a new ion-cyclotron-type mode associated with the heavies,
displaying a resonance, and whose speed at the lowest frequencies is essentially the
Alfvén speed based on the total mass density (Smith and Brice 1964; Sauer et al.
1990). We should therefore find that stationary waves of evanescent type would
require higher Alfvén speeds than this value in the very low-frequency limit.

To illustrate the usefulness of the momentum-hodograph view, let us consider
the simplest (algebraically) case of cold ions and electrons, so that only the mag-
netic pressure is available to balance changes in the momentum of the protons and
heavies. Eliminating upx from the cold version of x-momentum conservation using
(21) gives a quadratic equation in uhx, whose solutions, in normalized form, may
be written

uh − 1 =
−b±√b2 − 4ac

2a
, (25)

where

a ≡ mhnh
npmp

u∞, (26a)

b ≡ mhnh
mpnp

(u∞ − ue) +
uenp
nh
− u∞ − u∞

2M 2
A

(1− u−2
e ), (26b)

c ≡ −
[

(u∞ − ue)(1− u−2
e )

2M 2
A

− u∞(ue − 1)
]
, (26c)

u∞ = 1 +
jp
jh

= 1 +
np
nh

(26d)
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3
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0
0.4 0.8 1.2 1.6

(1,1)

uhx

upx

uhx=
uhx=

uhx

ue min ue max

uex

upx, uhx

Figure 1. The loci of upx and uhx for a set of parameters MA = 0.7, nh/np = 0.2 and
mh/mp = 15 defining the initial state. All solutions of the structure equation lie on these
loci, which we refer to as the momentum hodograph. Compressive solitons evolve along the
curves to the left of the initial point (uex < 1), whereas rarefaction solitons (if they exist)
evolve along the curves to the right (uex > 1). The strength of the soliton is defined by uemin

(compression) or uemax (rarefaction). The broken curves are inaccessible from the initial point
except through discontinuities.

uh ≡ uhx
u0

, ue ≡ uex
u0

, up ≡ upx
u0

, (26e)

in which u0 is the incoming speed and nh/np is the heavy abundance relative to the
protons. Thus, with (25) determining uh as a function of ue (for given parameters
mh/mp, nh/np and the fast Mach number MA), the charge-neutrality relation (21)
provides up as a function of ue, which in normalized form becomes

up =
(np/nh)ue
u∞ − ue/uh . (27)

Equations (26 and 27) are the explicit form of the momentum hodograph in the
case of a cold plasma. The maximum compression (or rarefaction) that can be
attained in such a wave is given by value of ue that makes b2 − 4ac = 0 in (24a).
Figure 1 shows the locii of up and uh as functions of ue. Initially (at the point (1,1)),
the protons and heavies are decelerated along with the electrons, with the heavies
running ahead of and the protons lagging behind the electrons. Near the end of
the compression (ue = uemin), the protons then run ahead of the electrons and the
heavies lag behind. The structure is completed as a mirror image, with the protons
and heavies evolving back along the loci to return to the initial state.

An exact numerical solution of the structure equation (22) is shown in Fig. 2,
which displays all the features revealed by the momentum hodograph. It should be
noted that the change in sign of the y component of the Lorentz force is also evident
in the intersection between the hodograph curves and the line up = uh = ue, where
we see that where up > ue and uh < ue near the centre of the wave, the protons and

https://doi.org/10.1017/S002237780100109X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780100109X


Stationary waves in a bi-ion plasma 205

1.6

1.4

1.2

1.0

0.8

0.6

1.0

0.8

0.6

0.4

2.0

1.8

1.6
1.4

1.2

0 2 4 6 8 0 2 4 6 8

0.4

0.2

0.0

–0.2

–0.4

4

3

2

0.8
1.0
1.2
1.4
1.6
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np

nh
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uhx

Bz

upx

x (Xp/upx)0 x (Xp/upx)0

Figure 2. The structure of a compressive soliton formh/mp = 15, nh/np = 1.5 andMA = 0.3.
Note that near the centre of the wave, the protons are depleted because of their rapid accel-
eration there. The maximum compression in B is about 2.1, corresponding to uemin = 0.48.

heavies are deflected in opposite directions, with the mirror image of this solution
pertaining after the centre of the wave.

Figure 3(a) shows uemin (from b2 = 4ac), which determines the maximum strength
of the compression (Bz ∝ 1/ue) as a function of the Alfvén Mach number MA for
given (nh/np)0 and mh/mp. As MA increases, uemin (Bmax) decreases (increases).
In the limit ue → 1, MA → 0, the following provides a good approximation to the
maximum compression: and

uemin ≈ 1− M 2
A

u∞

(
1 +

mh

mp
− 2
√
mh

mp

)
. (28a)

In a plasma dominated by the heavies, the maximum compression increases, and
is given approximately by

uemin ≈ 1√
2MA

1√
1 +

mhnh
mpnp

. (28b)

The compression is also enhanced by increasing the abundance of the heavy ions.
This is clearly seen in Fig. 3(b), which shows uemin as a function of the number-
density ratio nh/np for given values of MA and the mass ratio mh/mp. Examples
of the momentum hodograph are displayed in Fig. 4, which, for a given heavy-to-
proton mass ratio, shows the effect of varying the abundance ratio nh/np and the
fast Mach number MA on the relations between up, uh and ue. All display the inter-
esting feature that as the solution evolves from the initial point (up = uh = ue = 1
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2

(a)

α= 0.2, l=15

α=1.5, l=20

uemin

1.0

0.8

0.6

0.4

0.2

0

uemin

0 1 2 3 4 5
α

(b)

Figure 3. (a) The inverse maximum compression uemin as a function of MA for different mass
and density ratios. Solitons are permitted only between the points 1 and 2 in order to satisfy
the evanescent criterion. (b) uemin as a function of the density ratio α = nh/np for a given
MA = 0.5 and µ = mh/mp = 20.

at x = −∞), the heavies at first run ahead of the electrons (uh > ue) and the pro-
tons lag behind (up < ue), until a point is reached where all fluids are decelerated
to the same speed (up = uh = ue), after which the protons run ahead of the elec-
trons and accelerate while the heavies now lag behind the electrons, both of which
continue to decelerate until the electrons reach a critical speed below which there
are no real solutions for up and uh corresponding to the maximum compression
of the magnetic field and the electron density. The structure then evolves back up
the (up,h, ue) curves to return to the initial values (now at x = +∞); that is, the
second half is a mirror image of the first half of the solution. The top panel on the
left displays the interesting feature that once the protons are accelerated and run
ahead of the electrons, they can attain speeds in excess of their entry speed (i.e.
up > 1), with the result that their initial compression is followed by an expansion
near the centre of the wave.

Figure 5 shows the speeds of the protons and the heavy ions at the critical point
of maximum deceleration of the electrons as a function of the initial flow speed.
The interesting feature is that the protons gain the maximum momentum at low
Mach numbers. If we use the analytical expression (28a) for ue and take MA → 0,
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Figure 4. Examples of the compressive portion of the momentum hodograph for a variety
of different parameters.
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Figure 5. The limiting values of up and uh associated with uemin as functions of the Mach
number MA for α = nh/np = 1.5 and µ = mh/mp = 20. Note the jumps in up and uh at
MA = 0, where uemin = 1.
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we find from (25) and (27) that uh and up are given by

uh =

nh
np

+
√
mp

mh

1 +
nh
np

, (29a)

up =
√
mh

mp

1 +
np
nh

√
mp

mh

1 +
np
nh

. (29b)

This is noteworthy in that although ue → 1 uh jumps down (to about 0.69 for
the case shown in Fig. 5) and up jumps up (to about 3.05) to conserve the finite
jump in normalized magnetic pressure given by mh/mp + 1 − 2

√
mh/mp, which

follows from (28a). Figure 6 shows the momentum hodograph as this interesting
limit is approached. The behaviour of the various quantities uex(B), upx and uhx
near the point of maximum compression (i.e. the centre of the soliton) follows from
approximate solutions of the structure equation (23). With uemin as the value of ue
that makes b2 = 4ac in (25a), it follows that

ue ≈ uemin + kex
4, (30a)

uh ≈ uhmin + khx
2, (30b)

up ≈ uhmin − kpx2, (30c)

where the constant ke follows from the structure equation and relates to values in
the neighbourhood of uemin, and kh and kp follow from the momentum hodograph.
The interesting feature here is that ue approaches its minimum value in a much
‘flatter’ way than uh approaches its minimum and up approaches its maximum. This
feature is reflected in the momentum hodograph, which shows that as the centre
of the wave is approached, changes in momentum are taken up by an acceleration
of the protons and a deceleration in the heavies because the magnetic pressure has
‘run out of steam’.

In principle, the properties of rarefaction stationary waves can be deduced from
inspecting the momentum hodograph in the region ue > 1(B < 1). For example,
Fig. 1 shows that the protons run ahead of the electrons and are continuously
accelerated up to a limiting value (corresponding to where ue reaches uemax). On
the other hand, the heavies lag behind ponderously and are decelerated to their
limiting value. In Fig. 7, the inverse maximum expansion of B measured by uemax

is plotted as a function of the Alfvén Mach number along with the corresponding
limiting values of up and uh. For smallMA and massive ions, uemax is approximated
by

uemax ≈ 2
npmp

nhmh

(√
u∞

2M 2
A

−
√
mh

mp

)2

. (31)

However, an analysis of the structure equation (22) shows that it has a critical point
where the square bracket on the left hand is zero at some value ue = uc, say, near
which the solutions may be approximated by

(ue − uc)2

2
+ k

[(
ue
uh

)
c

− 1
]
x2

2
= c1x + c2, (32a)

https://doi.org/10.1017/S002237780100109X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780100109X


Stationary waves in a bi-ion plasma 209

2

3

1

0
0.2 0.4 0.6 0.8 1.0

uh

up, uh

ue

up

up, uh = ue

uemin

Figure 6. The momentum hodograph for small MA = 0.1, d = nh/np = 1.5 and
µ = mh/mp = 20, showing the ‘rapid’ acceleration of up → 3 and deceleration of uh → 0.7.
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k =
(
jh
jp

)2(
1 +

Mp

Mh

)
Ω2
pc

uc
3
> 0, (32b)

where c1 and c2 are constants of integration. Since k > 0 and ue/uh > 1, the inte-
gral curves are parabolas. Since uc < uemax (see Fig. 7), this critical point is reached
before the expansion is completed, yielding multivalued solutions. Therefore sta-
tionary rarefaction solitons cannot exist in this configuration.

Although we have only studied the cold case in detail, the inclusion of electron
pressure will not change the qualitative structure of the compression waves, since
pe ∝ u−γee and therefore the Alfvén Mach number will be replaced by a fast Mach
number as indicated in (23b, c). However, the inclusion of proton and heavy pres-
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sures may effect the structure significantly at low speeds, since critical points are
embedded in (20) and (22), and exchanges in momentum between the dynamic pres-
sure and ion pressures may become more important than magnetic and electron
pressure changes.

5. Summary
The flow pattern of stationary waves propagating at subfast speeds perpendicular to
the magnetic field in a bi-ion plasma is elucidated by making use of the ‘momentum
hodograph’ of the system. The combination of momentum conservation, charge
neutrality and zero current in the direction of propagation provides the locii of
upx and uhx as functions of uex on which all solutions of the structure equation
must lie. Thus this phase-plane picture (see e.g. Fig. 1) immediately reveals the
flow patterns of the ions and electrons, with the latter measuring the magnetic
compression or rarefaction through the frozen-field condition. In a compressive
wave, the heavy ions initially run ahead of the electrons while the protons lag
behind them, until a point is reached where all species attain the same speed, after
which the protons run ahead and the heavies lag behind, and both attain limiting
values determined by the maximum compression at the centre of the wave. The wave
is completed as a mirror image, with the protons, heavies and electrons returning
along the loci to the initial point. The maximum compression is determined by the
incoming Mach number and the mass and density ratios (see e.g. Figs 3 and 5).
This relation may be thought of as the soliton analogue of the Rankine–Hugoniot
compression ratio for ordinary shocks (although they are completely different types
of structure). It appears that stationary rarefaction solitons cannot exist, because
the integral curves are parabolas near the critical point, leading to choked flow
before the expansion can be completed.

An interesting feature of a compressive soliton in a bi-ion plasma where the
heavies are not a minor component is that the behaviour of the protons and the
heavies becomes totally different. An initial compression of the proton flow is fol-
lowed by an expansion with significant decrease of the proton number density, while
a compression (deceleration) of the heavies continues. Similar heavy-ion bunches
were observed near Mars in the magnetosheath, downstream of the bow shock,
where the number density of the planetary ions gradually increases (Dubinin et al.
1996a, 1998). It was found that the magnetosheath plasma was often stratified on
alternating layers, with dominance of either the solar-wind protons or the heavy
planetary ions. Stratification of a bi-ion plasma on alternating shocklet structures
was also observed in two-dimensional MHD simulations (Sauer et al. 1994) and one-
dimensional hybrid simulations (Omidi and Winske 1986). These periodic structures
are characterized by proton decleration at the centre of heavy-ion bunches, with
following reacceleration at their middle and rear side. The observed structures re-
semble the solitons in a bi-ion plasma (see Fig. 2). The important difference is that
in the observations, the plasma flow did not recover during the transition across
these structures but instead was steplike decelerated and heated. In solitary-type
solutions, we have reversible behaviour of a bi-ion flow. It is not unreasonable that
the inclusion of dissipation terms in the governing equations may lead to shock-
like solutions similar to collisionless shocks in a proton–electron plasma, which may
provide reasonable agreement with the observations. Solitary-wave structures were
also clearly observed during the Giotto spacecraft flyby at comet Grigg–Skjellerup.
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Strongly modulated electron fluxes were seen after the bow-shock crossing in the
cometosheath. The structures consisting of narrow peaks and relatively wide spac-
ing were very coherent (Reme et al. 1993).

Another interesting question to be addressed is what happens if a subfast flow of
bi-ion plasma is further decelerated owing to the addition of newly generated heavy
ions (mass loading) that become more and more massive. From the structure of a
compressive stationary solution (Fig. 2), we can assume that, at a certain point, the
heavies reach a critical velocity determined by the Alfvén speed for the heavies, and
therefore cannot go through this point without shock formation. Protons that are
accelerated near this point should also suffer a jump transition. It is possible in this
case that, the one-dimensional treatment employed becomes inadequate to describe
this transition. In a three-dimensional situation, one may expect the appearance
of a proton cavity bounded by a piled-up magnetic field and a heavy-ion shock.
Such a scenario may be realized at comets and non-magnetized planets such as
Mars, where a sharp magnetic pile-up boundary accompanied by termination of
the solar-wind flow was observed far away from the ‘ionopause’, where the thermal
pressure of cometary (planetary) plasma can balance the pressure of the incoming
solar wind (Dubinin et al. 1996b; Sauer et al. 1994; Sauer and Dubinin 2000).
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