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Abstract

A criterion for a two temperature plasma nuclear fusion ignition is derived by using a common model. In particular,
deuterium-tritium (DT) and proton–boron11 (pB11) are considered for pre-compressed plasma. The ignition criterion is
described by a surface in the three-dimensional space defined by the electron and ion temperatures Te, Ti, and the
plasma density times the hot spot dimension, ρ·R. The appropriate fusion ion temperatures Ti are larger than 10 keV
for DT and 150 keV for pB11. The required value of ρ·R for pB11 ignition is larger by a factor of 50 or more than for
DT, depending on the electron temperature. Furthermore, our ignition criterion obtained here for pB11 fusion is
practically impossible for equal electron and ion temperatures. In this paper it is suggested to use a two temperature
laser induced shock wave in the intermediate domain between relativistic and non-relativistic shock waves. The laser
parameters required for fast ignition are calculated. In particular, we find that for DT case one needs a 3 kJ/1 ps laser
to ignite a pre-compressed target at about 600 g/cm3. For pB11 ignition it is necessary to use more than three orders of
magnitude of laser energy for the same laser pulse duration.
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1. INTRODUCTION

One of the approaches to solve the energy problem is the
well-known inertial confinement fusion (ICF) driven by high
power lasers. The physics of ICF is based on compressing
and igniting rather than confining the fuel (Nuckolls et al.,
1972; Atzeni &Meyer-Ter-Vehn, 2004; Velarde & Carpintero-
Santamaria, 2007). In order to ignite the fuel with less energy it
was suggested to separate the drivers that compress and ignite
the target (Basov et al., 1992; Tabak et al., 1994). First the
fuel is compressed to high density, then a second short
pulse driver heats and ignites a small part of the fuel, the
“hot spot” or “igniter”, while the α-particles created in the
nuclear interaction heat and burn the rest of the target. This
idea is called fast ignition. The fast ignition problem is that
the short laser pulse does not penetrate directly into the

compressed target; therefore many schemes have been sug-
gested (Guskov, 2013) to solve this issue. Presently from
all the known fast ignition schemes the simplest fast ignition
seems to be an “extra shock” wave (Betti et al., 2007; Eliezer
& Martinez Val, 2011).

We suggested recently a novel shock wave ignition
scheme (Eliezer et al., 2014a) where the ignition shock
wave is generated in a pre-compressed target by the ponder-
motive force of a high irradiance laser pulse. The shock wave
velocity in this scheme is in the intermediate domain between
the relativistic and non-relativistic hydrodynamics. Here, this
fast ignition scheme is further developed and analyzed for
deuterium-tritium (DT) and proton–boron11 (pB11) fuels.

The interaction of a high power laser with a planar target cre-
ates a one-dimensional (1D) shockwave (Fortov&Lomonosov,
2010; Eliezer, 2013). The theoretical basis for laser induced
shock waves analyzed and measured experimentally so far is
based on plasma ablation. For laser intensities 1012 W/cm2<
IL< 1016 W/cm2 and nanoseconds pulse duration a hot
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plasma is created. This plasma exerts a high pressure on the sur-
rounding material, leading to the formation of an intense shock
wavemoving into the interiorof the target (Eliezer, 2002). In this
paper we are interested in laser irradiances IL> 1021 W/cm2.
Shock waves induced by lasers with irradiances in this regime
are described by relativistic hydrodynamics (Landau&Lifshitz,
1987). Relativistic shock waves were first analyzed by Taub
(1948). Relativistic shocks may be a new route for fast ignition
(Eliezer, 2012) and these shocks may be of importance in in-
tense stellar explosions or in collisions of extremely high
energy nuclear particles.
The shock wave created in a 1D target by the ponderomo-

tive force1 induced by very high laser irradiance, considered
in this paper, is summarized schematically in Figure 1. In this
domain of laser intensities the pondermotive force acceler-
ates the electrons forward, so that the charge separation
field forms a double layer (DL), in which the ions are accel-
erated forward. Figure 1a displays the capacitor model for
laser irradiances IL, where the ponderomotive force domi-
nates the interaction; Figure 1b shows the system of the neg-
ative and positive layers DL, ne and ni are the electron and ion
densities, accordingly, Ex is the electric field, λDL is the dis-
tance between the positive and negative DL charges, and δ is
the solid density skin depth of the foil. The DL is geometri-
cally followed by neutral plasma where the electric field
decays within a skin depth and a shock wave is created.
The shock wave description in the laboratory frame of refer-
ence is given in Figure 1c. This DL acts as a piston driving a
shock wave (Naumova et al., 2009; Eliezer et al., 2014b;
2014c), moving in the unperturbed plasma. This model is
supported in the literature by particle in cell simulation (Esir-
kepov et al., 2004; Naumova et al., 2009) and independently
by hydrodynamic two fluid simulations (Hora et al., 1984;
Hora, 1991; Lalousis et al., 2012; 2013). Here, it is proposed
to use the above shock wave as igniter for pre-compressed
fuel in the framework of fast ignition. Fast ignition of DT
and pB11 fuels using ultra-intense short pulse laser was sug-
gested and elaborated by Hora and collaborators (Hora et al.,
2014; Lalousis et al., 2014). Their approach is based on
impact of plasma blocks, generated by laser pulses shorter
than picosecond and powers in the range of petawatt ap-
proaching exawatt, with solid targets. Recently, it was sug-
gested that the above approach based on plasma blocks
combined with ultra-high magnetic fields may reduce the re-
quired laser pulse power to lower values (Hora et al., 2014;
2015). Fast ignition of DT with ultra-intense laser pulse in-
duced by accelerated protons by the DL described above
was considered by Naumova et al., 2009.
Relativistic or non-relativistic (Zeldovich & Raizer, 1966)

shock wave is described by five variables: The density ρ, the
pressure P, the energy density e, the shock wave velocity us

and the particle flow velocity up, assuming that we know the
initial condition of the target (ρ0, P0, e0, and, the particle
flow velocity u0) before the shock arrival. The four equations
relating the shock wave variables are the three Hugoniot rela-
tions describing the conservation laws of energy, momentum,
and particles and the equation of state (EOS) connecting the
thermodynamic variables of the state under consideration.
The fifth equation necessary to solve the problem is obtained
in a model where the pressure is induced by the laser ponder-
omotive force and its strength is a function of the laser pulse
parameters. These equations for the relativistic and non-
relativistic case are given in Appendix A (Eliezer et al., 2014b).
An ignition criterion for density-dimension product of the

hot spot is calculated for non-equilibrium conditions where
the electrons and ions temperatures are different, characteristic
for fast ignition schemes. Electron and ion relaxation times
relevant for these conditions are given in Appendix B. The
equation describing the equality between nuclear fusion and
energy losses is solved and the solution describes a surface
in the 3D space of ρ·R-Te-Ti, where ρ and R are the igniter
density and dimension, accordingly, Te and Ti are the electron
and ion temperatures. The emission of bremsstrahlung into
the hydrodynamics was well included in the computations
of block ignition by Chu (1972) and the subsequent numerous
computations (Lalousis et al., 2013; 2014). In this paper, we
solve the ignition criterion for the general case where the elec-
tron and ion temperatures are not necessarily equal and the

Fig. 1. (a) The capacitor model for laser irradiances IL where the pondero-
motive force dominates the interaction. (b) ne and ni are the electron and ion
densities, accordingly, Ex is the electric field, λDL is the distance between the
positive and negative DL charges, and δ is the solid density skin depth of the
foil. The shock wave description in the laboratory frame of reference is given
in (c).

1

Kelvin’s ponderomotion for electrostatics had to be generalized for la-
ser–plasma interaction by Maxwell’s stress tensor including the dielectric
properties of plasmas. An example on how all components of the tensor
had to be used is in Cicchitelli et al. (1990) and Eliezer (2002).
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solution is not dependent on a specific fast ignition scheme.
The energy balance equation for DT plasma was considered
in the literature for the DT case with equal electron and ion
temperatures (Guskov et al., 1976; Lindl, 1988; Takabe
et al., 1989; Rozanov et al., 1995). This is in contrast to the
genuine two-fluid hydrodynamics with explicit appearance
of the internal electric fields in plasmas (Lalousis & Hora,
1983; Hora et al., 1984; Eliezer et al., 1995).
In the second part of this paper our model for fast ignition

is described, based on two temperature laser induced shock
wave in the intermediate domain between relativistic and
non-relativistic shock waves. The laser parameters required
for fast ignition of DT and pB11 fuels are calculated.
Section 2 describes the ignition criterion and Section 3

presents a two-temperature model for laser induced shock
waves. Application of this model for DT and pB11 is present-
ed in Section 4. The paper is concluded in Section 5.

2. THE IGNITION CRITERION

We analyze the nuclear fusion reactions

A1 + A2 � A3 + A4 + Ef

Ef = Eα + Eothers
(1)

Ef is the fusion energy in each reaction, Eα is α-particles energy
usually deposited in part into the ignition domain and Eothers
is the energy contained in the other particles and practically
not contained in the ignition volume under consideration.
The ignition fusion power Wf [erg/(cm

3·s)] is given by

Wf
erg

cm3 · s
[ ]

= n1n2 < σv>12Eα (2)

where n1 and n2 are the appropriate densities of particles A1
and A2, σ is the cross-section of reaction (1), <σv>12 is the
fusion rate of this reaction and Eα is α-particles energy.
In general, not all of the α-fusion energy is deposited into

the igniter. We define by fα the fraction of the α-particles cre-
ated and deposited into the igniter domain, while (1–fα) is the
escape fraction to the surrounding cold fuel. The value of fα
can be approximated by (Guskov & Rozanov, 1993)

fα =
3
2
xα − 4

5
x2α xα <

1
2

1− 1
4xα

+ 1
160xα3

xα ≥ 1
2

⎧⎪⎨
⎪⎩

xα(τ) = R

Rα

(3)

The igniter dimension R in our model is taken to be

R = us
c
− up

c

( )
cτL (4)

where us and up are the shock wave velocity and the particle
velocity accordingly, τL is the laser pulse duration that causes

ignition and c is the speed of light. The velocities us and up
depend on the laser and fuel parameters, as it is shown in Ap-
pendices A and C. The α range Rα is approximated for DT
(Atzeni & Meyer-Ter-Vehn, 2004) and for pB11 by (Eliezer
& Martinez Val, 1998) by:

DT fusion : Rα[cm] = 1
κρ0

1.5 × 10−2Te(keV)5/4
1+ 8.2 × 10−3Te(keV)5/4

[ ]

pB11 fusion : Rα cm[ ] = a

ρ

Te
c

( )b

Te < 50 keV : a = 0.25, b = 0.79, c = 10 keV

Te ≥ 50 keV : a = 1.1, b = 0.31, c = 100 keV

{
(5)

The initial density of the pre-compressed target is ρ0 and κ is
the shock wave compression during the fast ignition process.

The equation describing the ignition requirement is given
by

Wf −
∑

W losses( ) ≥ 0 (6)

The power density losses,W (losses), include the power den-
sities of the mechanical work (Wm), bremsstrahlung radiation
(WB), and the heat wave transport by electrons (Whe). The ig-
nition criteria are derived by explicitly writing Eq. (6) in the
following way

fαWf −WB −Whe −Wm ≥ 0 (7)

The solution of the equality of Eq. (7) describes a surface in
the 3D space of ρ·R-Te-Ti. The ignition criterion (7) is solved
for the general case where the electron and ion temperatures
are not necessarily equal, extending previous studies for the
DT case with equal electron and ion temperatures (Guskov
et al., 1976; Lindl, 1988; Takabe et al., 1989; Rozanov
et al., 1995).

The bremsstrahlung power density losses WB are given by

WB
erg

cm3 · s
[ ]

= 1.5 × 10−25ne

∑
k=1,2

nkZk
2Te(eV)1/2 1+ 2Te(eV)

500, 000

( ) (8)

Zk is the charge number of particle k, ne, and nk are the elec-
tron density and the ion densities of particle k, accordingly.
The second term in the right-hand side of Eq. (8) stems
from the relativistic corrections to the bremsstrahlung
losses. The heat conduction losses from the igniter domain
are approximated by (Chu, 1972; Rozanov et al., 1995):

Whe
erg

cm3 · s
[ ]

= KeTe
R2

= 3.11 × 109Te(eV)7/2
R2 lnΛ

(9)

The plasma logarithmic term lnΛ is

lnΛ = 24− ln
ne1/2

Te(eV)
[ ]

(10)
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In the solution of Eq. (7), a constant value lnΛ= 3.5 was
taken, appropriate for very high densities where the plasma
is strongly coupled.
The mechanical expansion power losses are estimated by

(Eliezer & Martinez Val, 1998)

Wm = 2ρvm3

R

Wm
erg

cm3 · s
[ ]

= 2
ρ1/2R

kBTene + kBTini
βm

( )3/2 (11)

The flow expansion velocity from the hot spot to the cold en-
vironment velocity, vm, is consistent with an isochoric pre-
compression of the target. As the pressure in the hot region
P is higher than the pressure in the cold region, a shock
wave will develop in the cold target according to the momen-
tum conservation law

P ≈ βmρvm
2 (12)

Using the ideal gas EOS

P = kBTene + kBTini (13)

and Eq. (12) we get the second of Eq. (11). For cases of an
ionized pre-compressed target considered here the value
βm= 4/3 was used.
Substituting Eqs. (8), (9), (11) into Eq. (7) and multiplying

by R2 we get the following quadratic equation in ρ·R

a(Te,Ti)(ρ · R)2 + b(Te, Ti)(ρ · R) + c(Te) ≥ 0 (14)

The solution of this inequality gives the ignition criterion as
described in the domain above the surface in the 3D space of
ρ R-Te-Ti. In the following, Eq. (14) is written explicitly and
solved for two cases: The DT and pB11 nuclear fusion fuel.
The DT case

D+ T � n+ α+ 17, 589keV (15)

Equal density numbers for deuterium and tritium nD and nT,
accordingly are assumed.

ne[cm−3] = ni[cm−3] = ρ

2.5mp

( )
= 2.39 × 1023ρ (16)

where mp is the proton mass. The fusion power Wf [erg/
(cm3·s)] for DT is given in Eq. (2) with number density–mass
density relations from (16), yielding

Wf,DT
erg

cm3 · s
[ ]

= 8.07 × 1040<σv> DT ρ
2 (17)

<σv>DT is the reactivity of the DT reaction fitted in the
domain of ion temperatures 1 keV< Ti< 100 keV by

(Bosch & Hale, 1992)

<σv>DT
cm3

s

[ ]
= 6.4341 × 10−14ζ−5/6 6.661

Ti1/3

( )2

exp −19.983
ζ

Ti

( )1/3
[ ]

ζ = 1− 15.136Ti + 4.6064Ti2 − 0.10675Ti3

1000+ 75.189Ti + 13.5Ti2 + 0.01366Ti3

Ti in keV

(18)

The electron bremsstrahlung power per unit volume loss, in-
cluding relativistic corrections, WB is given by

WB
erg

cm3 · s
[ ]

= 8.58 × 1021ρ2Te(eV)0.5 1+ 2Te(eV)
0.511 × 106

( )
(19)

The mechanical expansion power loss is estimated for DT
using Eq. (11)

Wm
erg

cm3 · s
[ ]

= 1.02 × 1018 Te(eV) + Ti(eV)[ ]1.5 ρ

R

( )
(20)

Substituting the following equations (17) forWf, (19) forWB,
(9) for Whe, and (20) for Wm into Eq. (7) and multiplying by
R2 we get a quadratic inequality in ρ·R as given by Eq. (14)
with

YDT ≡ a(Te, Ti)(ρR)2 + b(Te,Ti)(ρR) + c(Te) ≥ 0

a(Te,Ti) = 8.07 × 1040 <σv>

− 8.63 × 1021Te(eV)1/2 1+ 2Te(eV)
500, 000

( )

b(Te,Ti) = − 1.02 × 1018 Te(eV) + Ti(eV)[ ]1.5

c(Te) = − 3.11 × 109Te(eV)7/2
lnΛ

(21)

The solution of Eq. (21) with <σv>DT from (18) and with
fα= 1, lnΛ= 3.5 is given in Figure 2. Contours of equal
ρ·R as a function of ions and electrons temperatures for DT
are displayed. It is seen that for temperatures Ti, Te in the
range 10–50 keV ρ·R< 1.

2.1. The pB11 Case

p+ 11B � 3α+ 8, 700 keV (22)

In this case, due to the ions high temperatures required for fusion
and also bremsstrahlung losses of the electrons, the boron to
proton number density ratio, e, is usually less than 0.4. In the
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following terms Eq. (14) is expressed as a function of the ratio ε:

ε = nB
np

; ni = nB + np = (1+ ε)np

ρ = mini; mi = (1+ 11ε)
(1+ ε) mp

(23)

nB, np, and ni are the appropriate number densities (cm−3) of the
boron11, protons, and ions. The electron density ne is related to
the ion density ni for a neutral plasma with ionization Zi by

ne =
∑

k = p,B

Zknk = np + 5nB = 1+ 5ε
1+ ε

( )
ni

ne = 1+ 5ε
1+ 11ε

( )
ρ

mp

( )

ni = 1+ ε

1+ 11ε

( )
ρ

mp

( )
(24)

The following relations involving e are also important for our
calculations

∑
k = p,B

Zk
2nk = 1+ 25ε

1+ ε

( )
ni

∑
k = p,B

Zk2nk
mk

= 1+ 25
11

ε

( )
1

(1+ ε) ni
(25)

The fusion powerWf [erg/(cm
3·s)] for pB11 is given in Eq. (2)

with number density–mass density relations from (24), yielding

Wf,pB11
erg

cm3 · s
[ ]

= 4.99 × 1042
ερ2 <σv> pB11

(1+ 11ε)2 (26)

<σv>pB11 is the reactivity of the p11B reaction fitted in the
domain of ion temperatures 50 keV< Ti< 500 keV by

(Nevins & Swain, 2000)

<σv>DT
cm3

s

[ ]
= 6.4341 × 10−14ζ−5/6 6.661

Ti1/3

( )2

exp −19.983
ζ

Ti

( )1/3
[ ]

ζ = 1− 15.136Ti + 4.6064Ti2 − 0.10675Ti3

1000+ 75.189Ti + 13.5Ti2 + 0.01366Ti3

Ti in keV

(27)

The electronbremsstrahlungpower per unit volume loss, includ-
ing relativistic corrections,WB is given by

WB
erg

cm3 · s
[ ]

= 5.35 × 1022
(1+ 5ε)(1+ 25ε)

(1+ 11ε)2 ×

ρ2Te(eV)0.5 1+ 2Te(eV)
0.511 × 106

( ) (28)

The mechanical expansion power loss is estimated for pB11 by
(Eliezer & Martinez Val, 1998)

Wm
erg

cm3 · s
[ ]

= 1.86

× 1018
ρ

R

( ) (1+ 5ε)Te(eV) + (1+ ε)Ti(eV)
(1+ 11ε)

[ ]3/2
(29)

Substituting the following equations (26) for Wf, (28) for WB,
(9) for Whe, and (29) for Wm into Eq. (7) and multiplying by
R2 we get a quadratic inequality in ρ·R as given by Eq. (14) with

YpB11 ≡ a(Te,Ti)(ρR)2 + b(Te,Ti)(ρR) + c(Te) ≥ 0

a(Te,Ti) = fα4.99 × 1042
ε<σv>pB11

(1+ 11ε)2

− 5.35 × 1022
(1+ 5ε)(1+ 25ε)

(1+ 11ε)2

× Te(eV)0.5 1+ 2Te(eV)
0.511 × 106

( )

b(Te,Ti) = − 1.86 × 1018
1+ 5ε( )Te(eV) + (1+ ε)Ti(eV)

(1+ 11ε)
[ ]3/2

c(Te) = − 3.11 × 109Te(eV)7/2
lnΛ

(30)

The solution of Eq. (30) and <σv>pB11 from (27) with fα= 1,
lnΛ= 3.5, and ε= 0.33, is given in Figure 3. It is seen that tem-
perature ranges where Eq. (30) has real solutions ρ·R< 20 are
100–600 keV for the ions and 10–100 keV for the electrons.
Moreover, the values of ρ·R are larger by about two orders of
magnitude than forDT, requiring larger pre-compression and ig-
niter size, and as it is shown below; larger energy laser.

Fig. 2. Contours of equal ρ·R as a function of ions and electrons tempera-
tures for DT, obtained from Eqs. (14) and (21).
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3. THE IGNITER PERFORMANCE DRIVEN BY
LASER INDUCED TWO TEMPERATURES
SHOCK WAVES

As described in Section 1, in the framework of the piston
model, a shock wave is generated in the target, with different
ions and electrons temperatures. Following Chu (1972) and
Eliezer and Martinez-Val (1998), the igniter performance
can be analyzed by an energy balance, dependent on the
ions and electrons temperatures:

3
2

( )
d

dt
(nekBTe) = ηdWd +Wie −WB + fαηfWf

3
2

( )
d

dt
(nikBTi) = (1− ηd)Wd −Wie + fα(1− ηf)Wf

(31)

A schematic view of this two temperatures shock model is
given in Figure 4. Note that during the time the shock

wave is driven by the laser-piston the heat wave and mechan-
ical losses do not exist. kB is the Boltzmann’s constant.
Wd [erg/(cm3·s)] is the power density deposited by the
driver (induced by the laser-piston), ηd is the fraction of the
driver energy deposited in the electrons inside the shocked
volume, (1−ηd) gives the fraction of the driver energy depos-
ited in the ions inside the shocked volume.
The deposition power densityWd is dependent on the laser

intensity IL and pulse time duration τL and on the shock com-
pression κ= ρ/ρ0 (see Appendix A):

IL
W

cm2

[ ]
= 4 × 103

Wd
erg

cm3 · s
[ ]

τL s[ ]
κ

(32)

The relation between the deposition power density and the
laser parameters, as well as the particle up and shock us veloc-
ities are obtained from the Hugoniot–Rankine equations and
presented in Appendix C. The size of the igniter is deter-
mined by the laser and the fuel parameters. The igniter is
modeled as a cylinder with length R= ls, the shock dimen-
sion, defined in Eq. (4) and diameter 2RL= 3ls, larger than
the shock dimension to justify1D approximation.
As described in Section 2, the shock dimension is used in the

calculation of fα, the fraction of the α-particles (created in theDT
or pB11 fusion) energy deposited inside the shocked volume.
Assuming that λi and λe are the appropriate mean free

paths of the ions and electrons in plasma, one gets for ηd

ηd =
λi

λi + λe

λi[cm] = 3 × 1023

ni

( )
mp

mi

( )
Ei[MeV]

λe[cm] = 5 × 1022

ne lnΛ

( )
Te[keV]3/2Ei[MeV]

Ei = 1
2
miup

2 = 1250(MeV) up
c

( )2

(33)

Fig. 3. Contours of equal ρ·R as a function of ions and electrons tempera-
tures for pB11, obtained from Eqs. (14) and (30).

Fig. 4. A schematic picture of the two temperature shock wave creation.
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It is important to mention that although λi and λe can in ge-
neral be larger than the time dependent shocked domain up·t,
the charged particles that heat the shocked area have a veloc-
ity up and therefore are not moving faster than the shock wave
since us> up. Thus the shock wave moves into a cold domain
not yet heated by the driver energy.
Wie [erg/(cm

3·s)] is the ion–electron exchange power den-
sity given by

Wie
erg

cm3 · s
[ ]

= 2.70 × 10−22ne

Ti(E) − Te(keV)
Te(keV)1.5

( )∑
k

Zk2nk
mk

lnΛek

(34)

WB [erg/(cm3·s)], the electron bremsstrahlung power density
losses andWf [erg/(cm

3·s)], the fusion power density created
in the shocked volume, were defined in Section 2. ηf is the
energy fraction that is deposited in the electrons by the
α-particles created in the fusion under consideration and
(1−ηf) describes the energy fraction that is deposited in the
ions by these α-particles. The function ηf for DT fusion
was taken from Chu (1972):

ηf =
32

32+ Te(keV) (35)

For proton–boron fusion, the function ηf was taken from
Eliezer and Martinez-Val (1998):

ηf =
150

150+ T1.5
e (keV) (36)

The time dependent temperatures equations are coupled to
equations for the number densities of the ions species. For
DT these equations read:

dnD
dt

= dnT
dt

= − dnα
dt

= −nDnT <σv>DT (37)

where, nD, nT, and nα are number densities of the deuterons,
protons, and α-particles.
For proton–boron fusion the time evolution of the number

densities of the ions species is:

dnp
dt

= dnB
dt

= −npnB <σv>pB

dnα
dt

= 3npnB <σv>pB

(38)

Given the laser and the fuel parameters, the ions and the elec-
trons temperatures and densities time evolution can be
obtained.
In the scheme of shock fast ignition considered here, the

product ρ·R= ρ·ls is determined by the laser and fuel param-
eters. Following the criterion described in Section 2, ignition
occurs if at some time tig during the laser pulse duration, tem-
peratures values are obtained such that a solution of energy

balance (14) exists with Ti(tig), Te(tig). In the framework of
the model presented here, if such a solution exists, after
time tig, the surrounding fuel burns due to the released
fusion energy in the igniter. Therefore, the product ρ·R[Ti(t),
Te(t)] is solved from Eq. (14) and ignition occurs if:

ρ · R Ti(tig), Te(tig)
[ ]

< ρ · ls (39)

4. ELECTRON AND ION TEMPERATURES
CALCULATIONS FOR DT AND PB11

In this section solutions of the two temperatures shock model
for DT and pB11 cases are presented, for laser parameters for
which ignition is obtained during the laser pulse.

Figures 5–7 display the results of the two temperatures
model given in Eqs. (31, 38) for DT pre-compressed to den-
sity ρ0= 600 g/cm3. The fast ignition shock generated by ir-
radiation with laser intensity of 7.5 × 1022 W/cm2, 1 ps
pulse duration, and energy 3.67 kJ induces a compression
of κ= 4. The laser energy density deposition in this case is
Wd= 7.5 × 1031 erg/cm3s and the shock length, the igniter
dimension in our model, is ls= 0.833 μm. Therefore, in
this case ρ·R= 0.2 g/cm2. For ignition, it is required that
due to the shock wave energy deposition, to reach tempera-
tures values where Eq. (14) has a solution ρ R≤ 0.2 g/cm2.
The electrons and ions temperatures, Te(t), Ti(t) as a function
of time, and ρ·R, obtained by solving Eq. (14) given Te(t), Ti(t)
are shown in Figure 5. It is seen that the ion temperature in-
crease to about 68 keV and the electron temperature reaches
42 keV by the end of the laser pulse (Fig. 5b). There is no
real solution of Eq. (14) for the product ρ·R for times less
than about 0.1 ps (Fig. 5b). As the temperatures rise, Eq.
(14) has real solutions, decreasing to ρ·R= 0.2 g/cm2 at
about 0.3 ps, when the ions and electrons temperatures are
slightly higher than 10 keV and ignition is set on. At this
time fusion energy deposition rises and exceeds the shock
wave energy deposition. The different terms in Eq. (31), dep-
osition, fusion, radiation losses, and electron–ion exchange
energy densities, as a function of time are given in Figure 6.
The fraction of absorbed α-particles in the hot spot as a
function of time is described in Figure 7. It is seen that as
the time evolves and the temperatures increase, a larger frac-
tion of α-particles leave the igniter region heating up the
surroundings.

Proton–boron fusion requires higher temperatures to reach
ignition compared with DT, mainly due to the higher radia-
tion losses, implying larger size and more dense igniters.
These constrains require larger laser energies, making the
shock based fast ignition scheme presented here for pB11

fusion impracticable. The temperatures and the ρ·R product
as a function of time for a pB11 case that may reach ignition
according to the criterion considered here are displayed in
Figure 8. However, in this case the igniter size is larger,
ls= 4.32 μm, the pre-compressed fuel density is ρ0=
4800 g/cm3, and the product required for ignition is ρ·R=
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8.3 g/cm2. Therefore, the laser pulse generating the fast
shock ignition should have an intensity of 1.61 × 1025 W/
cm2, pulse duration of 1 ps, and energy of 21 MJ. The
laser power of such system is in the exawatt range. Although
such super-laser system is planned at University of Texas, it
is still years away from actual development.

5. SUMMARY AND DISCUSSION

In this paper a general fuel ignition criterion for two temper-
atures plasma is presented. This criterion was considered for
DT and pB11 pre-compressed plasma. Two temperatures
plasma are important for schemes of nuclear fast ignition
fusion, based on short pulse lasers. Here we applied the igni-
tion criterion to a fast ignition scheme based on intense short
pulse laser generated shock wave. The ignition criterion

stems from energy balance between fusion energy and radi-
ation, expansion and heat conduction losses, and is described
by a surface in the 3D space defined by the electron and ion
temperatures Te, Ti, and the plasma density times the hot spot
dimension, ρ·R. For appropriate fusion ion temperatures,
namely Ti larger than 10 keV for DT, and Ti larger than
150 keV for pB11, the value of ρ·R required for ignition for
pB11 is larger by a factor of 50 or more than for DT, depend-
ing on the electron temperature. Furthermore, following the
ignition criterion described here, pB11 fusion is practically
not possible if the electron and ion temperatures are equal,
see also Kouhi et al. (2011). To eliminate these problems
for pB11 fusion, application of non-thermal conversion of
the laser energy by picosecond laser pulses to ultrahigh accel-
eration of plasma blocks (Chu, 1972) to initiate the fusion

Fig. 6. Various energy power density terms in Eq. (31) as a function of time
for the DT case displayed in Figure 5.

Fig. 5. (a) Electrons Te and protons Ti temperatures as a function of time for a DT case satisfying the ignition criterion, (b) ρ·R as function
of time obtained by solving Eqs. (14) and (21).

Fig. 7. The fusion energy fraction deposited in the igniter domain, defined
in Eq. (3) for the DT case described in Figure 5.
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reaction in solid density DT or pB11 fuel (Lalousis et al.,
2013; 2014; Hora et al., 2015).
Our suggested model for fast ignition based on two temper-

ature laser induced shock wave in the intermediate domain
between relativistic and non-relativistic shockwaves is summa-
rized. The size of the hot spot is dependent on the laser pulse
intensity and time duration. Scaling laws between ρ R and the
laser and fuel parameters are presented in Appendix A.
The laser parameters for fast ignition for DT and pB11 are

calculated. For DT case one needs 3 kJ energy, 1 ps laser
pulse duration to ignite a pre-compressed target at about
600 g/cm3. These laser parameters are of the same order as
other fast ignition schemes (Naumova et al., 2009). However,
this scheme is not practical for pB11 ignition since it requires a
laser with more than three orders of magnitude energy for the
same pulse duration.
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APPENDIX

APPENDIX A: RELATIVISTIC AND
NON-RELATIVISTIC SHOCK WAVE
RANKINE–HUGONIOT EQUATIONS

The relativistic shock wave Hugoniot equations in the labo-
ratory frame of reference are given by the following
equations

(i) up1
c

=
��������������������
P1 − P0( ) e1 − e0( )
e0 + P1( ) e1 + P0( )

√

(ii) us
c
=

���������������������
P1 − P0( ) e1 + P0( )
e1 − e0( ) e0 + P1( )

√

(iii) e1 + P1( )2
ρ1

2
− e0 + P0( )2

ρ0
2

= P1 − P0( ) e0 + P0( )
ρ0

2
+ e1 + P1( )

ρ1
2

[ ]
(A1)

P, e, and ρ are the pressure, energy density and mass density
accordingly, the subscripts 0 and 1 denote the domains
before and after the shock arrival, us is the shock wave veloc-
ity and up1 is the particle flow velocity in the laboratory frame
of reference and c is the speed of light. We have assumed that
in the laboratory the target is initially at rest, up0= 0. The
EOS taken here in order to calculate the shock wave param-
eters is the ideal gas EOS

ej = ρjc
2 + Pj

Γ− 1
; j = 0, 1. (A2)

where Γ is the specific heat ratio. We have to solve Eqs (A1)
and (A2) together with our piston model equation (Esirkepov
et al., 2004; Eliezer et al., 2014b)

P1 = 2IL
c

1− β

1+ β

( )
; β ≡

up1
c

(A3)

We have five equations given in (A1), (A2), and (A3) with
five unknowns: us, up1, P1, ρ1, and e1 assuming that we
know IL, ρ0, P0, e0, and Γ. We take ideal gas EOS with
Γ= 5/3. The calculations are conveniently done in the
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dimensionless units defined by

ΠL ≡
IL
ρ0c

3
; κ ≡

ρ1
ρ0

; κ0 ≡
Γ+ 1
Γ− 1

;Π = P1

ρ0c
2
;Π0 = P0

ρ0c
2

(A4)

It is important to emphasize that if we take P0= 0 then we get
only the κ> 4 solutions (Eliezer et al., 2014a), therefore in
order to see the behavior at the transition between relativistic
and non-relativistic domain one has to take P0≠ 0! In our nu-
merical estimations we take P0= 1 bar= 106 in cgs units.
For example, the Hugoniot Eq. (A1) together with the EOS
Eq. (A2) yield

P0

P1
= Π0

Π
= 0

⇒
Π = −B Π0 = 0( ) = (Γ− 1)2

Γ
κ(κ− κ0)

κ ≡
ρ1
ρ0

≥ κ0

⎧⎪⎪⎨
⎪⎪⎩

(A5)

P0

P1
= Π0

Π
≠ 0 ⇒

Π2 + BΠ+ C = 0

κ ≡
ρ1
ρ0

≥ 1

⎧⎨
⎩

Π = 1
2

( )
−B±

����������
B2 − 4C

√( )

B = (Γ− 1)2
Γ

(κ0κ− κ2) + Π0(Γ− 1)(1− κ2)

C =(Γ− 1)2
Γ

(κ− κ0κ
2) Π0 − κ2Π0

2

(A6)

The compression κ as a function of the dimensionless pres-
sure Π= P/(ρ0c

2) is given in Figure 9 for κ0= 4 (Γ= 5/3).
Although P0/P1 is extremely small one cannot neglect it in
the very near vicinity of κ0 and in this domain one has to
solve numerically Eq. (A6). Furthermore, in order to see the
transition between the relativistic and non-relativistic approx-
imation one has to solve the relativistic equations in order to
see the transition effects like the one shown in Figure 9.
For convenience we write the non-relativistic Hugoniot

equations for the ideal gas EOS:

(i) up1 = P1 − P0[ ]1/2 1
ρ0

− 1
ρ1

( )1/2

(ii) us = 1
ρ0

( )
P1 − P0[ ]1/2
1
ρ0

− 1
ρ1

( )1/2

(iii) E1 − E0 = 1
2

( )
P1 + P0[ ] 1

ρ0
− 1

ρ1

( )

(iv)
(v)

}
Ej = 1

Γ− 1

( )
Pj

ρj

( )
for j= 0, 1

(A7)

These equations are obtained from the relativistic Eq. (A1) by
using e= ρc2+ ρE, P, and ρE are much smaller than ρc2 and

u/c≪ 1 where u stands for the velocities under
consideration.

In the transition domain, between relativistic and non-
relativistic shock waves we have (see Fig. 2)

10−9 ≤ Π ≤ 10−3 ⇔ κ = ρ

ρ0
= 4.00 (A8)

In the domain defined by Eq. (A8) we have us/c≪ 1 and up/
c≪ 1 and the non-relativistic Eq. (A7) are satisfied.
Therefore in this transition domain the particle and shock
wave velocities and the dimensionless shock wave pressure
Π, normalized by ρ0c

2, are obtained from the non-relativistic
equations, namely

up
c
=

����
3
4
Π

√
;
us
c
=

����
4
3
Π

√

Π = us
c

( ) up
c

( )
us
c
− up

c

( )
= 1

3
up
c

( )
(A9)

For the intermediate domain, relativistic to non-relativistic
case where κ= 4, the shock wave fast ignition driver Wd is
given by

Wd
erg

cm3 · s
[ ]

= 1
2

κρ0up
2

τL

( )
(A10)

This relation is further elaborated in Appendix C.
Using Eqs (A9, A10) we get

up
c
=

�������
2wdτL
κρ0c

2

√

Π = 8
3

( )
wdτL
κρ0c

2

(A11)

In this domain we also have the following relation between

Fig. 9. Compressibility as a function of the normalized shock pressure.
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the dimensionless laser irradiance and the shock pressure

IL
ρ0c

3
≡ ΠL ≃

Π

2
(A12)

From Eqs (A9–A12) we have

IL
W

cm2

[ ]
= 4 × 103

Wd
erg

cm3 · s
[ ]

τL s[ ]
κ

(A13)

The shock wave length domain ls= R is related to the depo-
sition power density by:

ℓs = (us − up)τL = upτL
3

= τL
3

��������
2WdτL
κρ0

√

ρR = ρℓs =
������������
2Wdκρ0τL

3

9

√ (A14)

The laser cross-section area S is given by

RL = 3
2
ℓs

S = πRL
2 = 9π

4
ℓs

2 = π

2
WdτL3

κρ0

(A15)

Therefore the laser energy WL and the irradiance IL have the
following scaling law

WL J[ ] = IL
W

cm2

[ ]
τL s[ ]S cm2[ ]

WL J[ ] = 2π × 103
Wd

erg
cm3 · s
[ ]2

τL s[ ]5

κ2ρ0

IL
W

cm2

[ ]
= 4 × 103WdτL

κ

(A16)

The density times hot spot dimension scaling law is:

ρR = κρ0ℓs ∝Wd
0.5κ0.5ρ0

0.5τL
1.5 (A17)

Finally, for a constant ρ·R the relevant scaling laws are

WL ∝
1

τLρ0
3κ3

IL ∝
1

τL2ρ0κ
2

(A18)

For example, the following table summarizes the
dimensionless numerical values of our laser and shock wave
parameters

For example, if the pre-compressed target has a mass
density of 250 g/cm3 and the laser pulse duration is 1 ps
then for the dimensionless laser irradiance of ΠL= 6.65× 10−5

we get

ΠL = 6.65 × 10−5; τL = 1 ps;

ρ0 = 250
g

cm3

[ ]
⇒ ρ = κρ0 = 103

g
cm3

[ ]

IL = ρ0c
3ΠL = 4.5 × 1022

W

cm2

[ ]

ℓs = (us − up)τL ≃ 1 μm;

S = πRL
2 = π(1.5ℓs)2 = 7.04 × 10−8[cm2]

WL[J] = ILSτL = 3.2 kJ

(A19)

APPENDIX B: ELECTRON AND ION RELAXATION
TIMES

The relaxation rates for electrons and for ions accordingly
nee, nii, or equivalently the times τee, τii, that a species of par-
ticles reaches equilibrium, due to Coulomb collisions be-
tween electron–electron (ee) and separately ion–ion are
given by (Eliezer, 2012):

1
nee

= τee = 3
��
6

√

8π

( ) ���
me

√
kBTe( )3/2

e4ne lnΛee

1
nii

= τii = 1
Z4

3
��
6

√

8π

( ) ���
mi

√
kBTi( )3/2

e4ni lnΛii

{ } (A20)

Numerically, Eq. (A20) can be written

τee[s] = 1.07 × 1010
1

ne lnΛee

( )
[Te(keV)]3/2

τii[s] = 4.58 × 1011
1

ni lnΛii

( )
[Ti(keV)]3/2

(A21)

Regarding the fast ignition of a pre-compressed target with
ne[cm

−3]= 1026 and a laser pulse duration of 1 ps we have

Table A1. Shock wave parameters relevant for fast ignition

ΠL Π κ up/c us/c

1.90 × 10−5 3.8 × 10−5 4.00 0.0053 0.0071
2.99 × 10−5 5.9 × 10−5 4.00 0.0067 0.0089
6.65 × 10−5 1.33 × 10−4 4.00 0.010 0.013
1.00 × 10−4 2.7 × 10−4 4.00 0.015 0.020

S. Eliezer et al.588

https://doi.org/10.1017/S0263034615000701 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034615000701


as order of magnitude estimates:

τee(DT) ∼ 10−17[s](1 keV) − 10−15[s](20 keV)
τii(DT) ∼ 4 × 10−16[s](1 keV) − 4 × 10−14[s](20 keV)
τee( p11B) ∼ 10−17[s](1 keV) − 3 × 10−14[s](50 keV);

τii( p11B) ∼ 1
Z3

10−15[s](1 keV) − 10−12(200 keV)[s]{ }
(A22)

For the above numerical estimations we took lnΛ= 10.

APPENDIX C: SHOCK WAVE INDUCED TWO
TEMPERATURES MODEL

We use the non-relativistic shock wave equations to justify
our two temperature model equations. In this case the kinetic
energy Wk, the potential (internal) energy Wp and their
appropriate power densities are related to the particle flow
velocity up by:

Wk

V

erg
cm3

[ ]
= (γ− 1)ρc2 t

τL

( )
= 1

2
ρup

2 t

τL

( )

Wd = d
dt

Wk

V

( )
= 1

2
ρup2

τL

( ) (A23)

Up
erg
cm3

[ ]
= Wp

V
= 3

2
nkBT

d
dt

Wp

V

( )
= 3

2
kB

d
dt
(nT) = 3

2
nkB

dT
dt

(A24)

At this stage we have one fluid with temperature and number
density T and n, accordingly and neglect all losses or fusion
energy creation. In the second equation in (A24) we have as-
sumed that n does not change in time.
The 1D non-relativistic Hugoniot equations in the labora-

tory frame of reference, assuming a fluid initially at rest, are
the following mass, momentum, and energy conservations

ρ0us = ρ(us − up)
ρ0usup = P− P0

ρ0us E − E0 + 1
2
up

2

( )
= Pup

(A25)

The conservation energy of the third equation of (A25) can
be written as

Pistonwork = Internalenergy+ Kineticenergy

Pistonwork =
∫
PdV = P(Supt)

Internalenergy = Wp = (ρ0Sust)(E − E0)

Kineticenergy = WK = (ρ0Sust)
1
2
up

2

( )
(A26)

S is the cross-section area of the piston and E is the internal
energy per unit mass. Since the initial pressure P0 is negligi-
ble relative to the shock pressure P in our cases we get from
the second and third equations of (A25)

Pup = ρ0usup
2

Pup = ρ0us E − E0 + 1
2
up

2

( )⎫⎬
⎭ ⇒ ρ(E − E0) = 1

2
ρup

2 (A27)

Inserting Eqs (A27) and (A26) into (A23) and (A24) we get
for time independent density n,

3
2
nkB

dT
dt

= Wd (A28)

During the time development of the temperature we have to
take into account losses and the extra input energy due to nu-
clear fusion, namely

3
2
nkB

dT
dt

= Wd + fαWf −
∑

losses (A29)

Since we have two temperatures (at least) Te and Ti we gen-
eralize Eq. (A29) to

3
2
nekB

dTe
dt

= ηdWd + fαηfWf −
∑
e

losses

3
2
nikB

dTi
dt

= (1− ηd)Wd + fα(1− ηf)Wf −
∑
i

losses

(A30)

This model is schematically described in Figure 4.
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