
TLP 12 (4–5): 547–563, 2012. C© Cambridge University Press 2012

doi:10.1017/S1471068412000178

547

Efficient tabling of structured data
with enhanced hash-consing

NENG-FA ZHOU

CUNY Brooklyn College & Graduate Center

(e-mail: zhou@sci.brooklyn.cuny.edu)

CHRISTIAN THEIL HAVE

Roskilde University

(e-mail: cth@ruc.dk)

Abstract

Current tabling systems suffer from an increase in space complexity, time complexity or both

when dealing with sequences due to the use of data structures for tabled subgoals and answers

and the need to copy terms into and from the table area. This symptom can be seen in not

only B-Prolog, which uses hash tables, but also systems that use tries such as XSB and YAP. In

this paper, we apply hash-consing to tabling structured data in B-Prolog. While hash-consing

can reduce the space consumption when sharing is effective, it does not change the time

complexity. We enhance hash-consing with two techniques, called input sharing and hash code

memoization, for reducing the time complexity by avoiding computing hash codes for certain

terms. The improved system is able to eliminate the extra linear factor in the old system

for processing sequences, thus significantly enhancing the scalability of applications such as

language parsing and bio-sequence analysis applications. We confirm this improvement with

experimental results.

1 Introduction

Tabling, as provided in logic programming systems such as B-Prolog (Zhou et al.

2008), XSB (Swift and Warren 2012), YAP (Santos Costa et al. 2012), and Mercury

(Somogyi and Sagonas 2006), has been shown to be a viable declarative language

construct for describing dynamic programming solutions for various kinds of real-

world applications, ranging from program analysis, parsing, deductive databases,

theorem proving, model checking, to logic-based probabilistic learning. The main

idea of tabling is to memorize the answers to subgoals in a table area and use

the answers to resolve their variant or subsumed descendants. This idea of caching

previously calculated solutions, called memoization, was first used to speed up the

evaluation of functions (Michie 1968). Tabling can get rid of not only infinite

loops for bounded-term-size programs but also redundant computations in the

execution of recursive programs. While Datalog programs require tabling only

subgoals with atomic arguments, many other programs such as those dealing

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

548 N. F. Zhou and C. T. Have

with complex language corpora or bio-sequences require tabling structured data.

Unfortunately, none of the current tabling systems can process structured data

satisfactorily. Consider, for example, the predicate is list/2:

:-table is_list/1.

is_list([]).

is_list([_|L]):-is_list(L).

For the subgoal is list([1,2,...,N]), the current tabled Prolog systems demon-

strate a higher complexity than linear in N: B-Prolog (version 7.6 and older) consumes

linear space but quadratic time; YAP, with a global trie for all tabled structured

terms (Raimundo and Rocha 2011), consumes linear space but quadratic time; XSB

is quadratic in both time and space. The nonlinear complexity is due to the data

structure used to represent tabled subgoals and answers and the need to copy terms

into and from the table area.

The inefficiency of early versions of B-Prolog in handling large sequences has been

reported and a program transformation method has been proposed to index ground

structured data to work around the problem (Have and Christiansen 2012). In old

versions of B-Prolog, tabled subgoals and answers were organized as hash tables, and

input sharing was exploited to allow a tabled subgoal to share its ground structured

arguments with its answers and its descendant subgoals. Input sharing enabled B-

Prolog to consume only linear space for the tabled subgoal is list([1,2,...,N]).

Nevertheless, since the hash code was based on the first three elements of a list, the

time complexity for a query like is list([1,1,...,1]) was quadratic in the length

of the list. B-Prolog didn’t support output sharing, i.e. letting different answers share

structured data. Therefore, on the tabled version of the permutation program that

generates all permutations through backtracking, B-Prolog would create n× n! cons

cells where n is the length of the given list.

This problem with tabling structured data has been noticed before and several

remedies have been attempted. One well known technique used in parsing is to

represent sentences as position indexed facts rather than lists. XSB provides tabled

grammar predicates that convert list representation to position representation by

redefining the built-in predicate ’C’/3.1 The position representation is also used

for PCFG parsing in PRISM (Sato and Kameya 2008). A program transformation

method has been proposed to index ground structured data to work around the

quadratic time complexity of B-Prolog’s tabling system (Have and Christiansen

2012). Nevertheless, these remedies have their limitations: the position representation

disallows natural declarative modeling of sequences and the program transformation

incurs considerable overhead. Have and Christiansen advocate for native support

of data sharing in tabled Prolog systems for better scalability of their bio-sequence

analysis application (Have and Christiansen 2012).

We have implemented full data sharing in B-Prolog in response to the manifesto.

In the new version of B-Prolog, both input sharing and output sharing are exploited

to allow tabled subgoals and answers to share ground structured data. Hash-consing

1 Personal communication with David S. Warren, 2011.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

Efficient tabling of structured data with enhanced hash-consing 549

(Ershov 1959), a technique originally used in functional programming to share values

that are structurally equal (Goto 1974; Appel and de Rezende Goncalves 2003), is

adopted to memorize structured data in the table area. This technique avoids storing

the same ground term more than once in the table area. While hash-consing can

reduce the space consumption when sharing is effective, it does not change the

time complexity. To avoid the extra linear time factor in dealing with sequences,

we enhance hash-consing with input sharing and hash code memoization. For each

compound term, an extra cell is used to store its hash code.

Our main contribution in this paper is to apply hash-consing to tabling and en-

hance it with techniques to make it time efficient. The resulting system demonstrates

linear complexity in terms of both space and time on the query is list(L) for any

kind of ground list L. As another contribution, we also compare tries with hash

consing in the tabling context. As long as sequences are concerned, a trie allows for

sharing of prefixes while hash-consing allows for sharing of ground suffixes. While we

can build examples that arbitrarily favor one over the other, for recursively defined

predicates such as is list, it is more common for subgoals to share suffixes than

prefixes. The enhanced hash-consing greatly improves the scalability of PRISM on

sequence analysis applications. Our experimental results on a simulator of a hidden

Markov model show that PRISM with enhanced hash-consing is asymptotically

better than the previous version that supports no hash-consing.

The remainder of the paper is structured as follows: Section 2 defines the primitive

operations on the table area used in a typical tabling system; Section 3 presents

the hash tables for subgoals and answers, and describes the copy algorithm for

copying data from the stack/heap to the table area; Section 4 modifies the copy

algorithm to accommodate hash-consing; Section 5 describes the techniques for

speeding up computation of hash codes; Section 6 evaluates the new tabling system

with enhanced hash-consing; Section 7 gives a survey of related work; and Section 8

concludes the paper.

2 Operations on the table area

A tabling system uses a data area, called table area, to store tabled subgoals and their

answers. A tabling system, whether it is suspension-based SLG (Chen and Warren

1996) or iteration-based linear tabling (Zhou et al. 2008), relies on the following

three primitive operations to access and update the table area.2

Subgoal lookup and registration: This operation is used when a tabled subgoal is

encountered in execution. It looks up the subgoal table to see if there is a variant

of the subgoal. If not, it inserts the subgoal (termed a pioneer or generator) into

the subgoal table. It also allocates an answer table for the subgoal and its variants.

Initially, the answer table is empty. If the lookup finds that there already is a

variant of the subgoal in the table, then the record stored in the table is used

for the subgoal (called a consumer). Generators and consumers are dealt with

2 The interpretation of these operations may vary depending on implementations.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

550 N. F. Zhou and C. T. Have

differently. In linear tabling, for example, a generator is resolved using clauses

and a consumer is resolved using answers; a generator is iterated until the fixed

point is reached and a consumer fails after it exhausts all the existing answers.

Answer lookup and registration: This operation is executed when a clause succeeds

in generating an answer for a tabled subgoal. If a variant of the answer already

exists in the table, it does nothing; otherwise, it inserts the answer into the answer

table for the subgoal. When the lazy consumption strategy (also called local

strategy) is used, a failure occurs no matter whether the answer is in the table or

not, which drives the system to produce the next answer.

Answer return: When a consumer is encountered, an answer is returned immediately

if any. On backtracking, the next answer is returned. A generator starts consuming

its answers after it has exhausted all its clauses. Under the lazy consumption

strategy, a top-most looping generator does not return any answer until it is

complete.

3 Hash tables for subgoals and answers

The data structures used for the table area are orthogonal to the tabling mechanism,

whether it is suspension-based or iteration-based; they can be hash tables, tries,

or some other data structures. In this section, we consider hash tables and the

operations for the table area without data sharing.

A hash table, called a subgoal table, is used for all tabled subgoals. For each

tabled subgoal and its variants, there is a record in the subgoal table, which

includes, amongst others, the following fields:

AnswerTable: Pointer to the answer table for the subgoal

sym: The functor of the subgoal

A1...An: The arguments the subgoal

When a tabled predicate is invoked by a subgoal, the subgoal table is looked up to

see if a variant of the subgoal exists. If not, a record is allocated and the arguments

are copied from the stack/heap to the table area. The copy of the subgoal shares

no structured terms with the original subgoal and all of its variables are numbered

so that they have different identities from those in the original subgoal.

The record of a subgoal in the subgoal table includes a pointer to another hash

table, called an answer table, for storing answers produced for the subgoal. For each

answer and its variants, there is a record in the answer table, which stores amongst

others a pointer to a copy of the answer. When an answer is produced for a subgoal,

the subgoal’s answer table is looked up to see if a variant of the answer exists. If

not, a record is allocated and the answer is copied from the stack/heap to the table

area. The answers in a subgoal’s answer table are connected from the oldest one to

the newest one such that they can be consumed by the subgoal one by one through

backtracking.

In the implementation, a hash table is represented as an array. To add an item

into a hash table, the system computes the hash code of the item and uses the hash

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

Efficient tabling of structured data with enhanced hash-consing 551

code modulo the size of the array to determine a slot for the item. All items hashed

to the same slot are connected as a linked list, called a hash chain. A hash table is

expanded when the number of records in it exceeds the size of the array.

The WAM representation (Warren 1983) is used to represent both terms on the

heap and terms in the table area except that variables in tabled terms are numbered.

A term is represented by a word containing a value and a tag. The tag distinguishes

the type of the term. It may be REF denoting a reference, ATM an atomic value, STR

a structure, LST a cons, or NUMVAR a numbered variable. A STR-tagged reference to

a structure f(t1, . . . , tn) points to a block of n + 1 consecutive words where the first

word points to the functor f/n in the symbol table and the remaining n words store

the n components of the structure. An LST-tagged reference to a list cons [H |T]

points to a block of two consecutive words where the first word stores the car H

and the second word stores the cdr T .

Figure 1 gives the definition of the function copy term that copies a numbered

term from the stack/heap to the table area. The hash function is designed in such

a way that the hash code of a non-ground term is always 0. The function call

seq hcode(code1,code2) gives the combined hash code of the two hash codes

from two components:

int seq_hcode(int code1, int code2){

if (code1==0) return 0;

if (code2==0) return 0;

return code1+31*code2+1;

}

If either code is 0, then the resulting code is 0 too.3

It is assumed that all the variables in a subgoal have been numbered before the

arguments are copied. In the real implementation, variables are numbered inside the

function copy term. The function call copy subgoal args(src,des,arity) copies

the arguments of a numbered subgoal to the table area where (src-i) points to the

ith argument on the stack and (des+i) is the destination in the table area where the

argument is copied to. In the TOAM architecture (Zhou 2012) on which B-Prolog is

based, arguments are passed through the stack and the stack grows downward from

high addresses to low ones. That is why (src-1) points to the first argument and

(src-arity) points to the last argument of the subgoal. A similar function is used

to copy answers to the table area.

The function copy term is not tail recursive and can easily cause the native C

stack to overflow when copying large lists. In the real implementation, an iterative

version is used to copy a list and compute its hash code. For a cons, the function

needs to compute the hash codes of the car and the cdr before computing its hash

code. The function does this in two passes: in the first pass it reverses the list and

in the second pass it computes the hash codes while reversing the list back.

3 Note that this way of combing hash codes is for hash consing terms. For the subgoal and answer
tables, hash codes are combined in a different way.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

552 N. F. Zhou and C. T. Have

int copy subgoal args(TermPtr src, TermPtr des, int arity){
hcsum = 0;
for (i=1;i<=arity;i++){

hcode = copy term(*(src-i), des+i);
hc sum = seq hcode(hc sum,hcode);

}
return hc sum;

}

int copy term(Term t, TermPtr des){
deref(t);
switch (tag(t)){
case NUMVAR:

*des = t;
return 0;

case ATM:
*des = t;
return atomic hcode(t);

case LST:
p1 = untag(t);
p2 = allocate from table(2);
car code = copy term(*p1, p2);
cdr code = copy term(*(p1+1), p2+1);
hcode = seq hcode(car code,cdr code);
t1 = add tag(p2,LST);
*des = t1;
return hcode;

case STR:
p1 = untag(t);
sym = *p1;
arity = get arity(sym);
p2 = allocate from table(arity+1);
hcode = *p2 = sym;
for (i=1;i<=arity;i++)

hcode = seq hcode(hcode, copy term(*(p1+i), p2+i));
t1 = add tag(p2,STR);
*des = t1;
return hcode;

} /* end switch */
} /* end copy term */

Fig. 1. Copy data to the table area with no sharing.

The function copy term exploits no sharing of data. Consider, for example, the

following program and the query is list([1,2]). After completion of the query,

the subgoal table contains three tabled subgoals, is list([1,2]), is list([2]),

and is list([]), and each subgoal’s answer table contains an answer that is just

a copy of the subgoal itself. No data are shared among the copies of the terms. So

there are two separate copies of [1,2] and two separate copies of [2] in the table

area. In the WAM representation of lists, a cons requires two words to store, so

12 words are used in total. In general, the query is list([1,2,. . .,N]) consumes

O(N2) space in the table area.

4 Hash-consing of ground compound terms

Hash-consing, like tabling, is a memoization technique which uses a hash table to

memorize values that have been created. Before creating a new value, it looks up

the table to see if the value exists. If so, it reuses the existing value, otherwise,

it inserts the value into the table. The concept of hash-consing originates from

implementations of Lisp that attempt to reuse cons cells that have been constructed

before (Goto 1974). This technique has also been suggested for Prolog (e.g., for

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

Efficient tabling of structured data with enhanced hash-consing 553

int copy term(Term t, TermPtr des){
deref(t);
switch (tag(t)){
case NUMVAR:

*des = t;
return 0;

case ATM:
*des = t;
return atomic hcode(t);

case LST:
p1 = untag(t);
p2 = allocate from table(2);
car code = copy term(*p1, p2);
cdr code = copy term(*(p1+1), p2+1);
hcode = seq hcode(car code,cdr code);
t1 = add tag(p2,LST);
if (is ground hcode(hcode)){

t2 = hash consing(t1,hcode);
if (t1 != t2){

deallocate to table(2);
t1 = t2;

}
}
*des = t1;
return hcode;

case STR:
p1 = untag(t);
sym = *p1;
arity = get arity(sym);
p2 = allocate from table(arity+1);
hcode = *p2 = sym;
for (i=1;i<=arity;i++)

hcode = seq hcode(hcode, copy term(*(p1+i), p2+i));
t1 = add tag(p2,STR);
if (is ground hcode(hcode)){

t2 = hash consing(t1,hcode);
if (t1 != t2){

deallocate to table(arity+1);
t1 = t2;

}
}
*des = t1;
return hcode;

} /* end switch */
} /* end copy term */

Fig. 2. Copy data with hash-consing.

sharing answers of findall/3 (O’Keefe 2001)), but its use in Prolog implementations

is unknown, not to mention its use in tabling.

Let’s call the hash table used for all ground terms terms-table. Figure 2 gives an

updated version of copy term that performs hash-consing. If the term is a list or

a structure, the function copies it into the table area first. If the term is ground, it

then calls the function hash consing(t1,hcode) to look up the terms-table to see

if a copy of t1 already exists in the table. If so, hash consing(t1,hcode) returns

the copy; otherwise, it inserts t1 into the terms-table and returns t1 itself. If an old

copy in the terms-table is returned (t1 != t2), the function deallocates the memory

space allocated for the current copy.

With hash-consing, the query ?-is list([1,2]) only creates one copy of [1,2]

in the table area and the list is shared by the subgoals and the answers. As [2] is

the cdr of [1,2], no separate copy is stored for it. So, only 4 words are used in total

for the list. The number of words used for hashing the two lists varies, depending

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

554 N. F. Zhou and C. T. Have

on if there is a collision. If no collision occurs, two slots in the terms-table are used;

otherwise, one slot in the terms-table is used and one node with two words is used

to chain the two lists. So in the worst case, 7 words are needed in total.

5 Enhanced hash-consing

With hash-consing, the tabled subgoal is list([1,...,N]) consumes only linear

table space now. Nevertheless, its time complexity remains quadratic in N. This is

because for each descendant subgoal is list([K,...,N]) (K>1) the hash code

of the list [K,...,N] has to be computed and the terms-table has to be looked

up. We enhance hash-consing with two techniques to lower the time complexity of

is list([1,...,N]) to linear.4

5.1 Hash code memoization

The first technique is to table hash codes of structured terms in the table area. For

each structure or a list cons in the table area, we use an extra word to store its hash

code. The WAM representation of terms is not changed. The word for the hash code

of a compound term is located right before the term. So assume p is the untagged

reference to a structure or a list cons, then p-1 references the hash code.

Figure 3 gives a new version of copy term that tables hash codes. Tabled hash

codes are used for two purposes. Firstly, when searching for the term t1 in the hash

chain, the function hash consing(t1,hcode) always compares the hash codes first

and only when the codes are equal will it compare the terms. Secondly, the system

reuses the tabled hash codes of terms when it expands a hash table and rehashes

the terms into the new hash table.

With tabled hash codes, the subgoal is list([1,...,N]) still takes quadratic

time since the list [1,...,N] resides on the heap and for each descendant subgoal,

the hash code of the argument is not available and hence has to be computed. To

avoid this computation, we introduce input sharing.

5.2 Input sharing

Input sharing amounts to letting a subgoal share its ground terms with its answers

and descendant subgoals. Consider the tabled subgoal is list([1,2,3]). The

answer is the same as the subgoal, so it shares the term [1,2,3] with the subgoal

in the table area. The direct descendant subgoal is is list([2,3]). Since the list

[2,3] is a suffix of [1,2,3], the descendant subgoal should share it with the original

subgoal in the table area.

To implement input sharing, we let the copying procedure set the frame slot

of an argument of a tabled subgoal to the address of the copied argument in

the table area if the argument is a ground structured term. So for the tabled

4 The worst case time complexity is still quadratic in theory if a poorly designed hash function is used.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

Efficient tabling of structured data with enhanced hash-consing 555

int copy term(Term t, TermPtr des){
deref(t);
switch (tag(t)){
case NUMVAR:

*des = t;
return 0;

case ATM:
*des = t;
return atomic hcode(t);

case LST:
p1 = untag(t);
if (!is heap reference(p1)){

*des = t;
return *(p1-1); /* return the tabled hash code */

}
p2 = allocate from table(3);
p2++;
car code = copy term(*p1, p2);
cdr code = copy term(*(p1+1), p2+1);
hcode = seq hcode(car code,cdr code);
*(p2-1) = hcode;
t1 = add tag(p2,LST);
if (is ground hcode(hcode)){

t2 = hash consing(t1,hcode);
if (t1 != t2){

deallocate to table(3);
t1 = t2;

}
}
*des = t1;
return hcode;

case STR:
p1 = untag(t);
if (!is heap reference(p1)){

*des = t;
return *(p1-1); /* return the tabled hash code */

}
sym = *p1;
arity = get arity(sym);
p2 = allocate from table(arity+2);
p2++;
hcode = *p2 = sym;
for (i=1;i<=arity;i++)

hcode = seq hcode(hcode, copy term(*(p1+i), p2+i));
*(p2-1) = hcode;
t1 = add tag(p2,STR);
if (is ground hcode(hcode)){

t2 = hash consing(t1,hcode);
if (t1 != t2){

deallocate to table(arity+2);
t1 = t2;

}
}
*des = t1;
return hcode;

} /* end switch */
} /* end copy term */

Fig. 3. Tabling hash codes while copying with hash-consing.

subgoal is list([1,2,3]), the frame slot of the argument initially references the

list [1,2,3] on the heap. After the subgoal is copied to the table area, the frame

slot is set to reference the copy of the list in the table area. In this way, the list will

be shared by answers and the descendant subgoals. For programs that do not use

destructive assignments, which is the case for tabled programs, updating frame slots

this way causes no problem.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

556 N. F. Zhou and C. T. Have

int copy subgoal args(TermPtr src, TermPtr des, int arity){
hcsum = 0;
for (i=1;i<=arity;i++){

hcode = copy term(*(src-i), des+i);
if (is ground hcode(hcode)) *(src-i) = *(des+1);
hc sum = seq hcode(hc sum,hcode);

}
return hc sum;

}

Fig. 4. Input sharing by updating frame slots.

The function copy subgoal args shown in Figure 4 implements input sharing.

When an argument is found to be ground, the function lets the stack slot of the

argument reference its copy in the table area. The function copy term (in Figure 3)

tests the reference to a compound term to see if the term needs to be copied. If it

is not a heap reference, then the referenced term must reside in the table area and

thus can be reused.

Note that our input sharing scheme has its limitation in the sense that it fails

to facilitate sharing of ground components in non-ground arguments. Consider,

for example, the subgoal is list([X,2,3]). The suffix [2,3] will not be shared

through input sharing in our implementation since the argument is not ground.

It will eventually be shared through hash-consing, but its hash code needs to be

computed again when it occurs in a descendant subgoal or an answer.

6 Evaluation

The improved tabling system described in this paper has been implemented and made

available with B-Prolog version 7.7 (BP7.7). We evaluate the proposed approach by

comparing BP7.7 with YAP (version 6.3.2) and XSB (version 3.3.6), and also the

previous version of B-Prolog, version 7.6 (BP7.6), which did not have enhanced hash-

consing. We also compare it with indexed programs produced by the transformation

proposed in (Have and Christiansen 2012) running on B-Prolog 7.6 (indexed). We use

the is list/1 predicate, the edit distance/35 program, and a PRISM program

to show the effectiveness of the proposed techniques. We also test on a program

that favors prefix sharing with tries more than suffix sharing with hash-consing.

In addition, we also show results for the CHAT suite and the ATR parser, the

traditional benchmarks used to evaluate tabling systems.

The results are obtained on a Linux machine with 16 2.4 GHz, 64 bit Intel

Xeon(R) E7340 processor cores and 64 GB of memory. For this evaluation, only a

single processor core is utilized. CPU times (in seconds) and table space (in kilobytes)

consumptions are measured using the statistics/1 built-in for BP and XSB, and

table statistics/1 for YAP.

Table 1 shows the results on the query is list([1,1,...,1]) where N is the

number of 1s in the list. All the systems except for BP7.6 demonstrate a close-to-

linear complexity. The higher time complexity of BP7.6 is due to that fact that BP7.6

5 The source code is available in (Have and Christiansen 2012).

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

Efficient tabling of structured data with enhanced hash-consing 557

Table 1. Results on is list([1,1,...,1])

BP7.7 BP7.6 indexed YAP XSB

N time space time space time space time space time space

500 0.000 33 0.098 43 0.001 39 0.007 90 0.003 399

1000 0.001 66 0.776 86 0.003 78 0.033 180 0.010 567

1500 0.001 99 2.608 128 0.004 117 0.073 269 0.019 735

2000 0.002 131 6.169 171 0.005 156 0.134 359 0.037 903

2500 0.001 164 12.034 214 0.006 195 0.186 449 0.058 1071

3000 0.002 197 20.777 257 0.008 234 0.282 539 0.078 1239

3500 0.002 229 32.975 300 0.009 273 0.384 629 0.108 1407

4000 0.003 264 49.204 343 0.011 312 0.498 719 0.139 1575

4500 0.003 297 70.048 386 0.011 351 0.571 809 0.177 1743

5000 0.003 330 96.112 429 0.013 390 0.729 898 0.217 1911

Table 2. Results on is list(L) where L contains random data

BP7.7 BP7.6 indexed YAP XSB

N time space time space time space time space time space

500 0.000 33 0.000 43 0.002 39 0.008 90 0.024 9990

1000 0.001 66 0.001 86 0.002 78 0.032 180 0.063 39236

1500 0.001 99 0.001 128 0.004 117 0.082 270 0.142 87991

2000 0.001 132 0.002 171 0.005 156 0.134 360 0.252 156269

2500 0.001 164 0.003 214 0.007 195 0.218 450 0.387 244071

3000 0.002 197 0.003 257 0.008 234 0.341 540 0.559 351401

3500 0.002 229 0.004 300 0.010 273 0.401 630 0.766 478260

4000 0.003 264 0.005 343 0.011 312 0.537 719 0.978 624640

4500 0.003 297 0.006 386 0.012 351 0.703 809 1.244 790555

5000 0.004 330 0.008 429 0.013 390 0.894 899 1.504 975990

only uses the first three elements of a list as the key and hashing degenerates into

linear search for the query because of hash collision. The difference in time among

BP7.7, YAP and XSB is at least a large constant factor. As mentioned above, a

trie allows for sharing of prefixes while hash-consing allows for sharing of suffixes

as long as lists are concerned. For a list that contains repeated data, there are an

equal number of prefixes and suffixes, and hence both types of sharing are equally

favored. The difference between BP7.7 and indexed is only a small constant factor.

Table 2 shows the results on the query is list(L) where L is a list of random

constants.6 BP consumes linear space and linear time; YAP consumes linear space

thanks to the global trie for terms but takes quadratic time; XSB is quadratic in

both time and space. For random lists, suffix sharing with hash consing is clearly

more effective than prefix sharing with tries.

6 A random number generator is used to generate the lists. For each size, the same list was used for all
the systems.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

558 N. F. Zhou and C. T. Have

Table 3. Results on edit([1,1,...,1],[1,1,...,1],D)

BP7.7 BP7.6 indexed YAP XSB

N time space time space time space time space time space

30 0.000 60 0.026 97 0.003 90 0.005 213 0.006 1273

60 0.003 233 0.726 378 0.016 348 0.034 819 0.057 4341

90 0.007 519 5.189 841 0.036 776 0.107 1820 0.235 9435

120 0.015 917 21.216 1487 0.064 1372 0.266 3214 0.736 16554

150 0.022 1427 63.536 2316 0.102 2137 0.517 5002 1.635 25698

180 0.031 2051 156.072 3328 0.142 3071 0.942 7183 3.041 36868

210 0.047 2786 334.190 4523 0.208 4173 1.533 9759 5.035 50064

240 0.060 3634 646.550 5900 0.267 5445 2.367 12728 7.662 65285

270 0.074 4595 1159.182 7460 0.339 6885 3.081 16090 11.327 82531

300 0.095 5668 1955.331 9204 0.448 8493 4.401 19847 15.664 101803

Table 4. Results on edit(L1,L2,D) where L1 and L2 contain random data

BP7.7 BP7.6 indexed YAP XSB

N time space time space time space time space time space

30 0.001 61 0.000 97 0.004 90 0.005 214 0.011 4148

60 0.003 234 0.006 378 0.020 348 0.045 822 0.099 27706

90 0.010 521 0.016 841 0.038 776 0.118 1823 0.313 89645

120 0.017 919 0.033 1487 0.067 1372 0.298 3218 0.759 209183

150 0.027 1430 0.057 2316 0.105 2137 0.591 5007 1.501 404752

180 0.038 2054 0.094 3328 0.148 3071 1.058 7190 2.771 695363

210 0.056 2790 0.156 4523 0.217 4173 1.695 9766 4.271 1099906

240 0.073 3639 0.219 5900 0.282 5445 2.687 12736 6.247 1637354

270 0.092 4600 0.297 7460 0.352 6885 3.782 16100 8.787 2327276

300 0.114 5674 0.435 9204 0.466 8493 5.248 19857 11.954 3187340

Tables 3 and 4 show the results on the edit distance program with repeated

data and random data, respectively. The main predicate edit(L1,L2,D) in the

program computes the distance between L1 and L2, i.e., the number of substitutions,

insertions and deletions needed to transform L1 to L2. The tabled version finds all

solutions. BP7.7 is significantly faster than BP7.6 on the type of queries that use

repeated data. BP7.7 also outperforms YAP and XSB in both time and space on

both types of queries. Similar to the is list benchmark, enhanced hash-consing is

asymptotically more effective than tries on random data.

Table 5 compares BP7.7 and BP7.6 on the PRISM program that simulates a

two-state hidden Markov model (Sato et al. 2010). For our benchmarking purpose,

the training data of the form hmm([a,b,a,b,...]) are used, and only the time and

space required to find all the explanations are measured. While BP7.7 consumes

slightly more space than BP7.6 due to the overhead of hash-consing, it outperforms

BP7.6 in time by a linear factor.

Although it is more common for subgoals of recursive programs to share suffixes

than prefixes, it is possible to find programs on which prefix sharing with tries is

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

Efficient tabling of structured data with enhanced hash-consing 559

Table 5. Results on the PRISM program HMM

BP7.7 BP7.6

N time space time space

2000 0.002 222 1.164 179

3000 0.005 333 3.911 269

4000 0.006 444 9.249 359

5000 0.008 555 18.044 449

6000 0.010 666 31.150 539

7000 0.011 776 49.441 628

8000 0.013 889 73.774 718

9000 0.015 1000 105.049 808

10000 0.018 1111 144.140 898

Table 6. Results on create list(N,L)

BP7.7 BP7.6 YAP XSB

N time space time space time space time space

500 0.035 2417 0.107 990 0.039 3965 0.023 290

1000 0.201 9564 0.827 3937 0.201 15742 0.043 348

1500 0.654 21635 2.989 8831 0.523 35332 0.095 407

2000 0.969 37926 7.245 15679 0.962 62734 0.169 465

2500 2.151 60082 14.130 24480 1.699 97949 0.264 524

3000 2.660 85890 24.343 35249 2.630 140976 0.378 583

3500 3.276 116011 38.397 47956 3.739 191816 0.517 641

4000 4.011 150192 57.217 62616 5.071 250468 0.675 700

4500 7.319 194310 80.994 79229 6.978 316933 0.853 758

5000 8.316 238885 110.631 97796 9.267 391211 1.051 817

more effective than suffix sharing with hash-consing. The following gives such a

program:

:-table create_list/2.

create_list(N,L):-

between(1,N,I),

range(1,I,L).

The query create list(N,L) creates N lists [1], [1,2], ..., and [1,2,...,N] that

have only common prefixes. As shown in Table 6, XSB consumes linear space, while

BP and YAP consume quadratic space. YAP tables all suffixes into the global trie

for terms and there are O(N2) suffixes. BP7.7 consumes more table space than BP7.6

since all the terms are hash-consed but none is shared. BP7.6 is slower than BP7.7

since the hash function used in BP7.6, which is based on the first three elements of

a list, results in more collisions than BP7.7.

Table 7 compares the systems on the CHAT benchmark suite and the ATR

parser. There is almost no difference between BP7.7 and BP7.6 in time and the space

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

560 N. F. Zhou and C. T. Have

Table 7. Results on the CHAT benchmarks and the ATR parser

BP 7.7 BP 7.6 YAP XSB

Benchmark time space time space time space time space

cs o 0.015 198 0.0129 11 0.009 26 0.011 285

cs r 0.025 332 0.026 11 0.019 27 0.022 286

disj 0.008 108 0.009 11 0.005 23 0.007 277

gabriel 0.011 111 0.012 9 0.006 20 0.008 272

kalah 0.008 90 0.008 15 0.006 35 0.008 304

pg 0.006 69 0.006 7 0.004 15 0.006 263

read 0.057 987 0.058 23 0.099 46 0.030 327

atr 0.509 15111 0.543 5947 0.325 52520 0.280 45400

overhead incurred by hash-consing is noticeable. Hash-consing has no positive effect

on these programs because the sequences used in the programs are very short.

7 Related work

Since structure sharing (Boyer and Moore 1972) was discarded and the Warren

Abstract Machine (WAM) (Warren 1983) triumphed as the implementation model

of Prolog, there has been little attention paid to exploiting data sharing in Prolog

implementations.7 In his Diploma thesis (Neumerkel 1989), Ulrich Neumerkel gave

several example Prolog programs that would consume an-order-of-magnitude less

space with data sharing than without sharing. He proposed applying hash-consing

and DFA-minimization to sharing terms including cyclic ones. The proposed

approach would incur considerable overhead if every compound term is hash-

consed when created, and hence it is infeasible to incorporate the approach into

the WAM. Following Appel and Goncalves’s hash-consing garbage collector for

SML/NJ (Appel and de Rezende Goncalves 2003), Nguyen and Demoen recently

built a similar garbage collector for hProlog (Nguyen and Demoen 2012). The

garbage collector hash-conses compound terms on the heap in one phase and

performs absorption in another phase such that for the replications of a compound

term only one copy is kept and all the others are garbage collected. Their experiment

basically confirms the disappointing result reported in Appel and Goncalves’s paper:

the overhead outweighs the gain except for special programs.

Hash-consing can be applied to the built-in predicate findall/3, as suggested

by O’Keefe (O’Keefe 2001), to avoid repeatedly copying the same term in different

answers. Currently, B-Prolog is the only Prolog system that supports hash-consing

for findall/3. It employs a hash table for ground terms in the findall area. The

algorithm and memory manager developed for the table area is reused for the findall

area. With hash-consing, the system copies a ground term only once when copying

answers from the findall area to the heap. Input sharing is exploited in the same

7 A lot of work has been done on indexing Prolog terms, but indexing is a different kind of sharing since
it does not consider reuse of terms from different sources.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

Efficient tabling of structured data with enhanced hash-consing 561

way as for tabled subgoals. For a findall call, the compiler converts it into a call

to a temporary predicate such that each argument of the generator occupies one

slot in the stack frame. At runtime, the system first copies the arguments of the

generator from the stack/heap to the findall area before the generator is executed.

When an argument of the generator is found to be a ground compound term, its

frame slot is set to reference the copy in the findall area. In this way, the argument

and its subterms can be reused by the answers and the descendant calls. Nguyen and

Demoen’s implementation of input sharing for findall/3 (Nguyen and Demoen

2012) distinguishes between old terms that are created before the generator and new

terms that are generated by the generator, and have answers share the old terms.

Their scheme can exploit sharing of not only ground arguments but also ground

terms in non-ground arguments. Their scheme may not be suited for tabled data

since, unlike data in the findall area which live and die with the generator, tabled

data are permanent. Also, their implementation does not exploit output sharing.

A trie has been a popular data structure for organizing tabled subgoals and

answers (Ramakrishnan et al. 1998). It is adopted by all the tabled Prolog systems

except B-Prolog. As far as lists are concerned, a trie facilitates sharing of the prefixes

while hash-consing allows for sharing of the suffixes. So for the two lists [1,2] and

[1,2,3], the former shares the same path as the latter in the trie, but they are

treated as separate lists when hash-consed; for the two lists [2,3] and [1,2,3],

however, a trie allows for no sharing while hash-consing allows for complete sharing.

Another advantage of tries is that they can be used to perform both variant

testing and subsumption testing, and thus can be used in both variant-based and

subsumption-based tabling systems. Hash-consing, on the other hand, can be used to

perform equivalence testing only and thus cannot directly be used for subsumption-

based tabling.

Terms stored in a trie have a different representation from terms on the heap. For

example, in the YAP system, tries are represented as trie instructions (Santos Costa

et al. 2012). For this reason, when an answer is returned, it must be copied from

its trie in the table area to the heap even if it is ground. In our system, structured

ground terms in the table area have exactly the same representation as on the heap,

so when they occur in an answer they do not need to be copied when the answer is

returned.

In the original implementation of XSB and YAP, one trie is used for all tabled

subgoals, and for each subgoal one trie is used for the answer table. To enhance

sharing, Raimundo and Rocha propose using a global trie for all tabled structured

terms (Raimundo and Rocha 2011). Due to the necessity of copying answers from

the table area to the heap, the time complexity remains the same even when the

space complexity drops.

To some extent, the idea of representing sentences as position indexed facts (Swift

et al. 2009; Have and Christiansen 2012) is similar to hash-consing in the sense that

a hash-consed term always is associated with a hash code. The translation from a

program that deals with sequences represented as lists into one that uses position

representation is not trivial. When difference lists are involved, the translation is

even more complicated. The program obtained after translation may lose sharing

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

562 N. F. Zhou and C. T. Have

opportunities. Therefore, hash-consing is a more practical solution to sharing than

program transformation.

As far as we know, our implementation is the first attempt to apply hash-consing

to tabling. Our implementation enhances hash-consing with input sharing and hash

code memoization to speed-up computation of hash codes. The extra cell used to

store the hash code of a compound term is overhead if the term is never shared.

Nevertheless, while the increase of space is always a constant factor, the gain in

speed can be linear in the size of the data.

8 Conclusion

We have presented an implementation of hash-consing for tabling structured data.

Hash-consing facilitates sharing of structured data and can eliminate the extra linear

factor of space complexity commonly seen in early tabling systems when dealing

with sequences. Hash-consing alone does not change the time complexity. We have

enhanced it with input sharing and hash code memoization to eliminate the extra

linear factor of time complexity in dealing with sequences. The resulting tabling

system significantly improves the scalability of language parsing and bio-sequence

analysis applications.

Our work will shed some light on the discussion on what data structure to use

for tabled data. A trie is suitable for sharing prefixes and hash-consing is suitable

for sharing suffixes of sequences. Although it is possible to find programs that make

prefix sharing arbitrarily better than suffix sharing, it is more common for subgoals

of recursive programs to share suffixes than prefixes. Therefore, hash-consing is in

general a better choice than tries as a data structure for representing tabled data.

Hash-consing as it is in our implementation is not suitable for subsumption-based

tabling. It is future work to adapt hash-consing to subsumption testing.

Acknowledgements

The PRISM system has been the motivation for this project and we thank Taisuke

Sato and Yoshitaka Kameya for their discussion. We also thank the anonymous

referees for their detailed comments on the presentation. Neng-Fa Zhou was

supported in part by NSF (No. 1018006) and Christian Theil Have was supported

by the project Logic-statistic modelling and analysis of biological sequence data

funded by the NABIIT program under the Danish Strategic Research Council.

References

Appel, A. W. and de Rezende Goncalves, M. J. 2003. Hash-Consing Garbage Collection.

Technical Report TR 74-03, Princeton University.

Boyer, R. S. and Moore, J. S. 1972. A sharing of structure in theorem proving programs.

Machine Intelligence 7, 101–116.

Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic

programs. Journal of the ACM 43, 1, 20–74.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

Efficient tabling of structured data with enhanced hash-consing 563

Ershov, A. 1959. On programming of arithmetic operations. Communications of the ACM 1, 8,

3–6.

Goto, E. 1974. Monocopy and Associative Algorithms in Extended Lisp. Technical Report TR

74-03, University of Tokyo.

Have, C. T. and Christiansen, H. 2012. Efficient tabling of structured data using indexing

and program transformation. In PADL. LNCS 7149, 93–107.

Michie, D. 1968. “Memo” functions and machine learning. Nature, 19–22.

Neumerkel, U. 1989. Garbage Collection in Prolog Systems (in German). PhD Thesis,

Technical University of Vienna.

Nguyen, P.-L. and Demoen, B. 2012. Representation sharing for Prolog. TPLP .

O’Keefe, R. A. 2001. O(1) reversible tree navigation without cycle. TPLP 1, 5, 617–630.

Raimundo, J. and Rocha, R. 2011. Global trie for subterms. In CICLOPS.

Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T. and Warren, D. 1998. Efficient access

mechanisms for tabled logic programs. Journal of Logic Programming 38, 31–54.

Santos Costa, V., Rocha, R. and Damas, L. 2012. The YAP Prolog system. TPLP, Special

Issue on Prolog Systems 12, 1-2, 5–34.

Sato, T. and Kameya, Y. 2008. New advances in logic-based probabilistic modeling by PRISM.

In Probabilistic Inductive Logic Programming. 118–155.

Sato, T., Zhou, N.-F., Kameya, Y. and Yizumi, Y. 2010. The PRISM user’s manual.

http://www.mi.cs.titech.ac.jp/prism/.

Somogyi, Z. and Sagonas, K. 2006. Tabling in Mercury: Design and implementation. In

PADL. LNCS 3819, 150–167.

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with tabled logic programming.

TPLP, Special issue on Prolog systems 12, 1-2, 157–187.

Swift, T. and Warren, D. S. et al. 2009. The XSB Programmer’s Manual: vols. 1 and 2.

http://xsb.sf.net.

Warren, D. H. D. 1983. An abstract Prolog instruction set. Technical note 309, SRI

International.

Zhou, N.-F. 2012. The language features and architecture of B-Prolog. TPLP, Special Issue

on Prolog Systems 12, 1-2, 189–218.

Zhou, N.-F., Sato, T. and Shen, Y.-D. 2008. Linear tabling strategies and optimizations.

TPLP 8, 1, 81–109.

https://doi.org/10.1017/S1471068412000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000178

