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SUMMARY
Singularities have a great influence on kinematics and dynamics of both serial and parallel robots.
In order to prevent a robot from entering singular configurations, it needs to measure the “distance”
between the robot current configuration and the singular configuration. This paper presents a novel
approach based on characteristic angles to measure closeness to singularities. For the problem
of inconsistent dimensions in the scalar product of screws, the physical meanings of twists and
wrenches are reinterpreted. For the problem of the metric invariant to origin selection, the origin of
the screw frame is required to coincide with the origin of the robotic tool frame. The major merit
of the proposed metric lies in the identical result of measuring similar mechanisms with different
sizes. Moreover, the measurement is insensitive to screw magnitude, since the metric expression is
dimensionless. Furthermore, the geometrical meaning of the determinant of a screw matrix is clarified.
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1. Introduction
Singularities have an important influence on the kinematics and dynamics of both serial and parallel
robots, which have attracted many researchers.1–8 There are various categories of singularities
according to different perspectives,9,10 and a significant classification is to divide the singularities
as kinematic singularities and static singularities. The kinematic singularities emerge in the case
that joint twists in a serial kinematic chain become linearly dependent, which may occur in serial
robots or in a limb of parallel robots. The static singularities arise when constraint wrenches between
kinematic chains become linearly dependent, which only occur in parallel robots. Once a serial or
parallel robot moves into a kinematic singular configuration, its joint velocities cannot be solved for
a given velocity of its end-effector or moving platform; in other words, the required joint velocities
are infinite. Once a parallel robot goes into a static singular configuration, its limbs cannot provide
necessary constraints to its moving platform; in other words, the required actuating forces or torques
are infinite. Obviously parallel robots in singularities are uncontrollable, and even the robot structure
may be destroyed.

Robots should be protected from reaching singular configurations, and the singularity margin that
indicates the “distance” between the robot current configuration and the singular configuration should
be inspected. There are some well-known metrics to detect singularities, such as the determinant
of Jacobian, the smallest singular value, and the condition number.11,12 These metrics, however,
are unsuitable to measure closeness to singularities, since they lack some physical or geometrical
meaning,13 and they are not invariant to origin selection or scaling.14 Hence, many researchers have
studied metrics of closeness to singularities for robotic manipulators. Voglewede and Ebert-Uphoff15

proposed three attributes to estimate different metrics, and adopted constrained optimization in both
velocity and force domains to evaluate closeness to singularities that was represented as power,
stiffness, kinetic energy, potential energy, or natural frequency. They declared that there was no
invariant metric on the group of rigid body displacement, and any metric necessitated a choice to
weight the translational and rotational portions together. Hubert and Merlet16 detected closeness to
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Fig. 1. Two similar robot mechanisms.

singularities based on a practical approach where certain thresholds of robot joint forces or torques
were adopted to solve for the limit of the force workspace for a given orientation of the moving
platform. Obviously the joint forces or torques not only depended on the robot configuration, but also
on the action lines of external loads. Hartley and Kerr studied closeness to singularities of abstract
screw systems. For a system containing six screws, they employed the reciprocal product of screws to
find a metric invariant to origin selection.17 For a system containing less than six screws, however, it
was hard to prove the invariance of their proposed metric.18 Liu et al.19 adopted the reciprocal product
between transmission wrenches and input or output twists to investigate closeness to singularities,
and their approach had a physical meaning. For a limb with less than six-DOF (degrees of freedom),
however, the transmission wrench could not be uniquely determined unless the orthogonal operation
between the transmission wrench and the limb constraint wrench was employed; the orthogonality
of screws was not invariant to origin selection.14,20

As declared by many researchers, it is hard to say there is a best metric of closeness to singularities,
and this is still an open issue.16 In the existing metrics, to the best of the author’s knowledge, the
results of measuring similar mechanisms are not the same. Here, the similar mechanisms are defined
as the mechanisms with the same architecture, at the same posture, having the same length ratio of
corresponding links, but with different sizes. As shown in Fig. 1, these two robots are at the same
posture, with the same link ratio, and hence they are called similar mechanisms. The metric proposed
in this paper can obtain the identical result for these similar mechanisms, which is a major merit
comparing with other existing metrics. Moreover, the measurement is insensitive to screw magnitude,
since the proposed metric expression is dimensionless. Furthermore, the geometrical meaning of the
determinant20,21 of a screw matrix is clarified.

2. A Uniform Mathematical Representation of Two Singularities
Robot singularities may be classified as kinematic singularities and static singularities. The kinematic
singularities are also known as serial singularities, which emerge in the case that joint twists in a
serial kinematic chain become linearly dependent. The static singularities are also called parallel
singularities, which arise when limb constraint wrenches applied to the moving platform become
linearly dependent. These two kinds of singularities may be uniformly presented in the following
equation.

N∑
i=1

xi$i = $E, where N ≤ 6. (1)

As for kinematic singularities, $i , xi , and $E denote the joint unit twist, the joint velocity magnitude,
and the end-effector twist, respectively; N denotes the number of joint twists in the serial chain. As
for static singularities, $i , xi , and $E denote the unit constraint wrench, the wrench magnitude, and
the external load wrench applied to the moving platform, respectively; N denotes the number of limb
constraint wrenches. Since there are six components in $i and $E , Eq. (1) is a set of six equations.
Note that when N < 6, there are only N independent equations in Eq. (1) at most. From a mathematical
viewpoint, a singularity means the unknown xi for the given $i and $E in Eq. (1) cannot be solved; in
other words, the singularity implies the number of independent equations in Eq. (1) is less than N.
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Equation (1) can be rewritten in a matrix form, where the N screws (twists or wrenches) constitute
a 6× N screw matrix as follows.

M = [
$1 $2 . . . $N

]
.

From an algebraic viewpoint, a singularity indicates that

Rank (M) < N.

When N < 6, M is not square and has no determinant. Since

Rank
(
MTM

) = Rank (M) .

Therefore, the singularity also implies

det
(
MTM

) = 0.

If no singularity occurs, then det
(
MTM

)
> 0; if the robot is close to some singular configuration,

the value of det
(
MTM

)
decreases toward zero. However, if det

(
MTM

)
is taken as the metric of

closeness to singularities, there are several shortfalls: (1) det
(
MTM

)
is not invariant to the selection

of origin; (2) det
(
MTM

)
has no explicit physical or geometrical meanings; (3) MTM refers to the

scalar product of screws where the dimensions of linear and angular velocities, or forces and torques,
are inconsistent. The remainder of this paper will investigate these three issues.

3. Weighted Scalar Product of Twists or Wrenches
For the problem of inconsistent dimensions in the scalar product of screws, as mentioned by Voglewede
and Ebert-Uphoff,15 any metric of closeness to singularities needs a choice to weight the linear and
angular portions of screws together. Some researchers employed a weighted matrix Q13 to interpret
MTQM as some physical quantity of the robotic end-effector, such as the kinetic energy. Obviously
there are different weighted matrices for various robots, and it is difficult to provide a meaningful
weighted matrix for an abstract screw system. To solve this problem, an alternative representation of
rigid body kinematics and statics needs to be put forward.

It is well known that only linear velocity (no angular velocity) is needed to describe the velocity
of a mass point. A rigid body has volume, so it requires both linear velocity v and angular velocity
ω, which may be expressed as a twist $t = (

ω v
)T

, where ω and v are called the real part and the
dual part of the twist respectively. In fact, the velocity of a rigid body can also be described by linear
velocities at two points; in other words, the angular velocity can be numerically expressed as the
linear velocity at a point l meters away from the twist axis. Thus a twist may be represented as

$lt = (
l · ω v

)T
.

This novel expression of a twist still satisfies Eq. (1). Similarly, as for a wrench $w = (
f t

)T
,

where f and t are called the real part and the dual part of the wrench respectively, the force f can be
numerically described by the torque at a point l meters away from the wrench axis. Thus a wrench
may be represented as

$lw = (
l · f t

)T
.

In this way, the six components of the twist $lt or of the wrench $lw have the same dimension.
Therefore the scalar product of two twists or two wrenches has the consistent dimension as the square
of velocity or torque. Actually, this weighted scalar product of screws, $T

lt$lt or $T
lw$lw, is equivalent
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to $T
t Q$t or $T

wQ$w, where Q is the following weighted matrix:

Q =

⎡
⎢⎢⎢⎢⎢⎣

l2

l2 0
l2

1
0 1

1

⎤
⎥⎥⎥⎥⎥⎦

6×6

.

The matrix Q is positive definite since l > 0. Therefore the following equation holds.

Rank
(
MTQM

) = Rank
(
MTM

) = Rank (M) . (2)

When l = 1, MTQM turns to MTM which has no inconsistent problem now. This treatment is
similar to the “characteristic length” proposed by Angeles.22,23 However, the physical or geometrical
meaning of MTM and det

(
MTM

)
is still unknown.

4. Origin Selection of the Screw Frame
Equation (1) indicates that the singularity is a property of the mapping between joint twists (or limb
constraint wrenches) and the end-effector twist (or the external wrench at the moving platform).
When the robot is close to a singular configuration, the mapping is hard to execute. Obviously the
values of the end-effector velocity and the external torque may change, as the point of interest varies.
Hence, the metric value of closeness to singularities is related to the location of the point of interest
at the end-effector or moving platform.

The velocity or torque at the point of interest is not always equal to the dual part of the twist or
wrench, since the elements in the dual part depend on the origin position of the screw frame. Hence,
for conveniently measuring closeness to singularities, the origin of the screw frame is demanded to
be translated to the point of interest at the end-effector or moving platform; in other words, the origin
of the screw frame should coincide with the origin of the robotic tool frame.

When the origin of the screw frame has been selected, the norm of a screw, regarded as the
weighted scalar product as interpreted in Section 3, can be proved invariant to the rotation of the
screw frame. Suppose $l = (

l · S S0
)T

, where l · S and S0 denote the real part and dual part of the
screw respectively, and its norm is

∥∥$l

∥∥ =
√

$T
l $l =

√(
l · ST ST

0

) (
l · S S0

)T =
√

l2 · STS + ST
0 S0 =

√
l2 ‖S‖2 + ‖S0‖2.

The transformation matrix for screws24 is

H =
(

R 0
TR R

)
6×6

,

where R and T denote the rotation matrix and the translation matrix respectively. For pure rotation, T
= 0. After the transformation of pure rotation, the weighted scalar product of screws becomes $′T

l $′
l ,

which can be expressed as

$′T
l $′

l = (
H$l

)T
H$l = $T

l

(
RT 0
0 RT

)(
R 0
0 R

)
$l = $T

l $l .

Therefore ‖$′
l‖ = ‖$l‖.

Furthermore, MTM can be proved invariant to the transformation of pure rotation. Suppose M′ is
the screw matrix after the transformation of pure rotation.

M′ = [
H$1 H$2 . . . H$N

]
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Then,

M′TM′ =

⎡
⎢⎢⎢⎢⎣

$T
1 HT

$T
2 HT

...
$T

NHT

⎤
⎥⎥⎥⎥⎦

[
H$1 H$2 . . . H$N

] = MTM.

Note that the origin of the screw frame is artificially selected, and it may be set at other points
instead of the origin of the robotic tool frame. Nevertheless, it is reasonable to choose the point of
interest at the end-effector or moving platform as the origin of the screw frame, since this point is
vital in kinematics and dynamics analysis.

5. Characteristic Angles between Screw Submanifolds
Screws of an N order system (N ≤ 6) span an N dimensional manifold, if the N screws are
independent with each other; excluding the ith screw $i , the remaining screws span an N-1 dimensional
submanifold. And a screw $ni normal to this N-1 dimensional submanifold can be found in the entire
N dimensional manifold. When the angle between $i and $ni equals 90◦, it indicates that $i is linearly
dependent on the N-1 dimensional submanifold, and a singularity occurs. When the angle between
$i and $ni equals 0◦, it implies that $i is perpendicular to the N-1 dimensional submanifold and
the robot configuration is far away from singularities. Hence, this angle may be adapted to measure
closeness to singularities, which is named the characteristic angle between screw submanifolds. Note
that the calculation of the normal screw $ni and the characteristic angle refers to the weighted scalar
product which is not invariant to origin selection, and therefore the origin of the screw frame should
be artificially translated to the origin of the robotic tool frame; in this way, the characteristic angle is
definite.

The normal screw $ni belongs to the N dimensional manifold, and can be expressed as

$ni =
N∑

j=1

yj $j , (3)

where yj is the undetermined coefficient. According to the definition of the normal screw, the
following equation holds.

$T
ni$k = 0, where k = 1, 2, . . . , N and k �= i. (4)

By substituting Eq. (3) into Eq. (4) yields

N∑
j=1

yj $T
j $k = 0, where k = 1, 2, . . . , N and k �= i. (5)

From Eq. (3) the following equations hold:

∥∥$ni

∥∥2 =
N∑

j=1

N∑
p=1

yjyp$T
j $p, (6)

$T
ni$i =

N∑
j=1

yj $T
j $i . (7)
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By substituting Eq. (5) into Eq. (6) yields

∥∥$ni

∥∥2 =
N∑

j=1

yiyj $T
j $i . (8)

The characteristic angle between $ni and $i is expressed as

θi = arccos
$T

ni$i∥∥∥$T
ni

∥∥∥ ∥∥$i

∥∥ . (9)

By substituting Eqs. (7) and (8) into Eq. (9) yields

θi = arccos

√∑N
j=1 yj $T

j $i

√
yi

∥∥$i

∥∥ . (10)

Equation (5) can be rewritten in the following matrix form.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

$T
1 $1 $T

2 $1 · · · $T
i−1$1 $T

i $1 $T
i+1$1 · · · $T

N$1

$T
1 $2 $T

2 $2 · · · $T
i−1$2 $T

i $2 $T
i+1$2 · · · $T

N$2
...

...
. . .

...
...

...
...

...
$T

1 $i−1 $T
2 $i−1 · · · $T

i−1$i−1 $T
i $i−1 $T

i+1$i−1 · · · $T
N$i−1

0 0 · · · 0 1 0 · · · 0

$T
1 $i+1 $T

2 $i+1 · · · $T
i−1$i+1 $T

i $i+1 $T
i+1$i+1 · · · $T

N$i+1
...

...
...

...
...

...
. . .

...
$T

1 $N $T
2 $N · · · $T

i−1$N $T
i $N $T

i+1$N · · · $T
N$N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2
...

yi−1

yi

yi+1
...

yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
yi

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

According to Cramer’s rule, the variable yi can be used to represent other yk as

yk = Dk

D
, where k = 1, 2, . . . , N and k �= i, (12)

where D denotes the determinant of the N × N matrix in Eq. (11), and Dk denotes the determinant
of the N × N matrix whose kth column is replaced with the right side vector of Eq. (11). Suppose
MN denotes an N order screw matrix consisting of the N screws, and M(N−1)i denotes an N −1 order
screw matrix consisting of the N −1 screws without the ith screw. Thus, D can be expressed as

D = det
(
MT

(N−1)iM(N−1)i
)
. (13)

It can be proved that

N∑
j=1

Dj $T
j $i = yi det

(
MT

NMN

)
. (14)

By substituting Eqs. (12)–(14) into Eq. (10) yields

θi = arccos

√
det

(
MT

NMN

)
∥∥$i

∥∥√
det

(
MT

(N−1)iM(N−1)i
) . (15)
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Equation (15) indicates that, if a singularity occurs in the N order screw system, then θi = 90°,
since det

(
MT

NMN

) = 0. Note that there are N characteristic angles for an N order system, and the
largest angle can be chosen as the metric of closeness to singularities. The geometrical meaning of
the determinant of a screw matrix appears in Eq. (15) where the characteristic angle can merely be
expressed by two determinants.

Note that the characteristic angle expressed in Eq. (15) is dimensionless, which implies the
proposed metric is independent of screw magnitude. In other words, the result of the measurement is
invariant no matter whether the screws used in Eq. (15) are unit screws.

6. Screws for Measuring Closeness to Singularities
As for a serial robot, each joint twist is unique and definite; as for a parallel robot, the limb twists are
also definite for measuring closeness to kinematic singularities. When static singularities of a parallel
robot are taken into account, the constraint wrenches after locking actuators are definite only for the
limb with six-DOF; if the limb has five-DOF, these constraint wrenches are not uniquely definite.
This problem also arises in the Jacobian analysis for lower mobility parallel robots,25 and can be
solved as follows26: first the original constraint wrench of a limb before locking actuators is gained,
and then a new constraint wrench after locking an actuator in the limb is obtained, and finally this
new wrench is required to be orthogonal to the original constraint wrench. In this way, constraint
wrenches of a limb with five-DOF are uniquely determined. Note that the orthogonality of screws is
not invariant to origin selection,14,20 and the origin of the screw frame should be artificially set at the
origin of the robotic tool frame.

For an overconstrained parallel robot, there are common constraint wrenches between limbs, and
they are linearly dependent. Therefore it is meaningless to solve the characteristic angles among these
common constraint wrenches, and the base screws can be chosen arbitrarily in the submanifold of the
common wrenches. It only needs to calculate the angles between other wrenches and the normals to
the submanifolds containing these common wrenches.

7. Closeness to Singularities of Similar Mechanisms
The weighted factor l proposed in Section 3 can be regarded as a property of the mechanism at a
certain posture, which may be defined as the mean or maximum value of distances from the origin
of the screw frame to axes of all the revolute joints. Under this definition, this factor varies as the
mechanism moves to different configurations. Alternatively, the weighted factor l may be defined as
a constant, for example, the length of some link in the mechanism, or the height of the mechanism at
its initial configuration. Suppose there are two similar mechanisms as shown in Fig. 1, and the ratio
of similitude is α, which means the length ratio of the corresponding links in two mechanisms is α,
and the ratio of distances from the origins of two screw frames to the corresponding revolute joints
in two mechanisms is α, and the ratio of two weighted factors is also α.

Suppose $Ai and $Bi (i = 1, 2, . . ., N) denote the corresponding screws of two similar mechanisms
A and B respectively, and for each mechanism there are p (0 ≤ p ≤ N) screws whose real parts are
0. The remaining N − p screws with non-zero real parts are expressed as $Ai = ( lA · SAi S0Ai )T and
$Bi = ( lB · SBi S0Bi )T for the two similar mechanisms respectively, where lA and lB are the weighted
factors, and lA/ lB = α; SAi and SBi denote the real parts without weighted factors, and it is required
that SAi = SBi and ||SAi || = ||SBi || = 1 for simplification of deduction; S0Ai and S0Bi denote the dual
parts. Since S0Ai = rAi × SAi and S0Bi = rBi × SBi , where rAi and rBi denote distances from the
origins of two screw frames to the screw axes, rAi = αrBi , therefore S0Ai = αS0Bi , and furthermore,
$Ai = α$Bi .

Let MNA and MNB be the N order screw matrices of the two similar mechanisms, and then

det
(
MT

NAMNA

) = α2(N−p) det
(
MT

NBMNB

)
.

In the calculation of the characteristic angle, if the real part of the ith screw is 0, then the remaining
N − 1 order screw matrix still contains N−p screws with non-zero real parts, and therefore

det
(
MT

A(N−1)iMA(N−1)i
) = α2(N−p) det

(
MT

B(N−1)iMB(N−1)i
)
,

‖$Ai‖ = ‖$Bi‖ = 1. (16)
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Fig. 2. The three-UPU parallel robot.

Note that Eq. (16) is only used to simplify the deduction, and actually the characteristic angle is
independent of screw magnitude as interpreted in Section 5. According to Eq. (15), the closeness to
singularities of mechanism A can be expressed as

θAi = arccos

√
det

(
MT

ANMAN

)
‖$Ai‖

√
det

(
MT

A(N−1)iMA(N−1)i
) = arccos

√
det

(
MT

BNMBN

)
‖$Bi‖

√
det

(
MT

B(N−1)iMB(N−1)i
) .

If the real part of the ith screw is not 0, then the remaining N − 1 order screw matrix contains N − p
− 1 screws with non-zero real parts, and therefore

det
(
MT

A(N−1)iMA(N−1)i
) = α2(N−p−1) det

(
MT

B(N−1)iMB(N−1)i
)
,

‖$Ai‖ = α‖$Bi‖.

According to Eq. (15), the closeness to singularities of mechanism A can be expressed as

θAi = arccos

√
det

(
MT

ANMAN

)
‖$Ai‖

√
det

(
MT

A(N−1)iMA(N−1)i
) = arccos

√
det

(
MT

BNMBN

)
‖$Bi‖

√
det

(
MT

B(N−1)iMB(N−1)i
) .

Hence, no matter whether the real part of the ith screw is 0, the equation θAi = θBi holds, where
θBi denotes the closeness to singularities of mechanism B. It can be seen that the proposed metric
achieves the identical result for similar mechanisms with different sizes, which is an outstanding
feature compared with other existing metrics.

8. An Example
A three-UPU parallel robot is shown in Fig. 2, whose moving platform is connected to the base with
three limbs. Each limb consists of two universal joints and a prismatic joint equipped with an actuator.
The three universal joints on the base form an equilateral triangle with the side length 0.5m, and the
origin O of the base frame is at the center of this triangle. Similarly, the three universal joints on the
moving platform form an equilateral triangle with the side length 0.2m, and the origin P of the tool
frame is at the center of this triangle. Suppose the moving platform goes from point (0, 0, 1m) to
location (0, 0.4m, 1m) keeping with the constant horizontal posture, and the closeness to singularities
is measured during its motion.
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Fig. 3. Closeness to singularities of the three limbs and the moving platform.

Note that for the calculation of joint twists and limb wrenches, the origin of the screw frame should
be set at point P. The transformation matrix for screws is

H =
(

R 0
TR R

)
6×6

,

where R denotes the rotation matrix, and T denotes the translation matrix as follows.

T =
⎛
⎝0 tz −ty

−tz 0 tx
ty −tx 0

⎞
⎠ ,

where tx , ty and tz denote coordinates of point P described in the base frame along axes x, y and z
respectively.

Here the weighted factor l is defined as the height of the mechanism at its initial configuration,
i.e. l = 1m. According to Eq. (15), the curves of closeness to both kinematic singularities of the
three limbs and static singularities of the moving platform are obtained as shown in Fig. 3, where
the red solid curve, green dot-dash curve, and blue dashed curve stand for limbs one, two and three
respectively, and the brown dotted curve is for the moving platform. Note that the red solid curve
almost coincides with the green dot-dash curve. From Fig. 3 it can be found that at the initial location,
values of closeness to kinematic singularities of the three limbs are the same (about 45.5◦) since the
three-UPU parallel robot has a symmetrical structure at the initial location; furthermore, the value of
closeness to static singularities of the moving platform is 90◦ which indicates the robot is in a static
singular configuration at the initial location. In fact, the singularity of the three-UPU parallel robot is
related to the arrangement of the universal joints.27

Note that if a similar mechanism is half the size of the original mechanism, the height of the similar
mechanism at its initial configuration is also reduced to one half, and therefore the weighted factor
is l = 0.5m. According to Eq. (15), the closeness to singularities of the similar mechanism coincides
with that of the original one.

9. Conclusions
Singularities have a great influence on kinematics and dynamics of both serial and parallel robots. In
order to prevent the robot from entering singular configurations, it needs to measure the “distance”
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between the robot current configuration and the singular configuration. A novel metric based on
characteristic angles is presented in this paper to measure closeness to singularities. In this approach,
the characteristic angle of 90◦ indicates a singularity occurs, and the angle of 0◦ implies the robot
is far away from singularities. For the problem of inconsistent dimensions in the scalar product of
screws, the physical meanings of twists and wrenches are reinterpreted. For the problem of the metric
invariant to origin selection, the origin of the screw frame is required to coincide with the origin of
the robotic tool frame.

The major merit of the proposed metric lies in the identical result of measuring similar mechanisms
with different sizes. Moreover, the result is invariant no matter whether the screws used in calculation
are unit screws, since the metric expression is dimensionless. Furthermore, the geometrical meaning
of the determinant of a screw matrix is clarified in the formula of the characteristic angle, which can
merely be expressed by two determinants.
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