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SUMMARY
The paper considers the influence of external forces on the
behaviour of a redundant manipulator. It is assumed that the
forces can act anywhere on the body of the manipulator.
First, the equivalent generalized forces in the task space and
the null space are defined and several special manipulator
configurations regarding the equivalent forces and torques
are identified. Next, two measures for the quantification of
the influence of external forces on the task space are
proposed. These measures are then used in the control
algorithm to minimize the influence of external forces on
the task space position accuracy. The control is based on the
redundancy resolution at the acceleration level and the
gradient projection technique. Improvement of the position
accuracy is illustrated using the simulation of a four link
planar manipulator.

KEYWORDS: Redundant manipulators; External forces; Control
algorithm; Position accuracy.

1. INTRODUCTION
To apply a manipulator to a task which involves contact
with the environment requires a control of the resulting
forces. For that purpose different control approaches have
been proposed like hybrid position/force control1 or imped-
ance control2 which have also been applied to redundant
manipulators.3–6 Usually, the contact is supposed to occur
between the end-effector or the handling object and the
environment. Therefore, these forces act only in the task
space. Common to all these approaches is that contact
forces are control variables and that the manipulator must
have “enough” degrees of freedom to control the desired
position and force variables. The situation becomes compli-
cated if the force can act anywhere on the body of the
manipulator especially when the manipulator has redundant
degrees of freedom. Thus if an external force is acting on
the body of the manipulator “below” the end-effector then
the effects of this force are noticeable in the task space and
in the null space. Only some authors consider such forces.5

As the external forces can act anywhere it is questionable
if they can be measured. Hence, it has to be assumed that
they are not measurable and they have to be considered as
disturbances. Our goal is to design a control algorithm
which minimizes the influence of the external forces on the
behaviour in the task space without measuring them but the

locations of the application points are assumed to be known.
As even this assumption may be problematic in some
practical applications we give some guidelines how to use
the proposed control when the forces and application points
are unknown.

The paper consists of two parts: In the first part we
analyze the characteristics of these forces. First the
influence of external forces in the task space and in the null
space is analyzed. We identify some special configurations
regarding the equivalent forces and torques.

In the second part we propose a control algorithm which
decreases the task space position errors due to external
forces. Hence, two measures are defined to quantify the
influence of the external forces on the behaviour of the
manipulator. They are used in a control algorithm to
minimize the task space position accuracy. In the end, a
simulation examples illustrate the effectiveness of the
proposed control.

2. MANIPULATOR KINEMATICS
The robotic systems under study are n degrees of freedom
serial manipulators. We consider the redundant systems
which have more degrees of freedom than needed to
accomplish the task, i.e. the dimension of the joint space n
exceeds the dimension of the task space m. Let the
configuration of the manipulator be represented by the
vector q of n joint positions, and the end-effector position
(and orientation) by m-dimensional vector x of task
positions (and orientations). The joint and task positions are
related by the following expression

x = f (q) (1)

where f is m-dimensional vector function representing the
manipulator forward kinematics. Differentiating Eq. (1) we
obtain the relation between velocities

ẋ = Jq̇ (2)

where J =
­f
­q

is the m3 n manipulator Jacobian matrix. In

the case of redundant manipulators there can exist also an
internal motion which does not contribute to the motion of
the end-effector. Hence, the general solution of Eq. (2) can
be given as follows

q̇ = J#ẋ + Nq̇ (3)
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where J# is the generalized inverse of J and N is n3 n matrix
representing the projection of q̇ into the null space of J,
N = (I2J#J). Note that the decomposition of the system
depends on the particular selection of J# and that there is an
infinite number of generalized inverses J#. In the following
we will assume that the workspace of the manipulator
excludes the singular configurations. Hence J(q) will
always have a full rank, rank(J)=m.

Differentiating Eq. (2), we obtain the relation between
joint space and task space accelerations

ẍ = Jq̈ + J̇q̇ (4)

Considering also the accelerations in the null space of J the
general solution of Eq. (4) is typically given in the form

q̈ = J#(ẍ2 J̇q̇) + Nq̈ (5)

Eq. (3) and (5) form a basis of the inverse kinematics of a
redundant manipulator.

3. EXTERNAL FORCES
For the redundant manipulators the static relationship
between the m-dimensional generalized force in task space
F =[f TÁmT]T, where f represents the linear forces and m
the moments, and the corresponding n-dimensional gener-
alized joint space force t is expressed as

t = JTF + NTtn (6)

where NT is n3 n matrix representing the projection into the
null space of J#T and tn is an arbitrary n-dimensional vector
of joint torques. In the following we denote the generalized
external forces as external forces and the generalized joint
forces as torques. Note that there is an infinite number of
joint torques within the null space of J#T that could be
applied to the system without affecting the forces in the task
space.

Usually, only generalized forces acting at the end-effector
of the manipulated object are considered. If external forces,
acting at any point on the manipulator body, are of interest,
we cannot use Eq. (6) directly. Suppose that F 0 is acting
somewhere on the link i (see Figure 1). Then, the static
relation between the external force F 0 and joint torques t
is

tF = JT
F F0 (7)

where the Jacobian matrix JF has the form

JF = [JAÁ0m3 (n2 i )] (8)

and JA is a m3 i Jacobian matrix associated with the
manipulator between the base and the point AF in which the
force F0 is acting. Hence, Eq. (7) can be rewritten into the
form

tF =F JT
AF0

0(n2 i)
G (9)

It is apparent that this force does not influence directly the
behaviour of the manipulator beyond the link i. Conse-
quently, the static components tk, k > i, are zero.

Because F 0 is not acting in general at the end-effector we
have to be aware of the fact that it can also affect the torques
in the null space of J#T (which is not a case for forces acting
at the end-effector). Therefore, F 0 can be substituted with
an equivalent force acting in the task space F eq and
equivalent joint torques in the null space teq (see Figure 2).

Proposition 1. The external force F 0 can be substituted by
a force acting in the task space (at the end-effector)

F eq = J#T JT
FF0 = J#TtF (10)

and by joint torques acting in the null space of J#T

teq = NTJT
FF0 = NTtF (11)

Proof: Combining Eqs. (10) and (11) results in

JTF eq + teq = JT
FF0 = tF (12)

j
This decomposition enables the analysis of the behaviour of
the redundant manipulator separately for the task space and
the null space, which has a practical significance in the
control design.

3.1. Special configurations
The proposed equivalent forces and torques depend on the
configuration of the manipulator. The configurations where
the equivalent force F eq and/or equivalent torques teq equal
zero or the equivalent force F eq equals the external force F 0

are especially interesting.

Lemma 2. For any generalized external force F 0 ≠ 0
applied to the redundant manipulator there will always exist

Fig. 1. An external force acting on the body of the manipulator.
Fig. 2. Substitution of an external force F 0 by an equivalent force
F eq and equivalent joint torques teq.
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F eq ≠ 0 or teq ≠ 0 except when JF is singular and F 0 is in the
null space of JT

F.

Proof: If F 0 is in the null space of JT
F then JT

F F 0 = 0. It is
obvious that if the part of the manipulator between the base
and the point A F is in singular configuration and JT

FF0 = 0
then the influence of F0 is transmitted through the
construction to the base of the manipulator and F0 is
compensated by the reaction forces in the base. Figure 3
shows the configuration of a manipulator where JT

FF0 = 0.
j

Lemma 3. For any generalized external force
F0 = [f T

0ÁmT
0]T applied to the redundant manipulator the

external force F eq is equivalent to F0, F eq = F0, if:

1. JB is singular and JT
BF0 = 0

2. rB3 f 0 = 0

where JB is the basic Jacobian matrix of the part of the
manipulator between the point AF and the end-effector, and
rB a vector connecting the point AF and the end-effector,
both expressed with the respect to the reference frame R 0.

Proof: Suppose that the n degree of freedom manipulator
consists of a serial combination of two structures. The first
structure, referred to as the part A, is connected to the base
and ends at the point A F. It has nA degrees of freedom and
is described by the first nA generalized coordinates qA. The
second structure, referred to as the part B, is connected to
the end of the first structure. It has nB degrees of freedom,
nB = n2nA, and is described by the rest of the generalised
coordinates qB. Hence, the whole structure is described by
the n generalized coordinates q = [qT

AÁJB]T. The corre-
sponding configuration is illustrated in Figure 4.

Let JA and JB be the basic Jacobian matrices associated
with two parts of the manipulator and r B a vector connecting
the origins of frames RA (attached to the point A F) and RB

(attached to the end-effector), all expressed with the respect
to the reference frame R0. The Jacobian matrix of the whole
manipulator can be expressed as7

J = [VJAÁJB] (13)

where

V =F I Á 2 r̂B

0ÁI G (14)

and 2 r̂B is the cross-product operator associated with the
vector rB.

Thus, the joint torques due to the external force
F eq = [ f T

eqÁmT
eq]T acting at the end-effector are

tFeq
= JTF eq

= [VJAÁJB]T F eq

=
SJT

A F eq +F 0
2rB3 f eq

GD
JT

B F eq

(15)

For F eq = F0 to be satisfied it is necessary that F0 applied at
the end-effector results in the same joint torques tF as when
F 0 is applied at the point AF. Comparing the terms in Eqs.
(9) and (15) it can be seen that this is true only if JT

B F 0 = 0
and rB3 f 0 = 0. Figure 5 shows the configuration of a
manipulator where F eq = F0.

4. OPTIMAL CONFIGURATIONS
The derivation of optimal configurations relies on the
selection of the criterion. Before defining the criterion for
the optimality we have to analyze the nature of external
forces in detail. First of all, we assume that the occurrence
of these forces is not connected to the completion of the
task. Next, we consider only the external forces which are
not acting at the end-effector. Thus, external forces acting
on the end-effector are usually necessary to accomplish the
task and are controlled by the task controller. So, the
external forces are considered in the following as a
disturbance to the task controller. Under such assumptions it
is reasonable to define the optimal configuration as:

Fig. 3. Configuration of a 4R planar manipulator where JT
FF 0 = 0.

Fig. 4. Statics of a manipulator when the manipulator is virtually
divided into two parts. Fig. 5. Configuration of a 4R planar manipulator where F eq = F 0.
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Definition 4 The optimal configuration of a manipulator
from the viewpoint of the influence of the external force F 0

is the configuration where influence of F 0 on the behaviour
in the task space is minimal.

This definition is a general one. Hence, depending on the
particular task, the optimality has to be specified more
precisely.

4.1 Static force sensitivity measure
Considering only the statics, the optimal configuration
could be defined as the configuration where the equivalent
force at the end-effector F eq has its minimal value. For that
purpose, the following criterion can be used

cF = iJ#T(q)JT
F(q, A F)F̃ 0i (16)

where the normalized vector F̃ 0, F̃ 0 = F 0/iF 0i, represents
the direction of F 0. Actually, cF represents the amplitude of
the equivalent force caused by the normalized external
force

iF eqi = cFi F 0i (17)

A specific external force is considered in the above
criterion. To determine the optimal configuration of the
manipulator where the influence of the external force is
minimal regardless of the direction of the force, the
following measure is proposed.

Proposition 5. A measure c which quantifies the relation-
ship between any external force acting on the manipulator
at a certain point AF and the maximal equivalent task space
force, denoted as static force sensitivity measure, is defined
as

c(q, AF) = iJ#T(q)JT
F(q, AF)i (18)

where the norm i·i denotes the maximal singular value of
the matrix.

The following two lemmas consider the relation between cF

and c.

Lemma 6. Measure c(q, A F) is the supremum of cF(q, AF,
F̃ 0)

cF(q, AF, F̃ 0) ≤ c(q, A F) (19)

i.e. it represents the upper bound for F eq, for the normalized
external force.

Proof: Using the relation iAB i ≤ iAi iBi in Eq. (16) and
knowing that i F̃ 0 i = 1 yields

cF = iJ#T(q)JT
F(q, A F) F̃ 0i ≤ iJ#T(q)JT

F(q, A F)i iF̃ 0i = c (20)

Next combining Eqs. (17) and (19) and rewriting yields

F eq = cF iF 0 i ≤ c(q, A F) iF 0 i (21)

and the Lemma is proved.
j

Lemma 7. Let qa be the optimal configuration when cF is
used

qa = arg min
q

(cF(q, A F, F̃ 0)) (22)

and qb be the optimal configuration for c

qb = arg min
q

(c(q, A F)) (23)

then qa and qb are not necessarily the same configurations
but the following relation is always true

cF(qa, A F, F̃ 0) ≤ c(qb, A F) (24)

Proof: If qa and qb are the same configuration, qa ; qb, then
by the Lemma 6 the relation (24) is true. Next, suppose that
there exists such an optimal configuration qa, qa ≠ qb, for
which the following relations would hold

cF(qa, A F, F̃ 0) > c(qb, A F) (25)

Applying Lemma 6 to Eq. (25) yields

cF(qa, A F, F̃ 0) > cF(qb, A F, F̃ 0)

what indicates that qb is “better” configuration than qa.
Therefore, qa cannot be an optimal configuration and the
relation (24) must be always true.
j

To illustrate these relations an example using a 4 degree-of-
freedom planar manipulator is given. The external force is
supposed to act at the end of the second link. In Figure 6
two contours are shown. One represents the value of cF

versus the direction of the external force and the other is the
circle with the radius c. In the case A the optimal
configuration is qa (for F 0 = [1, 0]T) and in the case B the
optimal configuration is qb. It can be seen the value of c is
better in the case B, c(qa ) > c(qb), but for the selected
external force F0 = [1, 0]T, the value of cF(F̃ 0) is better in the
case A (almost zero), cF(qa, F̃ 0) < cF(qb, F̃ 0).

4.2. Selection of the generalized inverse
Analyzing the right side of Eq. (10) and (11) we can see that
the equivalent forces in the task space and the null space
torques depend on the selection of the generalized inverse.
Although there exist many generalized inverses J# only
some of them are suitable for the robotic systems.

Most authors use the Moore-Penrose pseudoinverse8

which is defined for n > m as

Fig. 6. Optimal configurations of a 4R planar manipulator
considering the static force sensitivity measure c for J# = J+ .
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J+ =JT (JJT)21 (26)

or its “weighted” counterpart9 defined as

J+
w = W21JT(JW21JT )21 (27)

where W is n3 n weighting matrix. A special form of J+
w is

when W = H. Khatib7 has proved that

J̄ = H21JT (JH21JT )21 (28)

is the only pseudoinverse which is dynamically consistent,
i.e. the task space acceleration ẍ is not affected by any
arbitrary torques tn applied through the associated null
space, N̄T tn , N̄T = (I2JT J̄T ). Additionally, the dynamically
consistent generalized inverse J̄ is the only generalized
inverse which assures that an external force does not
produce a null space acceleration.10

As well as the equivalent forces, the measures cF and c
also depend on the selection of pseudoinverses. Optimal
configurations of the system have been compared for J+ and
J̄ used in the measure c. As the task space is defined by the
end-effector position in the plane (two-dimensional space),
the systems has 2 redundant degrees-of-freedom and q1 and
q2 have been selected as independent variables. Figure 7
shows the value of c for a 4R planar manipulator for the
task space position x = [0; 2.2]T verus q1 and q2 for both
generalized inverses. The markers 3 show where c has a
minimum, c = cmin, and the contour lines show the region
where c ≤ 1.2cmin. The shaded region represents the redun-
dant space A defined as a set {(q1, q2), 'q = f 21(x)}. It can
be seen that the values of c are lower J# = J̄ compared to the
case when J# = J+ . In Figure 8 optimal configurations using
cF and c for J# = J̄ are shown. The external force is the same
as in the Figure 6. As before, the value of c is better in the
case B, and the value of cF(F̃ 0) is better in the case A. Note
that the optimal configurations in Figure 8 are different from
that on the Figure 6, and that all values of c and cF are better
(lower) when J̄ is used.

4.3. Dynamic force sensitivity measure
In this section the influence of the external force on the task
space motion is analyzed. Therefore, the dynamics of the
manipulator has to be taken into the consideration. Assum-

ing the manipulator consists of rigid bodies the joint space
equations of motion can be written in a form

t = H(q)q̈ + h(q, q̇)+g(q)2tF (29)

where t is n-dimensional vector of control torques, H is
n3 n inertia matrix, h is n-dimensional vector of Coriolis
and centrifugal forces, g is n-dimensional vector of gravity
forces, and vector tF represents the torques due to the
external force F 0 acting on the manipulator. Using Eqs.
(29), (4), (6) and (7), and ignoring the coupling and gravity
terms, leads to the following equation

ẍ = JH21JT
F F 0 (30)

which describes the relation between the task space
acceleration and the external force. Note that if the force is
acting at the end-effector then the term JH21JT

F equals the
inverse of the task space inertia matrix. Hence, we denoted
the matrix HR = (JH21JT

F)
21 as the reduced inertia matrix.

Using HR a new measure has been defined to quantify the
influence of the external force on the task space accelera-
tions.

Proposition 8. A measure s, denoted as dynamic force
sensitivity measure, is defined

s(q, A F) = iJ(q)H21(q)JT
F(q, AF)i = iHRi (31)

where the norm i·i denotes the maximal singular value of
the matrix.

Lemma 9. Measure s(q, AF) represents the upper bound for
the task space acceleration ẍ due to the normalized external
force F 0 / iF 0i.

Proof: Using the relation iAB i ≤ iAi iBi in Eq. (30)
yields

i ẍ i = iJH21JT
F

F 0

i F 0 i
i < iJH21JT

F i =s (32)

and the Lemma is proved.
j

Note that in Eqs. (30) and (31) there is no generalized
inverse of J present. This points out an important fact that

Fig. 7. The static force sensitivity measure c for a 4R planar manipulator (the end-effector position x = [0, 2.2]T; the external force F 0

is acting at the end of link 2).

Redundant manipulators 287

https://doi.org/10.1017/S0263574799001423 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001423


the task space motion due to the external force is not
directly dependent on the selection of generalized inverse of
J. This dependency is introduced by the control algorithm,
i.e. by the part controlling the null space motion. Namely,
the term JH21JT

F depends on the configuration of the
manipulator which depends on the particular null space
motion. So, the task space motion is indirectly dependent on
the selection of J#.

In order to compare the measures c and s, we give the
values of s and the optimal configuration using s for the
same situation as before (see Figure 9). The marker 3

shows the minimum smin and the contour lines the region
where s ≤ 1.2smin. Although the values of the measures
cannot be compared directly, one can observe that distribu-
tions of measures c and s are similar, i.e. they have their
minima and maxima at similar configurations.

4.4. Multiple external forces
Until now only one external force has been assumed. When
more then one forces act on the manipulator at different
points the question arises what the overall optimal config-
uration is. In general, the optimal configurations for each
force are distinct. However, the range of sensitivity of the
task space motion on the external force is very different with
regard to the application point A F. For example, if A F is at
the end-effector, then the force is acting actually in the task

space and the change of the sensitivity is minimal. To get
better insight in this dependency Figure 10 shows the values
of s for A F being at the end of links. One can observe that
the sensitivity increases when A F is moving toward the end-
effector. Next, the range of s is significantly smaller (the
improvement in the task space motion characteristics is not
so extensive when the configuration of the manipulator
changes) when A F is near the base of the manipulator or
near the end-effector. Hence, in the calculation of the overall
optimal configuration it is essential to include those forces
which are acting in the middle of the structure. Therefore,
satisfactory results can be obtained also in situations when
the locations of application points A F are not known. Nmely,
the optimal configuration can be determined as the location
of A F would be somewhere in the middle of the manipulator
structure. In order to find out which locations of applica-
tions points should be considered in the optimization
process, such an analysis can be made for any particular
manipulator mechanical structure. The areas where the
external forces could act on the body of the manipulator
may also be bounded by the task.

5. CONTROL
Most tasks performed by a redundant manipulator can be
divided into several subtasks with different priority. In the
following it is assumed that the subtask with the highest
priority, referred to as the main task, is associated with the
positioning of the end-effector in the task space. The control
problem we want to solve can be defined as how to move the
manipulator to the optimal configuration, where the influ-
ence of external forces is minimal, by using the redundancy
of the mechanism.

Hybrid position/force control1,3,4 or impedance control2

are usually used when a manipulator performs a task which
involves the contact with the environment. Common to
these control methods is that they control positions and
forces and that the forces are measurable. If the forces act at
the end-effector than it is easy to measure the forces by
using a force/torque sensor mounted at the end of the
effector. The situation is more complex if the force can act

Fig. 8. Optimal configurations of a 4R planar manipulator
considering the static force sensitivity measure c for J# = J̄.

Fig. 9. The optimal configuration of a 4R planar manipulator considering the dynamic force sensitivity measure s.
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anywhere on the body of the manipulator. First of all, it is
questionable if it is practically possible to measure forces
which can act anywhere and secondly, many forces can be
present at the same time and a sensor is needed for each of
them. Hence, we suppose that external forces are not
measurable. Consequently, they are considered as distur-
bances to the controller. To minimize the influence of
external forces we propose to move the manipulator into a
“better” configuration by using the redundant DOF and the
earlier defined measures.

In the following, redundancy resolution at the accelera-
tion level is used. A general formulation of the control law
is given in the form

t = H(J#(ẍd + Kvė + Kpe2 J̇q̇) + N(ẅ + Kn(ẇ2 q̇))) + h + g

(33)

where e, e = xd 2x, is the tracking error, ẍd is the desired
task space acceleration, Kv and Kp are n3 n constant gain
matrices, and ẇ is the desired n-dimensional null space
velocity vector. Note that in Eq. (33) no term is present to
compensate the external forces. As we focus our attention
only to the influence of the external force on the task space
error, a simple null space controller is used and no analysis
of null space dynamics is made.

Combining Eqs. (29) and (33) yields

Hq̈ + h + g2text = H(J#(ẍd + Kvė + Kpe2 J̇q̇)

+ N(ẅ + Kn(ẇ2 q̇))) + h + g (34)

Using Eq. (5) in Eq. (34) and rearranging it yields

J#(ẍd + Kvė + Kpe2 ẍ) + N(2 q̈ + ẅ + Kn(ẇ2 q̇))=2H21text

(35)

Premultiplying Eq. (35) with J yields

ë + Kvė + Kpe = 2JH21JT
FF0 (36)

since JJ# = I.
The last thing to do is define w. Suppose that p is a

function representing the desired performance criterion. A
widely implemented technique to optimize p is to select ẇ
as11

ẇ = K=p (37)

where =p is the gradient of p and K is an n3 n matrix. The
aim of K is to assure that the form

(=p)TNK=p (38)

is positive semidefinite so that the optimization con-
verges.12

Let F 0 be not known. One will recognize from Eq. (36)
that by minimizing the s we minimize also the upper bound
of the steady state task position error. Hence, it is reasonable
to define ẇ as

ẇ = kgK=s(A F) (39)

If no more than one external force is supposed to act on the
manipulator, ẇ should be defined actually as

ẇ = H21 O
i

ki=s(A F, i) (40)

Fig. 10. The dynamic force sensitivity measure s for 4R planar manipulator versus the location of A F.
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where the summation indicates all possible points A F, i

where the force can act, and ki are weighting factors for
particular points. As the calculation ẇ becomes very
complex if many points have to be considered, it is
necessary to reduce the number of terms in Eq. (40). It could
be shown that the optimal configuration is similar for points
acting on the same link. Hence, it may be enough to
consider only one point per link. Unfortunately, even with
these simplifications the control is very complicated and
time consuming.

6. SIMULATION EXAMPLE
To illustrate the behaviour of a manipulator a simulation
example is given. The simulation has been done in
MATLAB/SIMULINK using the Planar Manipulators Tool-
box.13 The Planar Manipulators Toolbox is based on a
kinematic and dynamic model of a planar manipulator with
revolute joints and permits simulation of manipulators with
many DOF.

The example deals with the minimization of the influence
of the external force on the task space position accuracy
when the force is independent of q. In the simulation a four-
link planar manipulator with revolute joints is used. The
manipulator is supposed to hold a position in the task space,
x = [0, 2.2]Tm. The initial configuration of the manipulator
is q0 ≈ [2.2, 21.2, 1.77, 22.58]T.

The controller is based on the algorithm (33). The
controller gains are Kp = 1000Is22, Kv = 80Is21, and
Kn = 50Is21 (I is the identity matrix). The null space
velocity is calculated using the gradient of the measure s
(Eq. (39)). In order to observe the process of optimization,
the desired null space motion is started when t = tb, tb =3.5s.
Therefore, the gain kg is selected as

kg =H 0,
220,

t < tb

t ≥ tb

(41)

In the example, the influence of one external force on the
manipulator is considered. The external force is acting at the
end of the second link and equals

F 0 =H 0,
[50, 286.6]T N,

t < ta

t ≥ ta

(42)

where ta is the starting time of the force, ta = 0.2s. The
simulation results are given in Figures 11 and 12. Figure 11
presents the position error in the task space, dynamic force
sensitivity measure and the configurations of the manip-
ulators at the time ta and tb, and the final configuration
(t = tc). One can see that the external force pushes the
manipulator into the configuration where one part of the
manipulator is in the singular configuration. i.e. at the edge
of the space A. In this example this is the upper part of the
manipulator. Hence, the influence of the external force is
high and also the error is big (see situation at t = tb). After the
manipulator is moved into the optimal configuration, the
influence of the external force decreases and consequently
the position error is lower. The optimization progression can
be viewed also in Figure 12 which is showing the values of
s versus q1 and q2 and the path [q1(t), q2(t), s(t)]. After t = tb

the manipulator is moved fast from the edge of A and then
it is moving along the valley until the final configuration is
reched. (The values of s for the whole space A can be seen
in Figure 9). Note that the proposed control converges to the
local optimum.

Fig. 11. The position error norm ie i, the dynamic force sensitivity measure s and manipulator configurations when F 0 acts as the end
of link 2.
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Our studies have shown that the situation may be
different in the case when the force acts in an another
direction. Sometimes, when the manipulator is pushed into
the configuration where the lower part is in the singular
configuration and the influence of F 0 is zero, moving the
manipulator into another configuration increases the influ-
ence of the force and the position error is even bigger as
without the optimization. Let the desired motion of the end-
effector be, for example, to move along a line. The desired
trajectory has a trapezoidal velocity profile (ẍ = 2ms22 and
ẋmax = 0.5ms21). The external force is the same as in the
previous example. We have made two simulation runs. In
the first run the desired null space velocity has been zero. In
the second run the measure s has been optimized. All other
controller parameters have been equal as before. Figure 13
presents the position error in the task space and the
configurations of the manipulators for both simulation
runs.

In the first case, when no optimization is included in the
control, the external force pushes the manipulator into a
configuration where the lower part of the manipulator is
almost in the singular configuration and consequently, the
influence of F 0 is minimal. However, the second case shows
us that the maximal position error is smaller when s is

optimized during the motion. Therefore, we can conclude
that it is in general reasonable to optimize one of the
proposed measures when an unknown external force is
acting somewhere on the body of the manipulator.

7. CONCLUSION
In the paper the influence of external forces on the
behaviour of the manipulator was considered. The manip-
ulator under study was redundant with n degrees of
freedom. The external forces acting anywhere on the body
of the manipulator were analyzed. For these forces the
equivalent generalized forces in the task space and in the
null space were defined. Some special configurations of the
manipulator where the equivalent force in the task space
and/or equivalent torques in the null space equal zero or the
equivalent force in the task space equals the external force
were identified.

Next, we define what the optimal configuration regarding
the influence of external forces is. To quantify the influence
of external forces on the behaviour of the manipulator in the
task space two measures are proposed. The static force
sensitivity measure c is related to the maximal magnitude of
the equivalent task space force considering the application
point of the external force. The dynamic force sensitivity
measure s quantifies the relation between the external force
and the task space acceleration. The measure c depends on
the selection of the generalized inverse, but the measure s
does not. Analyzing the measure c we can see that the
values of c when J̄ is selected are lower compared to the
values of c when J+ is selected. This means that the
equivalent forces in the task space are reduced if J̄ is used
instead of J+ . Consequently, the equivalent null space
torques are increased.

One of the goals in the control design is to minimize the
influence of external forces. As it is questionable if the
external forces can be measured they were considered as
disturbances and were not included in the control algorithm.
Hence, in order to reach the optimal configurations the
proposed measures can be used in the control. We haveFig. 12. The measure s and the resulting path in the space A.

Fig. 13. Tracking a line: the position error norm ie i and manipulator configurations when F 0 acts at the end of link 2.
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applied the redundancy resolution at the acceleration level
and gradient projection technique. The simulation examples
using s show that it is possible to decrease the influence of
external forces on the task space position error by using the
proposed control. The degree of improvement depends on
the number of redundant DOF, on the kinematical structure
of the manipulator and on the location of the application
point of the external force. Another important conclusion is
that if the task controller has the form (33) then the task
space position error due to external forces does not depend
on the selection of generalized inverse in the control
algorithm.

APPENDIX A
In all the examples kinematic or dynamic models of n
degree-of-freedom planar manipulators with revolute joints
are used. The manipulator is supposed to move in the
vertical plane x-y as shown in Figure 14. The task
coordinates x are the positions in x-y plane, x = [x, y]T. All
the links are equal and are modelled as rods with the
following parameters:

link lengths l = 1m
link masses m = 1kg
link centre of mass lc = 0.5m
link inertias I = ml2/12
joint viscose friction coef. Bv = 5Nms

There is additional load mass at the end of the last link,
ml = 1kg. The manipulator models are described in detail
in.13,14
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