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HOMOGENEOUS SASAKI AND VAISMAN MANIFOLDS OF
UNIMODULAR LIE GROUPS

D. ALEKSEEVSKY , K. HASEGAWA and Y. KAMISHIMA

Abstract. A Vaisman manifold is a special kind of locally conformally Kähler

manifold, which is closely related to a Sasaki manifold. In this paper, we show a

basic structure theorem of simply connected homogeneous Sasaki and Vaisman

manifolds of unimodular Lie groups, up to holomorphic isometry. For the case of

unimodular Lie groups, we obtain a complete classification of simply connected

Sasaki and Vaisman unimodular Lie groups, up to modification.

Introduction

We recall that a locally conformally Kähler manifold, or shortly an l.c.K. manifold, is

a Hermitian manifold (M, g, J), where g is a Hermitian metric with complex structure J

whose associated fundamental 2-form Ω satisfies the condition

(∗) dΩ = Ω ∧ θ

for a closed 1-form θ, called the Lee form. We may also define it as a locally conformally

symplectic manifold with compatible complex structure (M, Ω, J), where Ω is a nonde-

generate 2-form which satisfies (∗) for a closed 1-form θ and J is an integrable complex

structure compatible with Ω. M is of Vaisman type if the Lee form θ is parallel with respect

to g or, equivalently, if the Lee field ξ, the dual vector field of θ by the metric g, is Killing.

A homogeneous l.c.K. manifold (M, g, J) is a homogeneous Hermitian manifold whose

associated fundamental form Ω satisfies the above condition (∗); in particular, the Lee form

θ is also invariant. We can express M , if necessary, as G/H in an effective form, where G

is a connected Lie group of automorphisms of (M, g, J) and H is a closed subgroup of G

which does not contain any normal subgroup of G.

Recall that a connected Lie group G is unimodular if it admits a bi-invariant Haar

measure or, equivalently, if its adjoint representation ad(X) in the Lie algebra g has trace

zero for any X ∈ g. Any compact, semisimple, nilpotent, reductive Lie groups, and Lie

groups with a uniform lattice are unimodular. Note that we have obtained in the paper

[8] a complete classification of four-dimensional unimodular Lie groups with and without

lattices.

A homogeneous l.c.K. manifold of a compact Lie group is nothing but a compact

homogeneous l.c.K. manifold; we have already shown in [9] a holomorphic structure theorem

asserting that it is a holomorphic fiber bundle over a flag manifold with fiber a one-

dimensional complex torus, and a metric structure theorem asserting that all of them are

of Vaisman type. Note that we have an extended version of the above metric theorem for

homogeneous l.c.K. manifolds in [1], showing a sufficient condition for being of Vaisman

type; that is, the normalizer of the isotropy subgroup H in G is compact, while showing
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an example of a non-Vaisman l.c.K. structure on a reductive Lie group. For the four-

dimensional case, we have shown in [8] that a Hopf manifold of homogeneous type is the

only compact homogeneous l.c.K. manifold.

We recall that a contact metric structure {φ, η, J̃ , g} on M2n+1 is a contact structure

φ, φ ∧ (dφ)n 6= 0 with the Reeb field η, i(η)φ= 1, i(η) dφ= 0, a (1, 1)-tensor J̃ , J̃2 =−I +

φ⊗ η, and a Riemannian metric g, satisfying g(X, Y ) = φ(X)φ(Y ) + dφ(X, J̃Y ). A Sasaki

structure on M2n+1 is a contact metric structure {φ, η, J̃ , g} satisfying Lηg = 0 (that is η

is a Killing field) and the integrability of J = J̃ |D, where D = ker φ is a CR structure.

An automorphism of a Sasaki manifold M is a diffeomorphism Ψ which satisfies

Ψ∗φ= φ, JΨ∗ = Ψ∗J.

Note that the automorphism group of a Sasaki manifold is a closed Lie subgroup of the

isometry group of M . M is a homogeneous Sasaki manifold if a connected Lie group G of

automorphisms acts transitively on M , that is, M =G/H with isotropy subgroup H of G.

A Sasaki (Vaisman) Lie group G is a homogeneous Sasaki (Vaisman) manifold with

trivial isotropy subgroup. We can define and study Sasaki (Vaisman) structures on the Lie

algebra g of G, which correspond uniquely to Sasaki (Vaisman) structures on G. For l.c.K.

structure on g, we need to only consider the structure (g, J) or (Ω, J) on g satisfying (∗),
where g is a Riemannian metric and Ω is a nondegenerate 2-form on g compatible with J .

Since the Lee form θ is closed, the Vaisman condition is just

g([ξ, X], Y ) + g(X, [ξ, Y ]) = 0;

that is, ξ is Killing.

A homogeneous Hermitian or Sasaki manifold may have different coset expressions G/H

and G′/H ′. As a key strategy of proving a structure theorem of homogeneous l.c.K. or

Sasaki manifolds G/H of a unimodular Lie group G, up to holomorphic isometry, we apply

a modification of G/H into G′/H ′ (see Section 1 for definition), which preserves holomorphic

isometry and unimodularity. For Hermitian or Sasaki Lie groups, we see that modification

is an equivalence relation, which preserves Hermitian or Sasaki structures respectively and

unimodularity.

As main results of the paper, we classify unimodular Sasaki and Vaisman Lie groups,

up to modification (Theorem 2.1). More generally, we show a structure theorem for simply

connected homogeneous Sasaki and Vaisman manifolds of unimodular Lie groups, up to

holomorphic isometry (Theorem 4.1).

Theorem 2.1. A simply connected Sasaki unimodular Lie group is isomorphic to N ,

SU(2) or S̃L(2,R), up to modification. Accordingly, a simply connected Vaisman unimodular

Lie group is isomorphic to one of the following, up to modification:

R×N, R× SU(2), R× S̃L(2,R),

where N is a real Heisenberg Lie group and S̃L(2,R) is the universal covering Lie group of

SL(2,R).

Theorem 4.1. A simply connected homogeneous Vaisman manifold M of a unimodular

Lie group is holomorphically isometric to M ′ = R×M1 with canonical Vaisman structure,

where M1 is a simply connected homogeneous Sasaki manifold of unimodular Lie group,
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which is a quantization of a simply connected homogeneous Kähler manifold M2 of a

reductive Lie group. As a Hermitian manifold M is a holomorphic principal bundle over a

simply connected homogeneous Kähler manifold M2 with fiber C1 or C∗.

In the above statement, we mean by a quantization of a homogeneous Kähler mani-

fold M2, a principal bundle M1 over M2 with fiber R or S1 satisfying dψ = ω for a contact

form ψ on M1 and the Kähler form ω on M2.

A basic idea of the proofs is to show first that, up to modifications, a simply connected

homogeneous Vaisman manifold of unimodular Lie group can be assumed to have the form

M =G/H, where G is a simply connected unimodular Lie group of the form G= R×G1

and H is a connected compact subgroup of G1 with dim Z(G1) = 1, where Z(G1) denotes

the center of G1; combining with our previous results in [9], [1] yields the following structure

theorem.

Let g, h be the Lie algebras of G, H, respectively. Then the pair {g, h} is of the following

form:

g = R× g1,

where g1 = ker θ ⊃ h, and g1 can be expressed as a central extension of g2 by R:

0→R→ g1→ g2→ 0.

The Lee field ξ and the Reeb field η = Jξ generate Z(g), where Z(g) denotes the center

of g; the l.c.K. form Ω can be written as

Ω =−θ ∧ ψ + dψ,

where ψ is the Reeb form defining a contact form on the homogeneous Sasaki manifold

M1 =G1/H. Let k = π(h) for the projection π : g1→ g2. Then the pair {g2, k} defines a

homogeneous Kähler manifold M2 =G2/K with the Kähler form ω = dψ|g2, where G1 and

K are the Lie groups corresponding to g1 and k, respectively.

We further observe, applying some basic results from the field of homogeneous Kähler

manifolds, that the homogeneous Kähler manifold M2 associated with {g2, k} is of reductive

type. Hence, we can reduce the classification problem of homogeneous Vaisman manifolds

of unimodular type to that of homogeneous Sasaki manifolds of the same type, which

are quantizations of homogeneous Kähler manifolds of a reductive Lie group. We already

know that a simply connected homogeneous Kähler manifold of a reductive Lie group is

a Kählerian product of Ck and a homogeneous Kähler manifold of semisimple Lie group

(which has the structure of a holomorphic fiber bundle over a symmetric domain with fiber

a flag manifold).

Conversely, starting from a simply connected homogeneous Kähler manifold M2 of a

reductive Lie group, we may construct its quantization which will be a simply connected

homogeneous Sasaki manifold M1 and then take a product with R, making it a simply

connected homogeneous Vaisman manifold M of unimodular type. Here the quantization

must be the one induced from a central extension of a Kähler algebra (g2, k) of reductive Lie

algebra as stated above. We assert, in general, that a simply connected homogeneous Kähler

manifold M2 of a reductive Lie group is R-quantizable to a simply connected homogeneous

Sasaki manifold M1 if and only if M2 is a product of Ck and a symmetric domain,
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which is exactly the case when M2 contains no flag manifolds; M2 is S1-quantizable in

all other cases.

The paper is organized as follows. In Section 1, we review some basic terminologies

and results in the field of homogeneous manifolds; in particular, we discuss modification,

which was a key strategy in proving a structure theorem of homogeneous Kähler manifolds

(Fundamental Conjecture of Gindikin and Vinberg) [5], in a slightly more general setting.

As an important observation, we see that modification in the category of unimodular Lie

groups (Lie algebras) is an equivalence relation. In Section 2, we discuss Sasaki and Vaisman

Lie algebras (Lie groups) and prove Theorem 2.1. In Section 3, we provide some examples of

Vaisman and non-Vaisman l.c.K. Lie groups. In Section 4, we discuss homogeneous Sasaki

and Vaisman manifolds and prove Theorem 4.1; we also prove, applying some results in the

field of homogeneous Kähler manifolds, a more detailed structure theorem of homogeneous

Sasaki manifolds of unimodular Lie groups (Theorem 4.2).

§1. Preliminaries

Let M =G/H be a homogeneous space of a connected Lie group G with closed

subgroup H. Then the tangent bundle of M is given as a G-bundle G×H g/h over

M =G/H with fiber g/h, where the action of H on the fiber is given by Ad(x) (x ∈H).

A vector field on M is a section of this bundle; a p-form on M is a section of the

G-bundle G×H ∧p(g/h)∗, where the action of H on the fiber is given by Ad(x)∗ (x ∈H).

A vector field (respectively p-form), which is invariant by the left action of G, is canonically

identified with an element of (g/h)H (respectively (∧p(g/h)∗)H), which is the set of elements

of g/h (respectively ∧p(g/h)∗) invariant by the adjoint action of H. An invariant complex

structure J on M is likewise considered as an element J of Aut(g/h) such that J2 =−1

and Ad(x)J = J Ad(x) (x ∈H). Note that we may also consider an invariant p-form as an

element of ∧pg∗ vanishing on h and invariant by the action Ad(x)∗ (x ∈H) and an invariant

complex structure as an element J of End(g) such that J2 =−1 (mod h) and Jh⊂ h.

We next define and discuss modification in the category of homogeneous Hermitian

manifolds and Lie groups. Let g be a Lie algebra with Hermitian structure (g, J) and Der(g)

the derivation algebra of g, which is a Lie subalgebra of End(g). Let k be a subalgebra of

Der(g) consisting of skew-symmetric derivations σ compatible with J :

(1.1) g(σ(X), Y ) + g(X, σ(Y )) = 0, Jσ = σJ

for any X, Y ∈ g. We define the Lie algebra ĝ by setting

ĝ = go k,

on which the new Lie brackets are defined by

[(X, σ), (Y, σ′)] = ([X, Y ] + σ(Y )− σ′(X), [σ, σ′]).

We extend the metric g and the complex structure J to ĝ, setting ĝ(ĝ, k) = 0 and Ĵ(k) = 0.

We have a modification ḡ of g:

ḡ = ĝ/k,

which is isomorphic to g as Hermitian vector space. Let G (resp. Ĝ) be the simply connected

Lie group with Lie algebra g (resp. ĝ) and K a compact subgroup of Ĝ with Lie algebra k.
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Then, G is isomorphic to Ĝ/K as a homogeneous Hermitian manifold. It should be noted

that the unimodularity is preserved by the modification since it is a skew-symmetric

operation (1.1).

Any subgroup G′ of Ĝ canonically acts on G; the action is simply transitive if and only

if the Lie algebra g′ of G′ is of the form

g′ = {(X, φ(X)) ∈ ĝ |X ∈ g},

where φ is a linear map from g to k. The Lie bracket on g′ is defined by

[(X, φ(X)), (Y, φ(Y ))]′ = ([X, Y ] + φ(X)(Y )− φ(Y )(X), [φ(X), φ(Y )]).

In case k is abelian, the projection of ĝ onto ḡ = ĝ/k maps g′ isomorphically (as a vector

space) onto ḡ, defining a Lie algebra structure on ḡ,

(1.2) [X, Y ]− = [X, Y ] + φ(X)(Y )− φ(Y )(X)

for X, Y ∈ ḡ. The Lie group Ḡ with Lie algebra ḡ is called a modification of the Lie group G.

Note that Ḡ preserves the original Hermitian structure on G.

We consider the set L of linear maps φ : g→ k satisfying the condition φ([g, g]) = 0,

φ(σ(X)) = 0 for any X ∈ g and σ ∈ k. Since k is abelian, L may also be considered as the

set of Lie algebra homomorphisms φ : g→ k satisfying the condition

(1.3) φ(σ(X)) = 0

for any X ∈ g and σ ∈ k. In particular, we have φ1(φ2(X)Y ) = 0 for any X, Y ∈ g and

φ1, φ2 ∈ L. It is easy to see that L is a linear vector space, and any element φ(X) (X ∈ ḡ)

defines a skew-symmetric derivation compatible with J (condition (1.1)) with respect to

the new Lie bracket (1.2). In particular, the modification of ḡ by −φ defines the original Lie

algebra g; the composite of two modifications φ1, φ2 is given by φ1 + φ2. We also see that

the modification is an equivalence relation in the set of Hermitian Lie algebras (groups).

Example 1.1. Let g′ be a Lie algebra with a basis {X, Y, Z, W} for which the bracket

multiplication is defined by

[X, Y ] =−Z, [W, X] =−Y, [W, Y ] =X,

and other brackets vanish. A complex structure J on g′ is defined by

(1.4) JX =−Y, JY =X, JZ =−W, JW = Z.

A Hermitian metric g is defined such that X, Y, Z, W is an orthogonal basis. Let n be

the Heisenberg Lie algebra with a basis {X, Y, Z} for which the bracket multiplication is

defined by

[X, Y ] =−Z,

and other brackets vanish. We see that ḡ is a modification of g = n×R. A linear map

φ : g→Der (g) is defined as

φ(X) = φ(Y ) = φ(Z) = 0, φ(W ) = adW ,

where adW is defined by

adW (X) =−Y, adW (Y ) =X, adW (Z) = 0, adW (W ) = 0.
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It is clear that adW is skew-symmetric with respect to g and compatible with J . Hence,

setting k = 〈adW 〉, we get a modification ḡ of g:

ḡ = go k/k.

Since φ clearly satisfies the condition (1.3), ḡ can be identified with g′ through the map

ψ : g′→ go k→ ḡ defined by ψ(X) = pr(X, φ(X)).

Note that g is a nilpotent Lie algebra and g′ is a unimodular non-nilpotent solvable Lie

algebra. The corresponding Lie groups G and G′ with the integrable complex structure (1.4)

admit uniform lattices, defining primary and secondary Kodaira surfaces, respectively. Both

of them are Vaisman Lie groups with a l.c.K. form Ω defined by

Ω = x ∧ y + z ∧ w

with the Lee form w, where x, y, z, w are the Maurer–Cartan forms corresponding to

X, Y, Z, W , respectively.

We can define a modification of a pair (g, h) of a Hermitian Lie algebra g and a subalgebra

h of g under the additional condition,

(1.5) σ(h)⊂ h, Jσ = σJ (mod h)

for any σ ∈ k. We get a modification (g′, h′) of (g, h) as

g′ = go k, h′ = ho k.

Let G (resp. G′) be the simply connected Lie group with Lie algebra g (resp. g′) and H

(resp. H ′) be its closed subgroup with Lie algebra h (resp. h′). G′/H ′ is isomorphic to G/H

as a Hermitian manifold.

For modification in the category of homogeneous Sasaki manifolds G/H or the corre-

sponding Lie algebras (g, h) with Sasaki structure {φ, η, J̃ , g}, we consider a subalgebra k

of Der(g) consisting of skew-symmetric derivations σ compatible with J̃ :

(1.1′) g(σ(X), Y ) + g(X, σ(Y )) = 0, J̃σ = σJ̃

for any X, Y ∈ g. Then we can define the modification of Sasaki algebras (g, h) in the same

way as for the case of Hermitian algebras.

The following lemma is a key in the whole arguments for the proofs of our main results.

Lemma 1.1. Let M =G/H be a simply connected homogeneous Vaisman manifold,

where H is a connected subgroup of a simply connected Lie group G. Then, we can

modify, if necessary, g/h into g′/h′ with dim Z(g′) = 2 and dim h′ 6 dim h + 1. Hence,

G/H is isomorphic to G′/H ′ as a homogeneous Vaisman manifold, where (G′, H ′) is the

corresponding Lie groups of (g′, h′). Similarly, for a simply connected homogeneous Sasaki

manifold G/H, we can modify, if necessary, g/h into g′/h′ with dim Z(g′) = 1.

Proof. In fact, the set of invariant vector fields can be identified with (g/h)h; since the

Lee field ξ and Reeb field η = Jξ are invariant, they belong to this set. Since ξ and η are

Killing and compatible with the complex structure J , they define adξ and adη in Der(g),

which commute with each other and are compatible with J . They are also ad h-invariant

for h ∈ h.

https://doi.org/10.1017/nmj.2019.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.34


HOMOGENEOUS SASAKI AND VAISMAN MANIFOLDS OF UNIMODULAR LIE GROUPS 89

Let k = 〈adξ〉, and ĝ = go k, ĥ = h× k. We have g/h = ĝ/ĥ, where ĝ has a central element

ζ = ξ − adξ in ĝ which is identified with ξ (mod ĥ). Since the Lee form θ is closed and

θ(ξ) = 1, we have ξ 6∈ [g, g]. Hence, we have a modification of g into ĝ/k = g′ and ĥ/k = h′ = h

through the map X → (X, φ(X)). Therefore, we have

g/h = g′/h′ = g′/h

with ξ ∈ Z(g′). In particular, we have g′ = R× g1 with g1 = ker θ ⊃ h, where R is generated

by ξ. Similarly, we can modify g′/h′ into g′′/h′′ with ξ, η ∈ Z(g′′). Note that in case ξ or η is

already in Z(g), adξ or adη is trivial; thus g′ = g × k, h′ = h× k without any modification

on g and h. Since for a homogeneous Vaisman manifold G′′/H ′′, the dimension of the center

is not greater than 2 [9], [1], the Lee field and the Reeb field generate Z(g′′). Since h′ = h,

we have dim h′′ 6 dim h + 1.

We review some basic and historical results on a classification of homogeneous

Kähler manifolds (due to Dorfmeister, Nakajima, Vinberg, Gindikin, Piatetski-Shapiro,

Matsushima, Borel, Hano, and Shima; see [3], [5], [7], [15], and references therein).

Let M =G/H be a homogeneous Kähler manifold, where H is a closed subgroup of a

simply connected Lie group G. Let g, h be the Lie algebras of G, H, respectively. Then, we

can consider a Kähler structure on G/H as a pair (J, ω) of a complex structure J ∈ End(g)

and a skew-symmetric bilinear form ω on g, satisfying the following conditions:

(i) J h⊂ h, J2 =−I (mod h);

(ii) adXJ = J adX (mod h) for X ∈ h;

(iii) [JX, JY ] = [X, Y ] + J [JX, Y ] + J [X, JY ] (mod h);

(iv) ω(h, g) = 0, ω(JX, JY ) = ω(X, Y );

(v) ω([X, Y ], Z) + ω([Y, Z], X) + ω([Z, X], Y ) = 0;

(vi) ω(JX, X) 6= 0 for X 6∈ h.

A Kähler algebra (g, h, J, ω) is a Lie algebra g with subalgebra h, J ∈ End(g) and a skew-

symmetric bilinear form ω on g, satisfying the above conditions. A Kähler algebra (g, h, J, ω)

is effective if h includes no nontrivial ideals of g. A J-algebra is a Kähler algebra (g, h, J, ω)

with a linear form ρ such that dρ= ω. Note that the condition dρ= ω is often referred

to as nondegenerate; for a Kähler algebra of effective form, it is actually equivalent to

nondegeneracy of the Ricci curvature form r of the Kähler structure (due to Nakajima [12]).

Structure theorem of homogeneous Kähler manifolds. A homogeneous Kähler manifold

is a holomorphic fiber bundle over a homogeneous bounded domain with fiber a Kählerian

product of a locally flat Kähler manifold and a flag manifold. In particular, due to the

Grauert–Oka principle [6], it is biholomorphic to the product of these complex manifolds.

A key idea of the proof [5] for the theorem is to show, applying modifications if necessary,

that there exists an abelian ideal a and a J-algebra f containing h such that

(1.6) g = ao f

which is a semidirect sum, and g is quasinormal, that is, ad(X) has only real eigenvalues

for any element X ∈ rad(g), where rad(g) is the radical of g. There also exists a compact

J-subalgebra q of f satisfying f⊃ q⊃ h for which we can express M as a fiber bundle:

(1.7) P/H →M =G/H →G/P,
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where P =AQ and A, Q are the Lie groups associated with a, q, respectively; P/H =A/Γ×
Q/H0 with H =H0Γ for the connected component H0 of H and a discrete subgroup Γ of A.

The base space G/P defines a homogeneous bounded domain, A/Γ a locally flat complex

manifold, Q/H0 a flag manifold, and the fibration is holomorphic.

§2. Sasaki and Vaisman unimodular Lie algebras

A Lie group G is a homogeneous space with its own transitive action on the left. It

is a homogeneous l.c.K. manifold if it admits a left-invariant Hermitian structure (g, J)

satisfying

dΩ = Ω ∧ θ

for its associated fundamental form Ω and a closed 1-form θ (Lee form). Note that θ must

also be left-invariant. It is clear that G admits a left-invariant l.c.K. structure if and only

if its Lie algebra g admits an l.c.K. form Ω. We call g with an l.c.K. form Ω an l.c.K. Lie

algebra.

We already know a classification of l.c.K. reductive Lie algebras ([8], [1]) and l.c.K.

nilpotent Lie algebras ([13], [8]), determining, at the same time, which l.c.K. structures are

of Vaisman type. In this section, we determine all Vaisman unimodular Lie algebras, up to

modifications.

Theorem 2.1. A Sasaki unimodular Lie algebra is, up to modification, isomorphic to

one of the three types: n, su(2), sl(2,R). Accordingly, Vaisman unimodular Lie algebra is,

up to modification, isomorphic to one of the following:

R× n, R× su(2), R× sl(2,R),

where n is a Heisenberg Lie algebra. In terms of Lie groups, a simply connected Sasaki

unimodular Lie group is, up to modification, isomorphic to one of the three types: N ,

SU(2), S̃L(2,R). Accordingly, a simply connected Vaisman unimodular Lie group is, up

to modification, isomorphic to one of the following:

R×N, R× SU(2), R× S̃L(2,R).

Proof. Let g be a Vaisman unimodular Lie algebra of dimension 2k + 2 with an l.c.K.

form Ω and Lee form θ. Applying modification, if necessary, we can assume that

(2.1) g = R× g0,

where g0 = ker θ, and R is generated by the Lee field ξ. g0 is a Sasaki Lie algebra with

Reeb field η. Let ψ be the contact form and k = 〈η〉, then (g0, k, J |g0, dψ) defines a Kähler

algebra. The Ricci curvature form r of the Kähler structure is given by

r(X, Y ) =−κ([X, Y ]),

where κ is the Koszul form defined by

κ(X) = Trg0/k (ad JX − JadX),

which is well defined on g0/k [11]. Now, in case dim Z(g0) = 1, Z(g0) = k, and g0/k is a

unimodular Kähler Lie algebra. Then due to Hano [7], g0/k is meta-abelian and locally flat
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and, thus, up to modification, isomorphic to Cn as Kähler algebra. Therefore, we get g0 = n,

up to modification. In case dim Z(g0) = 0, we see that the Ricci form κ is nondegenerate.

In fact, since we have i(η)φ= 1, i(η) dφ= 0, and ad (η) is not trivial, k is not an ideal

of g0. Therefore, the Kähler algebra (g0, k, dψ) is in effective form. Since the Kähler algebra

(g0, k, dψ) is nondegenerate (that is, it defines a J-algebra), the Ricci form r is nondegenerate

[12]; it follows (due to Hano [7]) that g0 must be semisimple. Then it is well known [2] that

g0 must be either su(2) or sl(2,R).

Remark 2.1. A Vaisman unimodular solvable Lie algebra g is, up to modification,

isomorphic to R× n (see Example 3.1 for a non-nilpotent case). Since modification φ is a

skew-symmetric operation, its eigenvalues are all pure-imaginary; in particular, a Vaisman

unimodular completely solvable Lie algebra is isomorphic to R× n [14].

Remark 2.2. We have determined all homogeneous l.c.K. structures on R× n and

R× su(2), which are all of Vaisman type [8]. We have also determined all homogeneous

l.c.K. structures on R× sl(2,R), some of them are of non-Vaisman type, as we will see in

the next section.

§3. l.c.K. unimodular Lie groups of non-Vaisman type

In this section, we show examples of l.c.K. reductive Lie algebras of non-Vaisman type

(which we already discussed in our previous papers [9], [1]), illustrating how Vaisman and

non-Vaisman structures can be defined on R× sl(2,R).

Example 3.1. There exists a homogeneous l.c.K. structure on g = R× sl(2,R) which

is not of Vaisman type. Take a basis {X, Y, Z} for sl(2,R) with bracket multiplication

defined by

(3.1) [X, Y ] =−Z, [Z, X] = Y, [Z, Y ] =−X

and T as a generator of the center R of g, where we set

X =
1

2

(
0 1
1 0

)
, Y =

1

2

(
1 0
0 −1

)
, Z =

1

2

(
0 1
−1 0

)
.

Let t, x, y, z be the Maurer–Cartan forms corresponding to T, X, Y, Z, respectively; then

we have

(3.2) dt= 0, dx= z ∧ y, dy = x ∧ z, dz = x ∧ y

and an l.c.K. structure Ω = z ∧ t+ x ∧ y compatible with an integrable homogeneous

complex structure J on g defined by

JY =X, JX =−Y, JT = Z, JZ =−T.

We can generalize Ω to an l.c.K. structure of the form

(3.3) Ωψ = ψ ∧ t+ dψ

compatible with the above complex structure J on g, where ψ = ax+ by + cz with a, b,

c ∈R.
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We see that the symmetric bilinear form gψ(U, V ) = Ωψ(JU, V ) is represented, with

respect to the basis {T, X, Y, Z}, by the matrix

A=


c −b a 0
−b c 0 a
a 0 c b
0 a b c

 ,

which has the characteristic polynomial ΦA(u) = {(u− c)2 − (a2 + b2)}2 and has only

positive eigenvalues if and only if c > 0, c2 > a2 + b2. The Lee form is θ = t and the Lee

field is

ξ =
1

D
(cT + bX − aY ),

with D = c2 − a2 − b2. We have also

gψ(ξ, ξ) =
c

D
.

We can see that gψ([ξ, U ], V ) + gψ(U, [ξ, V ]) 6≡ 0 unless a= b= 0. In fact, for U = V = Z,

gψ([ξ, Z], Z) + gψ(Z, [ξ, Z]) = 2gψ([ξ, Z], Z) =− 2

D
(a2 + b2) = 0

if and only if a= b= 0. Conversely, for the case a= b= 0, it is easy to check that

gψ([ξ, U ], V ) + gψ(U, [ξ, V ])≡ 0. Therefore, we have shown the following.

For J and Ωψ defined above, gψ defines a (positive definite) l.c.K. metric if and only

if c > 0, c2 > a2 + b2. It is of Vaisman type if and only if c > 0, a= b= 0. And it is of

non-Vaisman type if and only if c > 0, c2 > a2 + b2 > 0.

We see that g can be modified into g′/〈S〉, where g′ = R× gl(2,R) for which the basis

consists of X, Y, Z, and

W =
1

2

(
1 0
0 1

)
,

and we set

S =
1

2

(
1 −1
1 1

)
.

Since we have W = Z + S ∈ gl(2,R), adS defines a skew-symmetric action on g and

Z =W (mod S). Hence, we get g = g′/〈S〉 as an l.c.K. algebra with the original l.c.K.

form Ω, which is of Vaisman type. Note that dimR Z(g′) = 2. We see that for g with the

l.c.K. form Ωψ of non-Vaisman type, adS is not compatible with the metric gψ. In fact, for

U = bX − aY ,

gψ([S, U ], Z) + gψ(U, [S, Z]) = gψ([Z, U ], Z) = a2 + b2 = 0

if and only if a= b= 0. Hence, we cannot modify g with the l.c.K. form Ωψ of non-Vaisman

type into g = g′/〈S〉 with a compatible Vaisman structure.
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§4. Homogeneous Sasaki and Vaisman manifolds of unimodular Lie group

In this section, we prove Theorems 4.1 and 4.2 as our main results.

For any Sasaki manifold N , its Kähler cone C(N) is defined as C(N) = R+ ×N with the

Kähler form ω = r dr ∧ ψ + (r2/2) dψ, where a compatible complex structure Ĵ is defined

by Ĵη = (1/r)∂r and Ĵ |D = J . Note that a contact metric manifold N2n+1 with {ψ, η, J̃} is

Sasaki if and only if the Kähler cone C(N) with (ω, J̃) is Kählerian.

For any Sasaki manifold N with contact form ψ, we can define an l.c.K. form Ω =

(2/r2)ω = (2/r) dr ∧ ψ + dψ; or taking t=−2 log r, Ω =−dt ∧ ψ + dψ on M = R×N or

S1 ×N respectively, which is of Vaisman type. We can define a family of complex structures

J compatible with Ω by

(4.1) J∂t = b∂t + (1 + b2)η, Jη =−∂t − bη,

where b ∈R and the Lee field is Jη. We call M a canonical Vaisman manifold associated

with a Sasaki manifold N .

We have shown in Lemma 1.1 that, up to modifications, a simply connected homogeneous

Vaisman manifold of unimodular Lie group can be assumed to have the form M =G/H,

where G is a simply connected unimodular Lie group of the form G= R×G1 and H is

a connected compact subgroup of G1 with dim Z(G1) = 1; combining with our previous

results in [9], [1] yields the following.

Proposition 4.1. Let g, h be the Lie algebras of G, H, respectively. Then the pair {g, h}
is of the following form:

g = R× g1,

where g1 = ker θ ⊃ h, and g1 can be expressed as a central extension of a Lie algebra g2

by R:

0→R→ g1→ g2→ 0.

The Lee field ξ and the Reeb field η = Jξ generate Z(g); the l.c.K. form Ω can be written

as

Ω =−θ ∧ ψ + dψ,

where ψ is the Reeb form defining a contact form on the homogeneous Sasaki manifold

G1/H, G1 being the simply connected unimodular Lie group corresponding to g1. Let

k = π(h) for the projection π : g1→ g2. Then the pair {g2, k} defines a homogeneous Kähler

manifold G2/K with the Kähler form ω = dψ|g2, where G2 and K are the Lie groups

corresponding to g2 and k, respectively.

Let g1 be the Sasaki algebra with the Reeb field η and the Kähler form ω in

Proposition 4.1. Then, the Lie bracket on g1 is the extension of g2 given by

(4.2) [X, Y ]g1 = [X, Y ]g2 − ω(X, Y )η, [η, Z]g2 = 0

for X, Y, Z ∈ g2. Conversely, given a Kähler algebra {g2, k} with a Kähler form ω, we can

define a Sasaki Lie algebra g1, which is a central extension with a generator η of R by the

above formula. Since η is Killing, g1 is unimodular if and only if g2 is unimodular. Hence,

M1 =G1/H is of unimodular type if and only if M2 =G2/K is of the same type.
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We have then the following, which is one of our main results.

Theorem 4.1. A simply connected homogeneous Vaisman manifold M of unimodular

Lie group is holomorphically isometric to M ′ = R×M1 with a canonical Vaisman structure,

where M1 is a simply connected homogeneous Sasaki manifold of unimodular Lie group,

which is a quantization of a simply connected homogeneous Kähler manifold M2 of reductive

Lie group. As a Hermitian manifold M is a holomorphic principal bundle over a simply

connected homogeneous Kähler manifold M2 with fiber C1 or C∗.

For the proof of Theorem 4.1, since we have already discussed and proved the first part

of the theorem, we need to only show the last part that a simply connected homogeneous

Sasaki manifold M1 of unimodular Lie group has the structure as stated in the theorem,

which is covered and more detailed in the following theorem.

Theorem 4.2. A simply connected homogeneous Sasaki manifold M1 of unimodular Lie

group is a quantization of a simply connected homogeneous Kähler manifold M2 of reductive

Lie group; that is, M1 is a principal bundle over M2 with fiber R or S1 satisfying dψ = ω

for a contact form ψ on M1 and the Kähler form ω on M2.

The simply connected homogeneous Kähler manifold M2 of reductive Lie group is a

Kählerian product of Ck, a flag manifold Q/V with a compact semisimple Lie group Q

and a parabolic subgroup V , and a homogeneous Kähler manifold P/U with a noncompact

semisimple Lie group P and a closed subgroup U :

(4.3) M2 = Ck ×Q/V × P/U.

The homogeneous Kähler manifold P/U has a structure of a holomorphic fiber bundle over

a symmetric domain P/L with fiber a flag manifold L/U for a maximal compact subgroup

L of P .

Furthermore, M1 is R-quantization of M2 if and only if M2 is a product of Ck and a

symmetric domain P/L with L= U , and S1-quantization of M2 in all other cases.

Note that a homogeneous Sasaki manifold, and more generally a homogeneous contact

manifold, is necessarily regular (see [2], [9]). Note also that Theorem 4.2 may be considered

independently as a result on classification of homogeneous Sasaki manifolds of unimodular

Lie groups, which extends a known result on compact homogeneous Sasaki manifolds

(see [4]).

First, we prove the following key result on homogeneous Kähler manifolds of unimodular

Lie group, which could be of independent interest.

Proposition 4.2. A simply connected homogeneous Kähler manifold M =G/K of

unimodular Lie group G is of reductive type; that is, the Kähler algebra {g, k} of M has, up

to modification, a decomposition

g = ao l,

where a is an abelian Kähler ideal of dimension k and l is a semisimple Kähler subalgebra

which contains k. As a Kähler manifold, M is a product of Ck and a homogeneous Kähler

manifold N = L/K of a semisimple Lie group L:

M = Ck ×N.

Furthermore, N can be decomposed into a Kählerian product of flag manifolds and

noncompact homogeneous Kähler manifolds each of which is a holomorphic fiber bundle

over a symmetric domain with fiber a flag manifold.
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Proof. Let M =G/K be a simply connected homogeneous Kähler manifold, where G is

a unimodular Lie group and K its closed subgroup. We have a decomposition,

g = ao f,

where a is a maximal abelian J-ideal of g isomorphic to Ck and f is a J-subalgebra which

contains k. Moreover, due to [15], f decomposes into a product of a solvable J-subalgebra s,

a reductive J-subalgebra q,

f = s× q,

where q contains k and the center of q is contained in k. We see, applying the De Rham

decomposition of homogeneous Kähler manifolds (see [10]), that s is actually the radical

of f, which is a maximal solvable ideal of f. We see also that ao s is the radical of g. Since

g is, by assumption, a unimodular Lie algebra, so is ao s. It follows, due to Hano [7], that

s must be trivial. Since the center of q is contained in k, we may express g as

g = ao l,

where l is the semisimple part of q and k is contained in l. Since M is, by assumption,

simply connected, a corresponds to Ck as a flat Kähler manifold, and thus the action of L

(the Lie group corresponding to l) on Ck is holomorphically isometric. Thus, as a Kähler

manifold M is isomorphic to Ck × L/K (see [5]), where L/K is a product of homogeneous

Kähler manifolds of compact semisimple Lie groups and homogeneous Kähler manifolds

of noncompact semisimple Lie groups each of which is a holomorphic fiber bundle over a

symmetric domain with fiber a flag manifold (see [3]).

Next, we discuss a quantization of a homogeneous Kähler manifold M2 =G2/K of

reductive type. In case M2 = Ck, its quantization is the Heisenberg Lie group N , which

is a central extension of R by Ck. In case M2 = L/K is a flag manifold, being a simply

connected Hodge manifold, where L is a compact semisimple Lie group, it is quantizable

to a compact simply connected homogeneous Sasaki manifold with fiber S1. In case L is

a noncompact semisimple Lie group, M2 is a holomorphic fiber bundle over a symmetric

domain L/B with fiber a flag manifold B/K, where B is a maximal compact Lie subgroup

of L containing K. Since the flag manifold B/K is a Kähler submanifold of M2 =G/K and

S1-quantizable, M2 is also S1-quantizable. In general cases, for two or more homogeneous

Kähler manifolds each of which is quantizable, we can construct naturally a quantization

of their products in the following way. For two Kähler algebras g2 and g′2 with their central

extension g1 and g′1, respectively, we can define a new central R-extension of g2 × g′2 by

taking R×R/∆ = R with ∆ = {(X,−X) |X ∈R}:

(4.4) 0→R→ g1 ×∆ g′1→ g2 × g′2→ 0,

where g1 ×∆ g′1 = (g1 × g′1)/∆, the quotient Lie algebra by the canonical action of ∆ on

g1 × g′1. Correspondingly, we obtain a quantization G1 ×∆ G′1 of G2 ×G′2; in general, the

quantization G1/H ×∆ G′1/H
′ of G2/K ×G′2/K ′. Now, in case M2 is a product of Ck and a

symmetric domain (which is the case B =K), since M2 is contractible, it is R-quantizable

(but not S1-quantizable) to a simply connected homogeneous Sasaki manifold. In all other

cases, as we have seen in the above, since L is a noncompact semisimple Lie group and K is

not a maximal compact subgroup of L (that is, B )K), M2 is S1-quantizable to a simply

connected homogeneous Sasaki manifold.

This completes the proof of Theorem 4.2, and thus of Theorem 4.1 as well.
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