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A graph on n vertices is ε-far from a property P if one has to add or delete from it at least

εn2 edges to get a graph satisfying P . A graph property P is strongly testable if for every

fixed ε > 0 it is possible to distinguish, with one-sided error, between graphs satisfying P
and ones that are ε-far from P by inspecting the induced subgraph on a random subset of

at most f(ε) vertices. A property is easily testable if it is strongly testable and the function

f is polynomial in 1/ε, otherwise it is hard. We consider the problem of characterizing the

easily testable graph properties, which is wide open, and obtain several results in its study.

One of our main results shows that testing perfectness is hard. The proof shows that testing

perfectness is at least as hard as testing triangle-freeness, which is hard. On the other hand,

we show that being a cograph, or equivalently, induced P3-freeness where P3 is a path

with 3 edges, is easily testable. This settles one of the two exceptional graphs, the other

being C4 (and its complement), left open in the characterization by the first author and

Shapira of graphs H for which induced H-freeness is easily testable. Our techniques yield

a few additional related results, but the problem of characterizing all easily testable graph

properties, or even that of formulating a plausible conjectured characterization, remains

open.
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1. Introduction

Property testing is an active area of computer science where one wishes to quickly

distinguish between objects that satisfy a property from objects that are far from satisfying

that property. The study of this notion was initiated by Rubinfield and Sudan [22], and

subsequently Goldreich, Goldwasser and Ron [14] started the investigation of property

testers for combinatorial objects. Graph property testing in particular has attracted a

great deal of attention. A property P is a family of (undirected) graphs closed under

isomorphism. A graph G with n vertices is ε-far from satisfying P if one must add or

delete at least εn2 edges in order to turn G into a graph satisfying P .

An ε-tester for P is a randomized algorithm, which given n and the ability to check

whether there is an edge between a given pair of vertices, distinguishes with probability at

least 2/3 between the cases G satisfies P and G is ε-far from satisfying P . Such an ε-tester

is one-sided if, whenever G satisfies P , the ε-tester determines this with probability 1. A

property P is strongly testable if for every fixed ε > 0 there exists a one-sided ε-tester for

P whose query complexity is bounded only by a function of ε, which is independent of

the size of the input graph.

Call a property P easily testable if it is strongly testable with a one-sided ε-tester whose

query complexity is polynomial in ε−1, and otherwise call P hard. This is analogous to

classical complexity theory, where an algorithm whose running time is polynomial in

the input size is considered fast, and otherwise slow. Call a hereditary graph property

extendable if, for all but finitely many graphs in the family, there is a larger graph in the

family containing it as an induced subgraph. Most of the well-known hereditary graph

properties are extendable. As mentioned briefly in [3] and proved in detail in [15], there is

a universal one-sided ε-tester for extendable hereditary graph properties which has query

complexity at most quadratic in the minimum possible query complexity of an optimal

one-sided ε-tester. Indeed, it samples d random vertices (for some d), and if the subgraph

they induce is in P , it accepts, and otherwise it rejects. The query complexity of this

tester is
(
d
2

)
, and it is at least as accurate as any tester with query complexity at most

d/2. The query complexity is a lower bound for the running time of an ε-tester, and, if

there is a polynomial-time recognition algorithm for membership in P , the running time

is polynomial in the query complexity. So while query complexity and running time are

different notions, they are often of comparable order.

For a graph H , let PH denote the property of being H-free, i.e., it is the family of

graphs which do not contain H as a subgraph. The triangle removal lemma of Ruzsa

and Szemerédi [23] is one of the most influential applications of Szemerédi’s regularity

lemma. It states that for every ε > 0 there is δ > 0 such that any graph on n vertices

with at most δn3 triangles can be made triangle-free by removing at most εn2 edges. The

triangle removal lemma is equivalent to the fact that PK3
is strongly testable. Indeed, the

algorithm samples t = 2δ−1 triples of vertices uniformly at random, where δ is picked

according to the triangle removal lemma, and accepts if none of them forms a triangle,

and otherwise rejects. Any triangle-free graph is clearly accepted. If a graph is ε-far from

being triangle-free, then it contains at least δn3 triangles, and the probability that none

of the sampled triples forms a triangle is at most (1 − δ)t < 1/3. Notice that the query
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complexity depends on the bound in the triangle removal lemma. As observed by Ruzsa

and Szemerédi, the triangle removal lemma gives a simple proof of Roth’s theorem [21]

that every dense subset of the integers contains a 3-term arithmetic progression. From

Behrend’s construction [7], which gives a large subset of the first n positive integers without

a 3-term arithmetic progression, it follows that δ � εc log ε in the triangle removal lemma.

This implies that testing triangle-freeness is hard. Indeed, in the universal algorithm

described earlier, in a random sample of d vertices, the expected number of triangles is

at most δd3, and hence in the universal one-sided ε-tester for triangle-freeness, 1/3 � δd3,

or equivalently, d � (3δ)−1/3. As discussed earlier, the query complexity of any one-sided

ε-tester for triangle-freeness is at least d/2.

The triangle removal lemma was extended in [3] (see also [2]) to the graph removal

lemma. It says that for each ε > 0 and graph H on h vertices there is δ = δ(ε,H) > 0

such that every graph on n vertices with at most δnh copies of H can be made H-free

by removing at most εn2 edges. The graph removal lemma similarly implies that testing

H-freeness is strongly testable. The proof, which uses Szemerédi’s regularity lemma, gives

a bound on the query complexity which is a tower of height a power of ε−1. This was

somewhat improved recently by the second author [12] to a tower of height logarithmic

in ε−1. The first author [1] showed that H-freeness is easily testable if and only if H is

bipartite.

For a graph H , let P∗
H denote the property of being induced H-free, i.e., it is the family

of graphs which do not contain H as an induced subgraph. The graph removal lemma

was extended by the first author, Fischer, Krivelevich and Szegedy [3] to the induced

graph removal lemma, which states that for every ε > 0 and graph H on h vertices there

is δ > 0 such that any graph on n vertices with at most δnh induced copies of H can

be made induced H-free by adding or removing at most εn2 edges. The induced graph

removal lemma is equivalent to the fact that, for any graph H , the property P∗
H is strongly

testable. The proof, which uses a strengthening of Szemerédi’s regularity lemma, gives

a bound on the query complexity which is wowzer of height a power of ε−1, which is

one higher in the Ackermann hierarchy than the tower function. This has recently been

improved by Conlon and the second author [10] to the tower function.

The length of a path is the number of edges it contains, and we let Pk denote the

path of length k. The first author and Shapira [4] showed that for any graph H other

than the paths of length at most 3, a cycle of length 4, and their complements, testing

induced H-freeness is hard. For H a path of length at most 2 or their complements,

induced H-freeness is easily testable. They left open the cases that H is a path of length

3 or a cycle of length 4 (and equivalently its complement). Here we settle one of the two

remaining cases.

Theorem 1.1. Induced P3-freeness is easily testable.

A well-known result of Seinsche [24] gives a simple structure theorem for induced

P3-free graphs. These graphs, also known as cographs, are generated from the single

vertex graph by complementation and disjoint union. This is equivalent to the statement

that every induced P3-free graph or its complement is not connected.
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A general result of the first author and Shapira [5] states that every hereditary family

P of graphs is strongly testable. They further asked which hereditary graph properties

are easily testable, and, in particular, for a few of the well-known hereditary families of

graphs, including perfect graphs and comparability graphs.

Note that the chromatic number of a graph is at least its clique number as the vertices

of any clique must receive different colours in a proper colouring. A graph is perfect if

every induced subgraph of it satisfies that its clique number and chromatic number are

equal. The study of perfect graphs was started by Berge, partly motivated by the study

of the Shannon capacity in information theory, which lies between the clique number

and chromatic number of a graph. Perfect graphs form a relatively large class of graphs

for which several fundamental algorithmic problems which are known to be NP-hard for

general graphs, such as the graph colouring problem, the maximum clique problem, and

the maximum independent set problem, can all be solved in polynomial time (see [16]).

Also, it has significant connections with the study of linear and integer programming (see,

e.g., [20]).

A famous conjecture of Berge, which was proved a few years ago by Chudnovsky,

Robertson, Seymour and Thomas [9], states that a graph is perfect if and only if it

contains no induced odd cycle of length at least five or the complement of one. The

proof in fact establishes a stronger structural theorem for perfect graphs which was

conjectured by Conforti, Cornuéjols and Vušković. It says that every perfect graph falls

into one of a few basic classes, or admits one of a few kinds of special decompositions.

Shortly afterwards, a proof that perfect graphs can be recognized in polynomial time

(as a function of the number of vertices of the graph) was discovered by Chudnovsky,

Cornuéjols, Liu, Seymour and Vušković [8].

Another well-studied hereditary family of graphs is that of comparability graphs. A

comparability graph is a graph that connects pairs of elements that are comparable to

each other in a partial order. Gallai [13] classified these graphs by forbidden induced

subgraphs, and Dilworth’s theorem [11] is equivalent to the statement that the complement

of comparability graphs are perfect. Further, comparability graphs can be recognized in

polynomial time (see McConnell and Spinrad [19]). Every cograph is a comparability

graph, and every comparability graph is a perfect graph. It is natural to suspect that

the structure theorem could hint at a polynomial in ε−1 tester for perfectness similar to

testing cographs. However, we show that testing perfectness essentially requires as much

query complexity (or time) as testing triangle-freeness, which is hard.

Theorem 1.2. Testing perfectness is hard.

Indeed, Theorem 3.1 shows that, from a graph on n vertices which is 14ε-far from

being triangle-free, but a random sample of d vertices is with probability at least 1/2

triangle-free, we can construct a graph on 5n vertices which is ε/25-far from being induced

C5-free, but a random sample of d vertices in it is a comparability graph with probability

at least 1/2. Since every comparability graph is perfect, every perfect graph is induced

C5-free, and testing triangle-freeness is hard, this implies the above theorem that testing

perfectness is hard, and further that testing for comparability graphs is hard.
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Theorem 1.3. Testing for comparability graphs is hard.

In the next section, we show that induced P3-freeness is easily testable. In Section 3, we

show that testing perfectness is at least as hard as testing triangle-freeness, which is hard.

We finish with some concluding remarks. Throughout the paper, we systematically omit

floor and ceiling signs whenever they are not crucial for the sake of clarity of presentation.

We also do not make any serious attempt to optimize absolute constants in our statements

and proofs.

2. Induced P3-freeness is easily testable

A cut for a graph G = (V , E) is a partition V = V1 ∪ V2 into non-empty subsets such

that there are no edges between V1 and V2 or V1 is complete to V2. The following

definition is a natural relaxation of a cut. For β > 0, define a β-cut for a graph G = (V , E)

as a partition V = V1 ∪ V2 into non-empty subsets such that e(V1, V2) � β|V1||V2| or

e(V1, V2) � (1 − β)|V1||V2|. For a graph G and vertex subset S , let G[S] denote the induced

subgraph of G with vertex set S . Let c(β, n) be the least δ for which there is a graph

G = (V , E) on n vertices which has no β-cut and has δn4 induced copies of P3.

Theorem 2.1. We have c(β, n) � (β/100)12.

Proof. Suppose for contradiction that there is a graph G on n vertices which does not

have a β-cut and has less than δn4 induced copies of P3, where δ = (β/100)12. Since G

has no β-cut, then G contains an induced P3. Hence, 1 � δn4 and n � δ−1/4 � (100/β)3.

Since G has at most δn4 induced copies of P3, a random sample of r = (8δ)−1/4 � 105β−3

vertices has in expectation at most δr4 = 1/8 induced copies of P3. Hence, with probability

at least 7/8, a random sample of r vertices contains no induced P3.

Randomly sample a set R = S ∪ T of r = s + t vertices from V , where s = t = r/2. Let

E0 be the event that G[R] is induced P3-free, so the probability of event E0 is at least 7/8.

Since G does not have a β-cut, each vertex has more than β(n − 1) neighbours and less

than (1 − β)(n − 1) neighbours. Let α = β/2. Hoeffding (see Section 6 of [18]) proved that

the hypergeometric distribution is at least as concentrated as the corresponding binomial

distribution. Thus, by the Azuma–Hoeffding inequality (see, e.g., [6]), and the fact that

each vertex v ∈ S has more than β(n − 1) neighbours, the probability that a particular

v ∈ S has less than α(s − 1) neighbours in S is at most

e−((β−α)(s−1))2/(2(s−1)) = e−(β−α)2(s−1)/2 � e−β2s/16 � 1

16s
.

Similarly, the probability that v has more than (1 − α)(s − 1) neighbours in S is at most

1/(16s). Let E1 be the event that every vertex in S has at least α(s − 1) and at most

(1 − α)(s − 1) neighbours in S , that is, the induced subgraph G[S] has minimum degree

at least α(s − 1) and maximum degree at most (1 − α)(s − 1). By the union bound, the

probability of event E1 is at least 1 − 2s · 1/(16s) = 7/8.

Let U be the set of vertices v ∈ V \ S which are complete or empty to S . As the degree

of each vertex of G is at least β(n − 1) and at most (1 − β)(n − 1), the probability that,
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for a given vertex v, a random subset of s vertices of V \ {v} are all neighbours of v or all

non-neighbours of v is at most 2(1 − β)s. Hence, a given vertex has probability at most

2(1 − β)s of being in U. By linearity of expectation, the expected size of U is at most

2(1 − β)sn. Let E2 be the event that

|U| � 16(1 − β)sn � 16e−βsn � β

8
n.

By Markov’s inequality, the probability of E2 is at least 1 − 1/8 = 7/8.

Let E3 be the event that T contains no vertex from U. By linearity of expectation,

E[|U ∩ T |] = E[|U|]t/n � 2(1 − β)st � 2e−βst � 1

8
.

Therefore, event E3 occurs with probability at least 7/8.

The probability that events E0 and E1 both occur is at least 7/8 − 1/8 = 3/4. If both

of these events occur, then G[S] has at least one and at most 2α
−1

cuts. Indeed, as S ⊂ R

and G[R] is induced P3-free, then G[S] is also induced P3-free. It follows that G[S] has

a cut S = S1 ∪ S2, and suppose S1 is complete to S2 (the case S1 is empty to S2 can be

treated similarly). Further, there is a unique partition S = S1 ∪ · · · ∪ Sa such that each Si

is non-empty and complete to each Sj with j �= i, and none of the induced subgraphs G[Si]

has a complete cut. As event E1 occurs, each vertex has at most (1 − α)(s − 1) neighbours

in S . As every vertex in each Si is also adjacent to all vertices in S \ Si, the smallest part

Si in the partition has size at least αs, and hence the number a of parts of this partition

is at most α−1. The cuts of G[S] are precisely the pairs
⋃

i∈A S
i and

⋃
i∈[a]\A S

i, where A is

a non-empty proper subset of [a], and so there are at most 2α
−1

such cuts.

For each cut S = S1 ∪ S2, consider the partition V \ S = U ∪ V0 ∪ V1 ∪ V2 of vertices,

where v ∈ V \ S satisfies v ∈ V0 if v �∈ U and it is not complete to S1 and not complete to

S2, v ∈ V1 if it is complete to S2 but not complete to S1, and v ∈ V2 if it is complete to S1

but not to S2.

Note that if T contains a vertex from V0, then the cut S = S1 ∪ S2 of G[S] does not

extend to a cut of G[R]. If events Ei for i = 0, 1, 2, 3 occur, which happens with probability

at least 1/2, then G[R] is induced P3-free, so it has a cut, and no vertex in T is complete

or empty to S . In this case one of the cuts of G[S] extends to a cut of G[R], and hence,

for at least one cut of G[S], no vertex of T is in the corresponding V0.

We now condition on the occurrence of events Ei for i = 0, 1, 2, 3. Note that since

the probability that this happens is at least 1/2, for any other event E, the conditional

probability that E occurs given that Ei occur for i = 0, 1, 2, 3 is at most twice the probability

of E without any conditioning.

To complete the proof we claim that with positive probability E0, E1, E2, E3 occur and

yet the induced subgraph on S ∪ T contains an induced P3, contradicting E0. To do so

we apply the union bound over all cuts in G[S] to show that with positive probability, for

each such cut, either T contains a vertex of V0 (and hence the cut cannot be extended to

one in G[R]) or T contains a vertex v1 in V1 and a vertex v2 in V2, which are non-adjacent,

providing an induced P3 in G[S ∪ T ] on the vertices v1, v2 together with a vertex s1 ∈ S1

not adjacent to v1 and a vertex s2 ∈ S2 not adjacent to v2.
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We proceed with the proof of this claim. Conditioning on Ei for i = 0, 1, 2, 3, fix a cut

(S1, S2) in G[S] and let V0, V1, V2 be as above. Consider two possible cases.

Case 1: |V0| � 2

αt
n.

In this case, the probability that T contains no vertex of V0 (without the conditioning

on E3) is at most (
1 − 2

αt

)t

� e−2/α < 2−α−1−1,

showing that even after our conditioning the probability of this event is smaller than

2−α−1
.

Case 2: |V0| < 2

αt
n � β

8
n.

Let x = |U| + |V0|, y = |S1| + |V1|, and z = |S2| + |V2|, so x + y + z = n. Assume without

loss of generality that y � z. Since the partition V = (S1 ∪ V1) ∪ (S2 ∪ V2 ∪ U ∪ V0) is not

a β-cut, there are at least βy(z + x) missing edges between these two sets. Since, in

addition, S1 is complete to S2, S1 is complete to V2, and V1 is complete to S2, then these

missing edges go between V1 and V2 and between S1 ∪ V1 and U ∪ V0. Thus

β

2
yn � βy(z + x) � |V1||V2| − e(V1, V2) + yx.

If events Ei for i = 0, 1, 2, 3 occur, then x � (β/4)n, and hence there are at least (β/4)yn

missing edges between V1 and V2. In this case, every vertex of S1 is complete to S2 ∪ V2,

and hence

(1 − β)(n − 1) � z = n − x − y � n − β

4
n − y

and

y � 3β

4
n − 1 � β

2
n.

Thus, the number of missing pairs between V1 and V2 in the case that events Ei for

i = 0, 1, 2, 3 occur is at least

β

4
yn � β2

8
n2.

Let E4 be the event that T contains the two vertices of at least one of the non-edges

between V1 and V2. Given that there are at least (β2/8)n2 edges missing between V1 and

V2, the probability that event E4 occurs is at least the probability that at least one of t/2

random pairs of vertices of G contains one of the non-edges between V1 and V2. The

probability that this does not happen (without the conditioning on E3) is at most

(
1 − β2n2/8(

n
2

)
)t/2

� e−β2t/8 = e−β2105/(8·2β3) = e−105/(32α) < 2−α−1−1,
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and hence even after our conditioning the probability of this event is smaller

than 2−α−1
.

By the union bound it now follows that with positive probability Ei for i = 0, 1, 2, 3

occur, and yet G[S ∪ T ] contains an induced P3. This is a contradiction, completing the

proof.

Let f(ε, n) be the least δ for which there is a graph G = (V , E) on n vertices which is

ε-far from being induced P3-free and has δn4 induced copies of P3.

Theorem 2.2. There is n0 � εn such that f(ε, n) � c(ε, n0)ε
4 � (ε/100)16.

Proof. Let G = (V , E) be a graph on n vertices which is ε-far from being induced P3-free.

Partition V into two parts along an ε-cut, and continue refining parts along ε-cuts of the

subgraphs induced by the parts until no part has an ε-cut, and let V = V1 ∪ · · · ∪ Vk be the

resulting partition. We modify edges along these ε-cuts to turn them into cuts, letting G′

be the resulting graph. The total fraction of pairs of vertices changed in making G′ from

G is at most ε, so at least εn2 − ε
(
n
2

)
� εn2/2 edges must be changed from the resulting

graph G′ to make it induced P3-free. We can modify edges in each Vi to make it induced

P3-free, and the resulting graph on V is induced P3-free, by the known characterization

of cographs. If |Vi| � εn for 1 � i � k, then the number of edge modifications made to G′

to obtain an induced P3-free graph is at most

k∑
i=1

(
|Vi|
2

)
� n

2
max
1�i�k

(|Vi| − 1) <
εn2

2
,

a contradiction. Thus, one of the parts Vi, call it V0, has n0 > εn vertices, and G[V0] has

no β-cut. Therefore, the induced subgraph G[V0], and hence G, has at least

c(ε, n0)n
4
0 � c(ε, n0)ε

4n4 � (ε/100)12ε4n4 � (ε/100)16n4

induced copies of P3, completing the proof.

Consider the following one-sided ε-tester for induced P3-freeness. Let δ = (ε/100)16.

The algorithm samples t = 2δ−1 quadruples of vertices uniformly at random, and accepts

if none of them forms an induced P3, and otherwise rejects. Any induced P3-free graph is

clearly accepted. If a graph is ε-far from being induced P3-free, then it contains at least

δn4 induced P3 by Theorem 2.2, and the probability that none of the sampled quadruples

forms an induced P3 is at most (1 − δ)t < 1/3. Note that the query complexity for this

algorithm depends linearly on δ−1, and hence polynomially on ε−1, completing the proof

of Theorem 1.1.

3. Testing perfectness

We first observe a couple of equivalent versions of the triangle removal lemma. The

triangle edge cover number ν(G) of a graph G is the minimum number of edges of G that

cover all triangles in G, i.e., it is the minimum number of edges of G whose deletion makes
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G triangle-free. The triangle removal lemma thus says that for each ε > 0 there is δ > 0

such that every graph on n vertices with at most δn3 triangles satisfies ν(G) � εn2.

The triangle packing number τ(G) of a graph G is the maximum number of edge-disjoint

triangles in G. The following simple bounds hold for all graphs:

τ(G) � ν(G) � 3τ(G).

Indeed, at least one edge from each of the edge-disjoint triangles is needed in any edge

cover of the triangles in G, and deleting the 3τ(G) edges from a maximum collection

of edge-disjoint triangles leaves a triangle-free graph. We remark that a well-known

conjecture of Tuza states that the upper bound can be improved to ν(G) � 2τ(G). Haxell

[17] improved the upper bound factor to 3 − 3/23.

Thus, up to a constant factor change in ε, the triangle removal lemma is the same as

saying that a graph G on n vertices with at least εn2 edge-disjoint triangles contains at

least δn3 triangles. We can further suppose, up to a constant factor change in ε, that

G is tripartite. Indeed, every graph has a tripartite subgraph which contains at least

2/9 of the triangles in a maximum collection of edge-disjoint triangles. This can be

seen by considering a uniform random tripartition. Each triangle has probability 2/9 of

having one vertex in each part, so the expected number of the edge-disjoint triangles in

the tripartition is 2/9 of the total, and there is a tripartition for which the number of

edge-disjoint triangles is at least the expected number. We may thus assume G is tripartite.

Theorem 3.1. Let T be a graph on n vertices which is 14ε-far from being triangle-free such

that a random sample of d vertices of T is triangle-free, with probability at least 1/2. Then

there is a graph G on 5n vertices which is ε/25-far from being induced C5-free, such that a

random sample of d vertices of G is a comparability graph, with probability at least 1/2.

Proof. By the remarks above, T contains a tripartite subgraph F which contains at least

1

3
· 2

9
· 14εn2 > εn2 = (ε/25)(5n)2

edge-disjoint triangles. Let V2, V3, V5 denote the three parts of F .

Let G = (V , E) be the graph on 5n vertices with partition V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5,

where V1 and V4 are of size 2n each, and V2, V3, V5 are the parts of F . We next specify

the edges between the various parts of G. Each part Vi, 1 � i � 5, is an independent set.

There are no edges between V1 and V2, between V1 and V3, between V3 and V4, and

between V4 and V5. There is a complete bipartite graph between V1 and V4, between V1

and V5, and between V2 and V4. The edges of G are precisely the edges of F between V2

and V3, and between V3 and V5. Finally, between V2 and V5, the edges of G are precisely

the non-edges of F .

Arbitrarily order T1, . . . , Tt, a maximum collection of t = τ(F) � εn2 edge-disjoint

triangles in F . As F is a tripartite graph on n vertices, t = τ(F) is at most the product

of the two smallest parts, which is at most n2/9. For every triangle in F , the same three

vertices in G with a vertex in V1 and a vertex in V4 form an induced C5. We next show

that this implies that there are t induced copies of C5 in G, labelled L1, . . . , Lt, such that

each pair intersects in at most one vertex. In fact, we greedily construct L1, . . . , Lt so that
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they further satisfy that the vertex set of each Li consists of the vertices of Ti together

with a vertex in V1 and a vertex in V4.

Suppose we have already constructed Lj for j < i satisfying the desired properties. We

next show how to construct Li with the desired properties. Note that in a tripartite graph,

the number of edge-disjoint triangles containing a given vertex v is at most the minimum

order of the two parts not containing v. It follows that Ti has non-empty intersection with

at most n of the t triangles T1, . . . , Tt. Hence, for h = 1, 4, at most n vertices in Vh are in at

least one Lj with j < i for which Tj and Ti share a vertex in common. For h = 1, 4, delete

these vertices from Vh, and denote the resulting subset of Vh as V ′
h, so |V ′

h| � |Vh| − n = n.

As i − 1 < t < n2 � |V ′
1||V ′

4|, there is a pair (v1, v4) ∈ V ′
1 × V ′

4 that is not in any Lj with

j < i. We pick Li to be the induced C5 in G with vertices v1, v4 and the vertices of Ti. It

is clear from this construction that Li intersects each Lj with j < i in at most one vertex.

We can therefore greedily construct the desired t induced copies of C5, and conclude that

G is ε/25-far from being induced C5-free.

On the other hand, the only triples a < b < c of vertices in a linear ordering which

puts the vertices in Vi before Vj if i < j with a adjacent to b, b adjacent to c, and a not

adjacent to c are with a ∈ V2, b ∈ V3, and c ∈ V5 the vertices of a triangle in F . Hence, an

induced subgraph G′ of G is a comparability graph if it contains no three vertices which

make a triangle in F . Indeed, in this case we can define the corresponding partial order

on the vertex set of G′ given by a ≺ b if a and b are adjacent and a ∈ Vi and b ∈ Vj with

i < j. Thus, by sampling d vertices uniformly at random from G, we sample at most d

vertices uniformly at random from F . These at most d vertices are triangle-free in F with

probability at least 1/2, and hence the d random vertices in G form a comparability graph

with probability at least 1/2. This completes the proof.

As discussed toward the end of the Introduction, Theorem 3.1 implies Theorem 1.2 that

testing perfectness is hard, and Theorem 1.3 that testing for comparability graphs is hard.

A partially ordered set (poset) is a directed graph on a vertex set P which

• has no loops, i.e., no pair (x, x) is an edge,

• has no antiparallel edges, i.e., if (x, y) is an edge, then (y, x) is not an edge,

• is transitive, i.e., if (x, y) is an edge and (y, z) is an edge, then (x, z) is also an edge.

The fact that testing for posets is hard (at least as hard as testing for triangle-freeness)

follows from Theorem 3.1 by adding directions. However, we next sketch a simpler

proof. Let T be a tripartite graph on n vertices with parts V1, V2, V3 which is ε-far from

being triangle-free. Consider the directed graph G on the same vertex set as T with

(v1, v2) ∈ V1 × V2 an edge of G if it is an edge of T , (v2, v3) ∈ V2 × V3 an edge of G if it is

an edge of T , (v1, v3) ∈ V1 × V3 an edge of G if it is not an edge of T , and there are no

other edges. At least one pair in every triangle of T must be modified to turn G into a

poset, so G is ε-far from being a poset. Also, any subset of vertices which is triangle-free

in T induces a poset in G. This implies that testing for posets is at least as hard as testing

for triangle-freeness.
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4. Concluding remarks

We believe that comparing the number of queries needed to test various properties,

as done in this paper comparing testing perfectness and triangle-freeness, could be an

interesting direction for further research. This is the analogue in property testing to the

powerful technique of hardness reductions in complexity theory. One general class of

hard graph properties for testing for which to compare with is (not necessarily induced)

H-freeness for H a fixed odd cycle.

We have shown that testing perfectness is hard. This is equivalent to showing that there

is a graph which is ε-far from being perfect such that a random set of vertices of size

polynomial in ε−1 is perfect with probability at least 1/2. This still leaves the possibility

of having a small witness if the graph is far from being perfect. That is, does every graph

which is ε-far from being perfect contain an induced odd cycle or its complement of size

at least 5 and at most a polynomial in ε−1?

We have shown that testing induced P3-freeness is easy, which is a step towards

completing the classification of graphs H for which induced H-free testing is easy. It

remains to determine whether or not induced C4-freeness is easy.

Finally, it would be very interesting to characterize all easily testable graph properties.

As all these properties have to be strongly testable, it follows from the main result of

[5] that if we restrict ourselves only to natural properties, in the sense of [5], then these

properties have to be essentially hereditary. Among the hereditary properties, properties

that are known to be easily testable include the property of being k-colourable for any

fixed k, as shown in [14], as well as a natural extension of it, as proved in [15]. As

mentioned in the Introduction, additional easily testable (hereditary) properties are H-

freeness for any bipartite H , and induced H-freeness for any path H on at most 4 vertices

or its complement (where the case of 4 vertices is proved in Section 2).

Hereditary properties which are not easily testable are H-freeness for non-bipartite

H , induced H-freeness for all graphs besides the paths on at most 4 vertices and their

complements, as well as possibly the cycle of length 4 and its complement, perfectness and

comparability. Our techniques here can be applied to provide several additional examples

of easily testable and of non-easily testable hereditary properties, but most of these are

somewhat artificial and not familiar graph properties. Does the above list of known results

suggest a (conjectured) characterization of all easily testable hereditary graph properties?

At the moment we are unable to formulate such a conjecture but hope that the results

and ideas in the present paper may contribute to the study of this problem.
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