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Abstract For a state ω on a C∗-algebra A, we characterize all states ρ in the weak* closure of the set
of all states of the form ω ◦ ϕ, where ϕ is a map on A of the form ϕ(x) =

∑n
i=1 a

∗
i xai,

∑n
i=1 a

∗
i ai = 1

(ai ∈ A, n ∈ N). These are precisely the states ρ that satisfy ‖ρ|J‖ ≤ ‖ω|J‖ for each ideal J of A. The
corresponding question for normal states on a von Neumann algebra R (with the weak* closure replaced
by the norm closure) is also considered. All normal states of the form ω ◦ ψ, where ψ is a quantum channel
on R (that is, a map of the form ψ(x) =

∑
j a

∗
jxaj , where aj ∈ R are such that the sum

∑
j a

∗
jaj converge

to 1 in the weak operator topology) are characterized. A variant of this topic for hermitian functionals
instead of states is investigated. Maximally mixed states are shown to vanish on the strong radical of a
C∗-algebra and for properly infinite von Neumann algebras the converse also holds.
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1. Introduction

For two states ω and ρ on a C∗-algebra R, ρ is regarded to be unitarily more mixed
than ω if ρ is contained in the weak* closure of the convex hull of the unitary orbit of
ω. In [1, 2, 29], Alberti, Uhlmann and Wehrl studied the notion of maximally unitarily
mixed states on von Neumann algebras and such states were characterized by Alberti
in [1]. Recently, this topic has been revitalized in the broader context of C∗-algebras by
Archbold et al. [4], who proved among other things that the weak*closure of the set of
maximally unitarily mixed states on a C∗-algebra A is equal to the weak* closure of the
convex hull of tracial states and states that factor through simple traceless quotients of A.
However, the evolution of open quantum systems is not always unitary, but is described
by more general completely positive (trace preserving) maps of the form ω �→ ∑

aiωa
∗
i ,

say on the predual of B(H), so it seems worthwhile to study also a less restrictive notion
of when one state is more mixed than the other. The dual of such a map is a unital
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completely positive map of the form

x �→
∑

a∗i xai,
∑

a∗i ai = 1 (1.1)

on R = B(H). Let E(A) be the set of all unital completely positive maps on A of the form
(1.1), where ai ∈ A and the sums have only finitely many terms. A natural question in
this context is, when a state ρ on a C∗-algebra A (or a normal state on a von Neumann
algebra R) is in the weak* closure (or the norm closure) of the set ω ◦ E(A) of all states
of the form ω ◦ ψ, where ω is a fixed state (perhaps normal in the case of von Neumann
algebras) and ψ runs over the set E(A). In § 2, we show for normal states on a von
Neumann algebra R that ρ is in the norm closure of ω ◦ E(R) if and only if ρ and ω agree
on the centre of R. We also study the same topic for hermitian normal functionals on
R and provide an explicit normal mapping ψ in the point-weak* closure of E(R) such
that ρ = ω ◦ ψ. In the special case of R = B(H), hermitian normal functionals are just
hermitian trace class operators and maps mapping one such operator to another have
been constructed by Hsu et al. in [19] and by Li and Du in [21], but they do not study
the question if such maps are in the closure of E(B(H)).

For a normal state ω on a von Neumann algebra R ⊆ B(H) and a map φ of the form
(1.1), where ai ∈ R and the sums may have infinitely many terms (that is, φ is a quantum
channel) any state of the form ρ = ω ◦ φ has the following property: if ω̃ is a normal state
on B(H) that extends ω, then there is a normal state ρ̃ on B(H) that extends ρ such
that ρ̃ and ω̃ coincide on the commutant R′ of R (namely, ρ̃ = ω̃ ◦ φ̃, where φ̃ is the
map on B(H) given by the same formula as φ on R). This property holds in any faithful
normal representation of R on a Hilbert space H. In § 2, we will see that this property
characterizes states of the form ω ◦ φ, where φ runs over quantum channels on R.

Then, in § 3, we study the analogous topic for hermitian functionals ρ, ω on a unital
C∗-algebra A. If A has Hausdorff primitive spectrum, Theorem 3.1 shows that ρ is in
the weak* closure of ω ◦ E(A) if and only if ω and ρ agree on the centre of A and
‖cρ‖ ≤ ‖cω‖ for each positive element c in the centre of A. If the primitive spectrum of
A is not Hausdorff, this characterization is not true any more, but an alternative one is
given in Theorem 3.7.

For two states ω and ρ on a C∗-algebra A, ρ is regarded here to be more mixed than ω.
if ρ is contained in the weak* closure ω ◦ E(A) of the set ω ◦ E(A) := {ω ◦ ψ : ψ ∈ E(A)}.
Then, ω is called maximally mixed if for each state ρ on A the condition that ρ ∈ ω ◦ E(A)
implies that ω ∈ ρ ◦ E(A); in other words, ω ◦ E(A) is minimal among weak* closed E(A)-
invariant subsets of the set S(A) of all states on A. This is a coarser relation than the
one considered in the references mentioned above, where instead of E(A), only convex
combinations of unitary similarities are considered. In § 4, we show that each maximally
mixed state on a unital C∗-algebra A must annihilate the strong radical JA of A (= the
intersection of all two-sided maximal ideals of A) and, if A is a properly infinite von
Neumann algebra, the converse is also true. Furthermore, the set Sm(A) of all maximally
mixed states contains all states that annihilate some intersection of finitely many maximal
ideals of A and is therefore weak* dense in S(A/JA). These results are analogous to those
of [4] and [1] for unitarily maximally mixed states. For C∗-algebras with the Dixmier
property, the authors of [4] provided a more precise determination of maximally unitarily
mixed states than for general C∗-algebras. In our present context, the role of C∗-algebras
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with the Dixmier property can be played by weakly central C∗-algebras. For a weakly
central C∗-algebra A, we show that the set Sm(A) is weak* closed (and hence equal to
the set of all states that annihilate JA) if and only if each primitive ideal of A which
contains JA is maximal. States in Sm(R) for a general von Neumann algebra R are also
characterized.

Throughout the paper, an ideal means a norm closed two-sided ideal and all C ∗-algebras
are assumed to be unital unless explicitly stated otherwise.

2. The case of normal states on a von Neumann algebra

We denote by A� the dual of a Banach case A. In what follows A will usually be a C∗-
algebra. Throughout this article, R is a von Neumann algebra, R� its predual (that is, the
space of all weak* continuous linear functionals on R) and Z the centre of R. Basic facts
concerning von Neumann algebras, that will be used here without explicitly mentioning
a reference, can be found in [20, 28].

We will need a preliminary result of independent interest, which in the special case
(when, in the notation of Theorem 2.1, A = R and R is a factor or has a separable pre-
dual, and positivity was not considered), has been proved by Chatterjee and Smith [9].
We would like to avoid the separability assumption. In its proof, we will use the notion
of the minimal C∗-tensor product over Z of two C∗-algebras A and B both containing an
abelian W∗-algebra Z in their centres. This product A⊗Z B [6, 13, 22], can be defined
as the closure of the image of the algebraic tensor product A
Z B in ⊕t∈ΔA(t) ⊗B(t),
where Δ is the maximal ideal space of Z and, for each t ∈ Δ, A(t) denotes the quotient
C∗-algebra A/(tA), where tA is the closed ideal in A generated by t (and similarly for
B(t)). (If at least one of the algebras A, B is exact, which will be the case in our appli-
cation in the proof of Theorem 2.3, A⊗Z B coincides with the quotient of A⊗B by the
closed ideal generated by all elements of the form az ⊗ b− a⊗ zb (a ∈ A, b ∈ B, z ∈ Z)
[22, 3.12].)

Theorem 2.1. Let A be an injective von Neumann subalgebra of a von Neumann
algebra R containing the centre Z of R. Then, each completely contractive Z-module
map ψ : R → A is (as a map into R) in the point-weak* closure of the set consisting
of all maps of the form x �→ ∑n

i=1 a
∗
i xbi (x ∈ R), where n ∈ N and ai, bi ∈ R satisfy∑n

i=1 a
∗
i ai ≤ 1 and

∑n
i=1 b

∗
i bi ≤ 1. If in addition ψ is unital, then ψ is in the point-weak*

closure of E(R).

Proof. Let H be a Hilbert space such that R ⊆ B(H). It follows from [20, 5.5.4]
that there is a natural ∗-isomorphism ι from RR′ (the subalgebra of B(H) generated
by R∪R′) onto the algebraic tensor product R
Z R′, given by rr′ �→ r ⊗Z r′. By [6,
2.9], the tensor norm on R⊗ZR′ restricted to R
Z R′ is minimal among all C∗-tensor
norms on R
Z R′, hence the ∗-homomorphism ι extends uniquely to the norm closure
RR′. Since A is injective and commutes with R′ the multiplication μ0 : A⊗R′ → AR′ ⊆
B(H) is a completely contractive ∗-homomorphism [8, 9.3.3, 3.8.5]. But more is true: by
[13, 4.2], the natural map A
Z R′ → AR′ extends (uniquely) to a ∗-isomorphism A⊗Z
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R′ → AR′. It follows that the composition

B(H) ⊇ RR′ → R⊗ZR′ ψ⊗Z id−→ A⊗ZR′ ∼= AR′ ⊆ B(H)

is completely contractive and clearly, it is an R′-bimodule map, hence extending to such
a map φ on B(H) by the Wittstock extension theorem (see [30] or [7, 3.6.2]). By [11],
φ can be approximated in the point-weak* topology by a net of elementary complete
contractions of the form

x �→
∑
i

a∗i (k)xbi(k) = a(k)∗xb(k) (x ∈ B(H)) (2.1)

where a(k) = (a1(k), . . . , an(k))T and b(k) = (b1(k), . . . , bn(k))T are columns with the
entries ai(k), bi(k) ∈ R and

a∗(k)a(k) =
∑
i

a∗i (k)ai(k) ≤ 1, b∗(k)b(k) =
∑
i

b∗i (k)bi(k) ≤ 1. (2.2)

Thus, ψ (=φ|R) can also be approximated by such maps.
Assume now in addition that ψ is unital and consider a point-weak* approximation of

ψ of the form (2.1), (2.2). Since

0 ≤ (b(k) − a(k))∗(b(k) − a(k)) = b(k)∗b(k) + a(k)∗a(k) − a(k)∗b(k) − b(k)∗a(k)

≤ 2 − a(k)∗b(k) − b(k)∗a(k) → 2 − 2ψ(1) = 0,

it follows that b(k) − a(k) tends to 0 in the strong operator topology. Hence, ψ can be
approximated by maps of the form x �→ a(k)∗xa(k) in the point-weak* operator topology.
To see this, write

ψ(x) − a(k)∗xa(k) = (ψ(x) − a(k)∗xb(k)) + (a(k)∗x(b(k) − a(k)))

and note that ‖a(k)∗x(b(k) − a(k))ξ‖ ≤ ‖x‖‖(b(k) − a(k))ξ‖ for each vector ξ ∈ H.
Finally, as a(k)∗a(k) tends to ψ(1) = 1 in the strong operator topology, ψ can be
approximated by maps of the form

x �→ a(k)∗xa(k) +
√

1 − a(k)∗a(k)x
√

1 − a(k)∗a(k),

that is, by unital completely positive elementary maps. �

Lemma 2.2. Let ω and ρ be hermitian functionals on a C∗-algebra A such that
ρ|Z = ω|Z and ‖cρ‖ ≤ ‖cω‖ for all c ∈ Z+, where Z is the centre of A. Then, ρ+|Z ≤ ω+|Z
and ρ−|Z ≤ ω−|Z.

Thus, if Z is a von Neumann algebra, ω and ρ are normal and p+ and p− are the
support projections of ω+|Z and ω−|Z, then there exist elements c+ and c− in Z such
that 0 ≤ c+ ≤ p+, 0 ≤ c− ≤ p−,

ρ+|Z = c+ω+|Z, ρ−|Z = c−ω−|Z, and (p+ − c+)ω+|Z = (p− − c−)ω−|Z.
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Proof. For each c ∈ Z+ and θ ∈ (A�)+, we have that ‖cθ‖ = (cθ)(1) = θ(c) and it is
also well-known that for each hermitian functional σ the equality ‖σ‖ = σ+(1) + σ−(1) =
‖σ+‖ + ‖σ−‖ holds, hence

ρ+(c) + ρ−(c) = ‖cρ‖ ≤ ‖cω‖ = ω+(c) + ω−(c),

ρ+(c) − ρ−(c) = ρ(c) = ω(c) = ω+(c) − ω−(c).

Adding and subtracting these two relations, we find that ρ+(c) ≤ ω+(c) and ρ−(c) ≤
ω−(c) for all c ∈ Z+. If Z, ω, ρ, p+ and p− are as in the second part of the lemma,
we may regard Z as L∞(μ) for some positive measure μ and then the existence of
elements c+ and c− in Z satisfying 0 ≤ c+ ≤ p+, 0 ≤ c− ≤ p− and ρ+|Z = c+ω+|Z,
ρ−|Z = c−ω−|Z follows easily, so we will verify here only the last equality in the lemma.
The condition ρ|Z = ω|Z can be written as (c+ω+ − c−ω−)|Z = (ω+ − ω−)|Z, hence
(1 − c+)ω+|Z = (1 − c−)ω−|Z. But ω+ = p+ω+ and ω− = p−ω−, since p+ and p− are
the support projections of ω+|Z and ω−|Z, hence the required equality follows. �

By [17] or [27], each positive functional ω on R, such that ω|Z is weak* continuous,
can be uniquely expressed as

ω = (ω|Z) ◦ ωZ , (2.3)
where ωZ is a (completely) positive Z-module map from R to Z such that ωZ(1) is the
support projection q ∈ Z of ω|Z. If ω is weak* continuous, then so is also ωZ . Observe
that the support projections of ω and ωZ coincide, if ω is normal. (Indeed, for each
projection e ∈ R, we have 0 ≤ ωZ(e) ≤ ωZ(1) = q, hence ω(e) = (ω|Z)(ωZ(e)) = 0 if and
only if ωZ(e) = 0 since q is the support projection of ω|Z.)

Theorem 2.3. Let ω, ρ be normal hermitian functionals on R. There exists a normal
unital completely positive map ψ : R → R in the point-weak* closure of E(R) satisfying
ψ(1) = 1 and ψ�(ω) = ρ if and only if

ρ|Z = ω|Z and ‖cρ‖ ≤ ‖cω‖ ∀c ∈ Z+. (2.4)

Under this condition, ρ is in the norm closure of ω ◦ E(R).

Proof. Since maps in E(R) are unital and completely positive, they are also completely
contractive. Each map in E(R) is of the form ψ(x) =

∑n
i=1 a

∗
i xai, where ai ∈ R and∑n

i=1 a
∗
i ai = 1, hence weak* continuous and the corresponding map ψ� on the predual

R� of R is given by ψ�(ω) =
∑n
i=1 aiωa

∗
i and is a Z-module map with ‖ψ�‖ = ‖ψ‖ =

1. Hence ‖cψ�(ω)‖ = ‖ψ�(cω)‖ ≤ ‖cω‖ for each c ∈ Z. This means that the inequality
‖(cω) ◦ ψ‖ ≤ ‖cω‖ holds for all ψ ∈ E(R), hence also for all ψ in the point-weak* closure
of E(R) since cω is weak* continuous. If ψ is a weak* continuous such map and ρ = ψ�(ω),
then ‖cρ‖ = ‖(cω) ◦ ψ‖ ≤ ‖cω‖. Furthermore, since ψ|Z = id for each such map ψ, it
follows that ρ|Z = ω|Z for each ρ ∈ ω ◦ E(R).

Assume now that the condition (2.4) holds. Decompose each of the functionals
ω+, ω−, ρ+, ρ− as described in (2.3), so that

ω = (ω+|Z) ◦ ω+
Z − (ω−|Z) ◦ ω−

Z and ρ = (ρ+|Z) ◦ ρ+
Z − (ρ−|Z) ◦ ρ−Z ,

where ρ+
Z , ρ

−
Z , ω

+
Z , ω

−
Z are Z-module homomorphisms from R to Z such that p+ := ω+

Z (1)
and p− := ω−

Z (1) are the support projections of ω+|Z and ω−|Z. Let p+ and p− be the
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support projections of ω+ and ω−. Observe that p+ ≤ p+ and p− ≤ p−. (Namely, ω+

(1 − p+) = (ω+|Z)(1 − p+) = 0 implies that 1 − p+ ≤ 1 − p+, hence p+ ≤ p+.) By
Lemma 2.2, there exists c+, c− ∈ Z such that 0 ≤ c+ ≤ p+, 0 ≤ c− ≤ p−,

ρ+|Z = c+ω+|Z, ρ−|Z = c−ω−|Z and (p+ − c+)ω+|Z = (p− − c−)ω−|Z. (2.5)

When we first tried to find a map ψ satisfying the requirements of the theorem to be
of the form ψ = aρ+

Z + bρ−Z , where a, b ∈ R+, we found that it is not always possible to
simultaneously satisfy the conditions ψ(1) = 1 and ω ◦ ψ = ρ by maps of such a form.
But after several attempts we arrived to the following map:

ψ = c+p+ρ
+
Z + (1 − c+p+)(ρ−Z + (1 − p−)θ). (2.6)

Here, θ is any fixed normal positive unital Z-module map from R to Z. (Such a map
exists even on Z ′ ⊇ R since Z ′ is of type I, hence isomorphic to a direct sum of matrix
algebras of the form Mn(Z), where n can be infinite.) This map ψ is positive, weak*
continuous, Z-module map, with the range contained in the commutative C∗-algebra
generated by Z ∪ {p+}, hence completely positive. We can immediately verify that ψ is
also unital:

ψ(1) = c+p+ρ
+
Z(1) + (1 − c+p+)(ρ−Z(1) + 1 − p−) = c+p++(1 − c+p+)(p− + 1 − p−) = 1.

Now, we are going to compute

ψ�(ω) = ω ◦ ψ = (ω+|Z) ◦ ω+
Z ◦ ψ − (ω−|Z) ◦ ω−

Z ◦ ψ. (2.7)

For this, first observe that if f, g : R → Z are Z-module maps and a ∈ R, then
(f ◦ (ag))(x) = f(ag(x)) = f(a)g(x) = (f(a)g)(x), that is, f ◦ (ag) = f(a)g. Note also
that p+ρ+

Z = ρ+
Z and p−ρ−Z = ρ−Z since Lemma 2.2 implies that the support projection of

ρ+|Z is dominated by the support projection of ω+|Z and similarly for ρ−|Z and ω−|Z.
From the definition (2.6) of ψ and using that ω+

Z and ω−
Z are Z-module maps with ranges

contained in Z and mutually orthogonal support projections p+ and p− (which are just
the support projections of ω+ and ω−, respectively), we now compute

ω+
Z ◦ ψ = ω+

Z (c+p+)ρ+
Z + ω+

Z (1 − c+p+)(ρ−Z + (1 − p−)θ) (2.8)

= c+ρ
+
Z + (p+ − c+)(ρ−Z + (1 − p−)θ)

and similarly
ω−
Z ◦ ψ = ω−

Z (1 − c+p+)ρ−Z = p−ρ−Z = ρ−Z . (2.9)

From (2.7), (2.8) and (2.9) we have, using also (2.5) and (2.6),

ω ◦ ψ = (ω+|Z) ◦ [c+ρ+
Z + (p+ − c+)(ρ−Z + (1 − p−)θ)] − (ω−|Z) ◦ ρ−Z

= (c+ω+|Z) ◦ ρ+
Z + [(p+ − c+)ω+|Z] ◦ ρ−Z + [(p+ − c+)(1 − p−)ω+|Z] ◦ θ

− (ω−|Z) ◦ ρ−Z
= (ρ+|Z) ◦ ρ+

Z + [(p− − c−)ω−|Z] ◦ ρ−Z + [(1 − p−)(p− − c−)p−ω−|Z] ◦ θ
− (p−ω−|Z) ◦ ρ−Z

= ρ+−(c−ω−|Z) ◦ ρ−Z = ρ+−(ρ−|Z) ◦ ρ−Z = ρ+−ρ−=ρ.
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It follows from Theorem 2.1 that ψ is in the point-weak* closure of E(R). Thus, ρ = ω ◦ ψ
is in the weak closure of the convex set ω ◦ E(R), which is the same as the norm closure
by the Hahn–Banach theorem and the fact that R is the dual of R�. �

When ω and ρ are states, Theorem 2.3 simplifies to the following corollary:

Corollary 2.4. Let ω and ρ be normal states on R. There exists a normal unital
completely positive map ψ in the point-weak* closure of E(R) satisfying ψ�(ω) = ρ if and
only if ρ|Z = ω|Z. This condition is satisfied if and only if ‖cρ‖ ≤ ‖cω‖ for all c ∈ Z+.

Proof. By Theorem 2.3, we only need to verify that the condition ρ|Z = ω|Z implies
that ‖cρ‖ ≤ ‖cω‖ for all c ∈ Z+ and conversely. Since ω and ρ are positive, we have
‖cρ‖ = (cρ)(1) = ρ(c) and ω(c) = ‖cω‖ for all c ∈ Z+. If ‖cρ‖ ≤ ‖cω‖ for all c ∈ Z+, then
ρ(c) ≤ ω(c). Applying this to 1 − c instead of c, where 0 ≤ c ≤ 1, it follows that ρ(c) =
ω(c) for all such c. But such elements span Z, hence it follows that ρ|Z = ω|Z if and only
if ‖cρ‖ ≤ ‖cω‖ for all c ∈ Z+. �

It is well known that on R = B(H), all normal completely positive unital maps are of
the form

φ(x) =
∑
j∈J

a∗jxaj (x ∈ R), (2.10)

where J is some set of indexes and aj ∈ R are such that
∑
j∈J

a∗jaj = 1 with the con-
vergence in the strong operator topology. Maps on B(H) of the form (2.10) are called
quantum channels and we will use the same name for maps of such a form on a general
von Neumann algebra R. It is well known that on a general von Neumann algebra, not all
unital normal completely positive maps are of the form (2.10), so we still have to answer
the following question: If ω and ρ are normal states on a von Neumann algebra R, when
does there exist a quantum channel φ on R such that ω ◦ φ = ρ?

Theorem 2.5. For normal states ω and ρ on R, the following statements are
equivalent:

(i) There exists a quantum channel φ on R such that ω ◦ φ = ρ.

(ii) For every faithful normal representation π of R on a Hilbert space Hπ and any
normal state ω̃ on B(Hπ) that extends ω ◦ π−1, there exists a normal state ρ̃ on
B(Hπ) that extends ρ ◦ π−1 such that ω̃|π(R)′ = ρ̃|π(R)′.

(iii) For some faithful normal representation of R on a Hilbert space H, such that ω is
the restriction to R of a vector state ω̃ on B(H), there exists a normal state ρ̃ on
B(H) such that ρ̃|R = ρ and ρ̃|R′ = ω̃|R′.

(iv) Let πω be the GNS representation of R engendered by ω on a Hilbert space Hω and
let ξω be the corresponding cyclic vector. The state ρ annihilates the kernel of πω
and there exists a normal state ρ̃ on B(Hω) such that ρ̃|πω(R) is the state induced
by ρ on πω(R) ∼= R/ kerπω and ρ̃|πω(R)′ = ω̃|πω(R)′, where ω̃ is the vector state
x �→ 〈xξω, ξω〉 on B(Hω).
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Proof. (i)⇒(ii) If ρ = ω ◦ φ, where φ is of the form (2.10), then let ω̃ be any
state on B(Hπ) extending ω ◦ π−1, let φ̃ be the map on B(Hπ) defined by φ̃(x) =∑
j∈J

π(a∗j )xπ(aj) and set ρ̃ = ω̃ ◦ φ̃. Then, φ̃(x) = x for each x ∈ π(R)′, hence ρ̃|π(R)′ =
ω̃|π(R)′. Moreover, ρ̃ extends ρ ◦ π−1.

(ii)⇒(iii) Take for π a faithful normal representation on a Hilbert space H such that
ω is the restriction of a vector state ω̃ on B(H). (For example, R may be in the standard
form [28, Chapter IX] so that all normal states on R and R′ are vector states.) For
simplicity of notation, we may assume that R ⊆ B(H), that is, π = id. Then, with ρ̃ as
in (ii), we have ρ̃|R = ρ and ρ̃|R′ = ω̃|R′.

(iii)⇒(i) Assume that R is represented faithfully on a Hilbert space H such that ω is
the restriction of a vector state ω̃ on B(H) and that ρ̃ is a normal state on B(H) such
that ρ̃|R = ρ and ρ̃|R′ = ω̃|R′. Let ξ ∈ H be such that ω̃(x) = 〈xξ, ξ〉 (x ∈ B(H)). As a
normal state, ρ̃ is of the form

ρ̃(x) = 〈x(∞)η, η〉 (x ∈ B(H)),

where x(∞) denotes the direct sum of countably many copies of x acting on the direct sum
H∞ of countably many copies of H and η ∈ H∞. Now, from ω̃(x) = ρ̃(x) for all x ∈ R′,
we have

〈xξ, ξ〉 = 〈x(∞)η, η〉 (x ∈ (R′)).

Replacing x by x∗x, it follows that there exists an isometry u : [R′ξ] → [(R′)(∞)η] such
that uξ = η and uy = y(∞)u for all y ∈ R′. This u can be extended to a partial isometry
from H into H∞, denoted again by u, by declaring it to be 0 on the orthogonal com-
plement of [R′ξ] in H. Then, u intertwines the identity representation id of R′ and the
representation id∞ and, is therefore, a column (uj), where uj ∈ R. For r ∈ R, we have

ρ(r) = ρ̃(r) = 〈r(∞)η, η〉 = 〈r(∞)uξ, uξ〉 = 〈u∗r(∞)uξ, ξ〉 = ω(u∗r(∞)u).

Thus, ρ = ω ◦ ψ, where ψ is a map on R, defined by ψ(r) = u∗r(∞)u =
∑
j u

∗
jruj . This

map ψ is not necessarily unital, but from

ω(1) = 1 = ρ(1) = ω(ψ(1)) = ω

(∑
j

u∗juj

)
= ω(u∗u) and u∗u ≤ 1

we infer that 1 − u∗u ≤ 1 − p, where p is the support projection of ω. Hence, p ≤ u∗u
and we may replace ψ by the unital map φ defined by φ(r) = pψ(r)p+ (1 − p)r(1 − p),
which satisfies ω ◦ φ = ω ◦ ψ = ρ and has the required form:

ψ(r) =
∑
j

pu∗jrujp+ p⊥rp⊥, where
∑
j

pu∗jujp+ p⊥p⊥ = pu∗up+ p⊥ = 1.

The equivalence (i)⇔(iv) is proved by similar arguments and we will omit the details,
just note that R ∼= πω(R) ⊕ kerπω. �
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3. The case of C∗-algebras

In a general C∗-algebra A, there are usually not enough module homomorphisms of A
into its centre Z and even if Z = C1, there can be many ideals in A. Functionals on A
usually do not preserve ideals, hence can not be approximated by elementary operators.
Therefore, we will use for general C∗-algebras a different approach from that in the
previous section, not trying to construct an explicit map sending one state to another.
For C∗-algebras with Hausdorff primitive spectrum, the situation nevertheless resembles
the one for von Neumann algebras.

Theorem 3.1. Let ω, ρ be hermitian linear functionals on a C∗-algebra A with Haus-
dorff primitive spectrum Ǎ and centre Z. Then, ρ is in the weak* closure ω ◦ E(A) of
the set ω ◦ E(A) if and only if the following condition is satisfied: (A) ρ|Z = ω|Z and
‖cρ‖ ≤ ‖cω‖ for each c ∈ Z+.

Proof. To prove the non-trivial direction of the theorem, suppose that the condition
(A) is satisfied, but that ρ /∈ ω ◦ E(A). Then, by the Hahn–Banach theorem, there exist
h ∈ Ah and α, δ ∈ R, δ > 0, such that

ω(ψ(h)) ≤ α ∀ψ ∈ E(A) and ρ(h) ≥ α+ δ. (3.1)

Since ρ|Z = ω|Z, in particular ρ(1) = ω(1), we may replace h by h+ γ1 (and α with
α+ γω(1)) for a sufficiently large γ ∈ R and thus assume that h is positive in invertible.
Given ε > 0, let a ∈ Ah be such that

−1 ≤ a ≤ 1 and ω+(a) − ω−(a) = ω(a) > ‖ω‖ − ε = ω+(1) + ω−(1) − ε.

By a well-known argument, which we now recall, this implies the relations (3.2). Namely,
from the above, we have ω+(1 − a) < −ω−(1 + a) + ε and (since 1 − a ≥ 0 and 1 + a ≥ 0)
this implies that ω+(1 − a) < ε and ω−(1 + a) ≤ ε. Thus ω+(a+) ≥ ω+(a) > ω+(1) − ε
and ω−(a+) = ω−(1 + a) − ω−(1 − a−) ≤ ω−(1 + a) ≤ ε. In conclusion,

ω+(1 − a+) < ε and ω−(a+) ≤ ε. (3.2)

For each t ∈ Ǎ let m(t) and M(t) be the smallest and the largest point in the spectrum
σ(h(t)) of h(t) ∈ A/t. Since Ǎ is Hausdorff by assumption, the two functions M and m
(given by M(t) = ‖h(t)‖ and m(t) = ‖h(t)−1‖−1) are continuous [26, 4.4.5] and therefore
define elements of the centre Z of A by the Dauns–Hoffman theorem. Set

b = Ma++m(1 − a+).

For each t ∈ Ǎ, the spectrum of b(t) is σ(m(t)1 + (M(t) −m(t))a+(t)) and is contained
in m(t) + (M(t) −m(t))[0, 1] ⊆ [m(t), M(t)] since σ(a+(t)) ⊆ σ(a+) ⊆ [0, 1]. Thus, the
numerical range W (b(t)) of b(t) (which for normal elements coincides with the convex
hull of the spectrum) is contained in W (h(t)) = [m(t), M(t)]. Therefore, by [23, 4.1], b is
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in the norm closure of the set {ψ(h) : ψ ∈ E(A)}, hence

ω(b) ≤ α (3.3)

by the first relation in (3.1). On the other hand, we can estimate ω(b) as

ω(b) = ω+(Ma+) − ω−(Ma+) + ω+(m(1 − a+)) − ω−(m(1 − a+))

= ω+(M) − ω−(m) − ω+((M −m)(1 − a+)) − ω−((M −m)a+)

≥ ω+(M) − ω−(m) − ‖M −m‖(ω+(1 − a+) + ω−(a+))

(since 0 ≤ (M −m)(1 − a+) ≤ ‖M −m‖(1 − a+) and 0 ≤ (M −m)a+ ≤ ‖M −m‖a+)

≥ω+(M) − ω−(m) − 2‖M −m‖ε (by (3.2)).

Thus, by (3.1), (3.3) and since m ≤ h ≤M implies that ρ+(h) ≤ ρ+(M) and ρ−(h) ≥
ρ−(m), we have now

ω+(M) − ω−(m) − 2ε‖M −m‖ + δ ≤ ρ(h) = ρ+(h) − ρ−(h) ≤ ρ+(M) − ρ−(m).

This can be rewritten as

(ω+−ρ+)(M) ≤ (ω−−ρ−)(m) + 2ε‖M −m‖ − δ (3.4)

or (since ω|Z = ρ|Z implies that (ω− − ρ−)|Z = (ω+ − ρ+)|Z and since M, m ∈ Z)

(ω+−ρ+)(M −m) ≤ 2ε‖M −m‖ − δ.

Since this holds for all ε > 0, by choosing small enough ε, it follows that (ω+ − ρ+)
(M −m) < 0. But, Z �M −m ≥ 0 and ω+|Z ≥ ρ+|Z by Lemma 2.2, hence (ω+ − ρ+)
(M −m) ≥ 0, which is a contradiction. �

The following corollary can be proved in the same way as Corollary 2.4, so we will omit
the proof.

Corollary 3.2. If ω and ρ are states on a C∗-algebra A with Hausdorff primitive
spectrum, then ρ ∈ ω ◦ E(A) if and only if ρ|Z = ω|Z.

Before stating our main result in this section, we need a lemma. Recall that a projection
p in the centre of the universal von Neumann envelope R of a C∗-algebra A is called open
if there is an ideal J in A such that J = pR, where J is the weak* closure of J in R.

Lemma 3.3. Let R be the universal von Neumann envelope of a C∗-algebra A and Z
the centre of R. For each h ∈ A+, the central carrier Ch of h in R can be approximated
in norm by linear combinations of open central projections in R, where the coefficients
in each combination are positive.

Proof. By definition, the central carrier z of h is the infimum of all c in Z such
that h ≤ c. If Δ is the maximal ideal space of Z, then z corresponds (via the Gelfand
isomorphism) to the function Δ � t �→ ‖h(t)‖, where h(t) is the coset of h in R/tR.
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(This function is continuous by [14].) Thus, we will regard z as a function on Δ. Let
[m, M ] be an interval containing the range of z, where m ≥ 0 and M = ‖h‖ = ‖z‖. Given
a ∈ A+, the set U = {t ∈ δ : a(t) �= 0} is open since the function Δ � t �→ ‖a(t)‖ ∈ R

is continuous. The weak* closure of the ideal generated by a in R is of the form pR
for a unique projection p ∈ Z and p is open by definition. Since the quotient algebras
R/tR have only scalars in their centres, p(t) = 1 for each t ∈ U , hence also for each
t ∈ U by continuity, so p ≥ q, where q ∈ Z is the projection that corresponds to the
characteristic function of U . But from the definition of U , we see that qa = a and this
implies that qb = b for each b in the ideal generated by a. Hence, qp = p and it follows
that q = p. In particular, for each r ∈ R+ the projection that corresponds to the closure of
the set Ur = {t ∈ Δ : z(t) > r} is open since Ur is just the set {t ∈ Δ : a(t) �= 0}, where
a = (h− r)+. (This has been observed already by Halpern in [18, proof of Lemma 6].)
Given ε > 0, for each k ∈ N let pk be the projection corresponding to the closure of the
set Uk = {t ∈ Δ : z(t) > M − kε}. Then, 0 = p0 ≤ p1 ≤ p2 ≤ . . . ≤ pn = 1, where n ∈ N

is such that M − nε < m and M − (n− 1)ε ≥ m. Now, from 1 = (p1 − p0) + (p2 − p1) +
. . .+ (pn − pn−1), we have that Fk := Uk \ Uk−1 are disjoint closed and open sets that
cover Δ and for t ∈ Fk, we have that M − kε ≤ z(t) ≤M − (k − 1)ε. Thus, if we choose
in each interval [M − kε, M − (k − 1)ε] a point λk ≥ 0 and set c :=

∑n
k=1 λk(pk − pk−1),

it follows that ‖z − c‖ ≤ ε. Finally, observe that

c = (λ1 − λ2)p1 + (λ2 − λ3)p2 + . . .+ (λn−1 − λn)pn−1 + λnpn

is a linear combination with positive coefficients of open projections. �

The following theorem is a special case of Theorem 3.7, but it is used in the proof of
that theorem.

Theorem 3.4. Let ω and ρ be states on a C∗-algebra A. Then, ρ is in the weak* closure
ω ◦ E(A) of the set ω ◦ E(A) = {ω ◦ ψ : ψ ∈ E(A)}, where E(A) is the set of all unital
completely positive elementary complete contractions on A, if and only if ‖ρ|J‖ ≤ ‖ω|J‖
for each ideal J of A.

Proof. Evidently, ρ ∈ ω ◦ E(A) implies that ‖ρ|J‖ ≤ ‖ω|J‖ for each ideal J in A since
maps in E(A) are contractive and preserve ideals. For the converse, suppose that ρ /∈
ω ◦ E(A). Then, by the Hahn–Banach theorem there exist h ∈ Ah and α ∈ R such that
(3.1) holds, that is ω(ψ(h)) ≤ α for all ψ ∈ E(A), while ρ(h) > α. Replacing h by h+ β1
for a sufficiently large β ∈ R (and consequently α by α+ β), we may assume that h is
positive.

Let R be the universal von Neumann envelope of A and denote the unique weak*
continuous extensions of ω and ρ to R by the same two letters. We will use the same
notation as in the proof of Lemma 3.3. Thus, z is the infimum of all c in Z such that h ≤ c.
Since W (z(t)1) = {z(t)} ⊆W (h(t)) for each t ∈ Δ, it follows by [23, 3.3] that z ∈ coR(h)
(= the weak* closure of the R-convex hull of h), hence by the first relation in (3.1)

ω(z) ≤ α, (3.5)

since each map ψ of the form x �→ ∑
i b

∗
i xbi (bi ∈ R,

∑
i b

∗
i bi = 1) can be approximated

by maps of the form x �→ ∑
i a

∗
i xai (ai ∈ A,

∑
i a

∗
i ai = 1). (This follows by using the
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Kaplansky density theorem in Mn(R) to approximate the column b = (b1, . . . , bn)T by
(a1, . . . , an)T .) Since ω and ρ are states, the hypothesis ‖ρ|J‖ ≤ ‖ω|J‖ for each ideal J
in A means that ρ(p) ≤ ω(p) for each open projection p ∈ Z. Then, it follows by Lemma
3.3 that ρ(z) ≤ ω(z). But from h ≤ z and using (3.5), we have now that ρ(h) ≤ ρ(z) ≤
ω(z) ≤ α, which is in contradiction with the previously established relation ρ(h) > α. �

The naive attempt to generalize Theorem 3.4 to hermitian functionals fails, as shown
by the following example. The example also shows that the assumption in Theorem 3.1,
that A has Hausdorff primitive spectrum, is not redundant and that in Theorem 2.3 the
normality of ω and ρ is not redundant.

Example 3.5. For a separable Hilbert space H, let ω1 be a normal and ω2 a singular
state on B(H), ρ1 and ρ2 positive normal functionals on B(H) with orthogonal supports
such that ρ1(1) = 1

2 = ρ2(1). Set ω = ω1 − ω2 and ρ = ρ1 − ρ2. Then, ρ(1) = 0 = ω(1),
‖ρ‖ = ρ1(1) + ρ2(1) = 1 = ω1(1) ≤ ‖ω‖. Since ρ1, ρ2 and ω1 are normal, while ω2 is sin-
gular (which means that ω2 annihilates the ideal K(H) of all compact operators on
H), we have ‖ρ|K(H)‖ = ‖ρ‖ = ρ1(1) + ρ2(1) = ω1(1) = ‖ω1|K(H)‖ = ‖ω|K(H)‖ ≤ ‖ω‖.
Thus, ‖ρ|J‖ ≤ ‖ω|J‖ for each ideal J of B(H) and ω and ρ agree on the centre C1 of B(H).
But nevertheless, ρ /∈ ω ◦ E(B(H)) since on K(H) all elements of ω ◦ E(B(H)) act as ele-
ments of ω1 ◦ E(B(H))|K(H) and are therefore positive, while ρ|K(H) = (ρ1 − ρ2)|K(H)
is not positive.

To generalize Theorem 3.4 to hermitian functionals, we need a lemma.

Lemma 3.6. For each hermitian functional ω on a C∗-algebra A, we have

ω ◦ E(A) = ω+◦E(A) − ω−◦E(A).

Proof. Suppose that ρ ∈ ω ◦ E(A) and let (ψk) be a net in E(A) such that ρ(a) =
limk ω(ψk(a)) for all a ∈ A. Extend ω, ρ and each ψk weak* continuously to the universal
von Neumann envelope R of A and denote the extensions by the same symbols. Let ψ
be a weak* limit point of the net (ψk) and note that ψ is a unital completely positive
(hence contractive) module map over the centre Z of R. Set ρ1 = ω+ ◦ ψ|A and ρ2 =
ω− ◦ ψ|A. Then ρ1 ∈ ω+ ◦ E(A), ρ2 ∈ ω− ◦ E(A) and ρ = ω ◦ ψ|A = ρ1 − ρ2. This proves
the inclusion ω ◦ E(A) ⊆ ω+ ◦ E(A) − ω− ◦ E(A).

To prove the reverse inclusion, suppose that ρ1 ∈ ω+ ◦ E(A) and ρ2 ∈ ω− ◦ E(A). Then,
there exist nets of maps φk and ψk in E(A) such that ρ1 = limk ω+ ◦ φk and ρ2 = limk ω− ◦
ψk. Let p and q be the support projections in R of ω+ and ω− (where ω+ and ω− have
been weak* continuously extended to R). Let (an) be a net of positive contractions in A
strongly converging to p in R, set bn =

√
1 − a2

n and define maps φk,n and ψk,n on A by

φk,n(x) = anφk(x)an and ψk,n(x) = bnψk(x)bn.

The nets (ω+(b2n)) = (ω+(1 − a2
n)) and (ω−(a2

n)) = (ω−(1 − b2n)) all converge to 0. From
this, we will verify in the following by using the Cauchy–Schwarz inequality for
positive functionals that limk,n ω+ ◦ φk,n = ρ1, limk,n ω− ◦ ψk,n = ρ2, limk,n ω+ ◦ ψk,n =
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0 and limk,n ω− ◦ φk,n = 0 pointwise on A, hence

ρ := ρ1 − ρ2 = lim
k,n

[(ω+−ω−) ◦ (φk,n + ψk,n)] = lim
k,n

ω ◦ θk,n,

where θk,n := φk,n + ψk,n. Evidently each θk,n is elementary completely positive map and
also unital since θk,n(1) = anφk(1)an + bnψk(1)bn = a2

n + b2n = 1. Thus, ρ ∈ ω ◦ E(A),
verifying the inclusion ω ◦ E(A) ⊇ ω+ ◦ E(A) − ω− ◦ E(A). Now, we will verify that
limk,n ω+φk,n = ρ1, the verification of the other three limits that we have used is similar.
For each x ∈ A, we estimate

|ρ1(x) − ω+(φk,n(x))| = |ρ1(x) − ω+(anφk(x)an)|
≤ |ρ1(x) − ω+(φk(x))| + |ω+((1 − an)φk(x))|

+ |ω+(anφk(x)(1 − an))|
≤ |ρ1(x) − ω+(φk(x))| + ω+((1 − an)2)1/2ω+(φk(x)∗φk(x))1/2

+ ω+(φk(x)∗a2
nφk(x))

1/2ω+((1 − an)2)1/2

≤ |ρ1(x) − ω+(φk(x))| + 2ω+((1 − an)2)1/2‖ω+‖1/2‖x‖.

Both terms in the last line of the above expression converge to 0. �

Theorem 3.7. Let ω and ρ be hermitian functionals on a C∗-algebra A. Then ρ ∈
ω ◦ E(A) if and only if there exist positive functionals ρ1 and ρ2 on A satisfying the
following condition:

(B) ρ = ρ1 − ρ2, ρ1(1) = ω+(1), ρ2(1) = ω−(1), ‖ρ1|J‖ ≤ ‖ω+|J‖ and ‖ρ2|J‖ ≤ ‖ω−|J‖
for all ideals J in A.

(In particular ‖ρ|J‖ ≤ ‖ω|J‖.) If ω is positive, then the condition (B) simplifies to
ρ(1) = ω(1) and ‖ρ|J‖ ≤ ‖ω|J‖ for all ideals J .

Proof. Suppose that ρ ∈ ω ◦ E(A). Using the notation introduced in the first part of
the proof of Lemma 3.6, we have observed that the map ψ on R introduced in that proof is
a contractive unital Z-bimodule map. Thus, for any ideal J in A, if p ∈ Z is the projection
satisfying J = pR, then ψ(J) = ψ(pR) = pψ(R) ⊆ J . Since ω (and hence also ω+ and
ω−) are weak* continuous on R, we have ‖ω+|J‖ = ‖ω+|J‖ and ‖ω−|J‖ = ‖ω−|J‖. With
ρ1 = ω+ ◦ ψ|A and ρ2 = ω− ◦ ψ|A (as in the proof of Lemma 3.6), we have ρ = ρ1 − ρ2,
ρ1(1) = ω+(1), ρ2(1) = ω−(1),

‖ρ1|J‖ ≤ ‖ω+◦ψ|J‖ ≤ ‖ω+|J‖ = ‖ω+|J‖

and similarly ‖ρ2|J‖ ≤ ‖ω−|J‖. Therefore, also

‖ρ|J‖ = ‖ρ1|J − ρ2|J‖ ≤ ‖ρ1|J‖ + ‖ρ2|J‖ ≤ ‖ω+|J‖ + ‖ω−|J‖ = ‖ω|J‖.

Conversely, assume the existence of positive functionals ρ1 and ρ2 onA satisfying the norm
inequalities in condition (B). Then, by Theorem 3.4 ρ1 ∈ ω+ ◦ E(A) and ρ2 ∈ ω− ◦ E(A),
hence by Lemma 3.6 ρ ∈ ω ◦ E(A). �
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4. Maximally mixed states

For functionals ω and ρ on a C∗-algebra A let us say that ρ is more mixed than ω
if ρ ∈ ω ◦ E(A) (where the bar denotes weak* closure). Applying Zorn’s lemma to the
family of all weak* closed E(A)-invariant subsets of ω ◦ E(A) we see that in ω ◦ E(A),
there exist minimal E(A)-invariant compact non-empty subsets, which are evidently of the
form ρ ◦ E(A) for some ρ and such ρ are called maximally mixed. Thus, a functional ω is
maximally mixed if ρ ∈ ω ◦ E(A) implies that ω ∈ ρ ◦ E(A). If A has Hausdorff primitive
spectrum, Corollary 3.2 implies that all states on A are maximally mixed. The same
conclusion holds for liminal C∗-algebras.

Corollary 4.1. On a liminal C∗-algebra A every state ω is maximally mixed.

Proof. If ρ ∈ ω ◦ E(A), then by Theorem 3.4 ‖ρ|J‖ ≤ ‖ω|J‖ for each ideal J in A.
Denoting by p the projection in R := A�� such that J = pR, this means that ρ(p) ≤ ω(p)
for each open central projection p, where ω and ρ have been weak* continuously extended
to R. Since A is liminal, such projections are strongly dense in the set of all central
projections by [10], hence it follows that ρ(p⊥) ≤ ω(p⊥). Since ρ(p) + ρ(p⊥ = ρ(1) = 1 =
ω(1) = ω(p) + ω(p⊥), we conclude that ρ(p) = ω(p), that is ‖ρ|J‖ = ‖ω|J‖. By Theorem
3.4, this implies that ω ∈ ρ ◦ E(A). �

Perhaps, the simplest C∗-algebras on which not all states are maximally mixed are
C∗-algebras that have only one maximal ideal and this ideal is not 0.

Example 4.2. Suppose that a unital C∗-algebra A has only one maximal ideal M
(for example, A may be simple or a factor). Then, a state ω on A is maximally mixed if
and only if ω|M = 0.

Proof. Suppose that ω|M = 0 and let ρ ∈ ω ◦ E(A). Then, ρ|M=0, hence also ρ(J)=0
for each proper ideal J of A since J ⊆M . Thus, ‖ω|J‖ = ‖ρ|J‖ for each ideal J of A, so
ω ∈ ρ ◦ E(A) by Theorem 3.4.

Suppose now that ω|M �= 0. Let ρ be any state on A such that ρ|M = 0. Then
‖ρ|J‖ ≤ ‖ω|J‖ for all ideals J , hence ρ ∈ ω ◦ E(A) by Theorem 3.4. But ω /∈ ρ ◦ E(A) since
ρ|M = 0 and ω|M �= 0, thus ω is not maximally mixed. �

Remark 4.3. If K is an ideal of A, each state ω on A satisfying ω(K) = 0 may be
regarded as a state on A/K, say ω̇. Note that ω̇ is maximally mixed on A/K if and only
if ω is maximally mixed on A. Indeed, denoting by q : A→ A/K the natural map, q(J) is
an ideal in A/K for each ideal J in A and all ideals in A/K are of such a form. Moreover,
‖ω|J‖ = ‖ω̇|q(J)‖, hence the claim follows from Theorem 3.4.

Example 4.2 is generalized in Theorem 4.4. The proof of Theorem 4.4 is inspired by an
idea from [4, 3.10], but we will avoid using a background result from [5], that is used in
[4, 3.10], and present a short self-contained proof. Recall that the strong radical JA of A
is the intersection of all maximal ideals in A.
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Theorem 4.4. (i) ω(JA) = 0 for each maximally mixed state ω on A.

(ii) If a state ω on A annihilates some intersection M1 ∩M2 ∩ . . . ∩Mn of finitely many
maximal ideals in A, then ω is maximally mixed.

Thus, the set Sm(A) of maximally mixed states on A is a weak* dense subset of
S(A/JA) (= the set of states on A that annihilate JA).

Proof. (i) Let D = S(A/JA) and ω a maximally mixed state on A. Suppose that
ω /∈ D. Then, ω ◦ E(A) ∩D = ∅, otherwise this intersection would be a weak* closed
proper E(A)-invariant subset of ω ◦ E(A), which would contradict the fact that ω
is maximally mixed. Thus, by the Hahn–Banach theorem, there exist α, β ∈ R and
h ∈ Ah such that

ρ(h) ≤ α ∀ρ ∈ D and ω(ψ(h)) ≥ β > α ∀ψ ∈ E(A). (4.1)

Replacing h by h+ γ1 for a sufficiently large γ ∈ R+ (and modifying α, β), we may
assume that h is positive. Then, the first relation in (4.1) means that ‖ḣ‖ ≤ α,
where ḣ denotes the coset of h in A/JA. The (algebraic) numerical range WA/JA

(h)
of ḣ is an interval, say [c, d], contained in the numerical range WA(h) of h, which is
an interval, say [a, b]; note that a ≤ c ≤ d = ‖ḣ‖ ≤ b = ‖h‖. Let f : [a, b] → [c, d]
be the function, which act as the identity on [c, d], and maps [a, c] into {c} and
[d, b] into {d}. For every proper ideal K in A the quotient A/(K + JA) is non-zero,
for K is contained in a maximal ideal M and hence K + JA ⊆M + JA = M �= A.
Since WA/(K+JA)(h) ⊆WA/K(h) ∩WA/JA

(h), this intersection is not empty, hence
the interval WA/K(h) intersects [c, d] and is therefore mapped by f into itself. The
numerical range WA/K(f(h)) of the coset of f(h) in A/K is just the convex hull
of the spectrum σA/K(f(h)) = f(σA/K(h), hence WA/K(f(h)) ⊆ f(WA/K(h)) ⊆
WA/K(h). This inclusion implies that f(h) ∈ E(A)(h) by [23], hence ω(f(h)) > α
by the second relation in (4.1). Since ω is a state, it follows that WA(f(h)) inter-
sects (α, ∞). But this is a contradiction since WA(f(h)) is the convex hull of the
spectrum σA(f(h)) = f(σA(h)) ⊆ [c, d] = [c, ‖ḣ‖] ⊆ [c, α]. Thus, ω ∈ D.

(ii) By the Chinese remainder theorem [15, 6.3], there is a natural isomorphism A/ ∩nj=1

Mj
∼= ⊕nj=1A/Mj , thus we may regard ω as a state on ⊕nj=1A/Mj . Since the algebras

A/Mj are simple, all states on them are maximally mixed by Example 4.2. The same
then holds for their direct sum, so all states on A/ ∩nj=1 Mj are maximally mixed
and (ii) follows by Remark 4.3.

The set of all states that annihilate some finite intersection of maximal ideals of A is
convex and norming for A/JA (since the natural map A/JA → ⊕MA/M , where the sum
is over all maximal ideals in A, is a monomorphism, thus isometric), hence weak* dense
in S(A/JA) [20, 4.3.9]. �

Remark 4.5. A similar argument as in [4, 3.2] shows that the set Sm(A) of all
maximally mixed states on a C∗-algebra A is always norm closed.

Recall that a C∗-algebra A is weakly central if different maximal ideals of A have
different intersections with the centre Z of A.
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Theorem 4.6. If the set Sm(A) of all maximally mixed states is weak* closed (which
by Theorem 4.4 just means that Sm(A) = S(A/JA)), then each primitive ideal of A
containing JA is maximal. If A is weakly central, then the converse also holds: if each
primitive ideal containing JA is maximal, then Sm(A) = S(A/JA).

Proof. By Remark 4.3 a state ω on A/JA is maximally mixed if and only if it is
maximally mixed on A. By [3, 3.10], the quotients of weakly central C∗-algebras are
weakly central, so in particular A/JA is weakly central. In this way, we reduce the proof
to the algebra A/JA (instead of A), which has strong radical 0. Thus, we may assume
that JA = 0.

Suppose now that Sm(A) = S(A). Then, Sm(A/P ) = S(A/P ) for each primitive ideal
P of A by Remark 4.3. If M is a maximal ideal of A containing P , then A/M is a
quotient of A/P , hence each state ρ ∈ S(A/M) can be regarded as a state on A/P and
therefore can be weak* approximated by convex combinations of vector states on A/P ,
where A/P has been faithfully represented on a Hilbert space. Since A/P is primitive,
as a consequence of the Kadison transitivity theorem, each vector state is of the form
x �→ θ(u∗xu) for a fixed state θ on A/P with θ(M/P ) �= 0, where u ∈ A/P is unitary
[20, 5.4.5]. Thus, ρ ∈ θ ◦ E(A/P ). But ρ(M/P ) = 0, while θ(M/P ) �= 0 if M �= P , hence
θ /∈ ρ ◦ E(A/P ) if M �= P . Thus, ρ can not be maximally mixed (on A/P and hence also
on A) if P is not maximal. This argument, which we have found in [4, proof of 3.15],
shows that in general the equality Sm(A) = S(A) can hold only if all primitive ideals
containing JA are maximal. If A is weakly central and by our reduction above JA = 0,
then the assumption that all primitive ideals are maximal implies that the primitive
spectrum Ǎ of A is homeomorphic to the maximal ideal space Δ of Z (via the map
Ǎ �M �→M ∩ Z ∈ Δ). Thus, Ǎ is Hausdorff and in this case, Corollary 3.2 shows that
all states on A are maximally mixed. �

It is well known that each W∗-algebra R is weakly central. If R is properly infinite,
each primitive ideal P containing JR is maximal. (Namely, by [16, 2.3] or [20, 8.7.21], the
ideal M := P + JR ⊇ R(P ∩ Z) + JR is maximal, and M = P if P ⊇ JR.) So, we can
state the following corollary.

Corollary 4.7. In a properly infinite von Neumann algebra R maximally mixed states
are just the states that annihilate the strong radical JR.

If R is finite, primitive ideals are not necessarily maximal. (By [17, 4.7], any ideal Rt,
where t is a maximal ideal of the centre of R, is primitive, while using the central trace,
one can show that not all such ideals are maximal in R = ⊕nMn(C), for example.) Thus,
the set of maximally mixed states on R is not weak* closed.

Throughout the rest of the paper R is a W ∗-algebra, Z its centre and Δ the maximal
ideal space of Z. For each t ∈ Δ let Mt be the unique maximal ideal of R that contains
t [20, 8.7.15]). Note that φ(Rt) = φ(R)t ⊆ t for each Z-module map φ : R → Z.

To prove that tracial states are maximally mixed, we need a lemma.

Lemma 4.8. A bounded Z-module map φ : R → Z ⊆ R preserves all ideals of R
if and only if φ(Mt) ⊆ t for each t ∈ Δ. If R is properly infinite, this is equivalent to
φ(JR) = 0.
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Proof. Let J be an ideal in R and K = J ∩ Z. As an ideal in Z, K can be identified
with the set of all continuous functions on Δ than vanish on some closed subset ΔK

of Δ, hence K is the intersection of a family {t : t ∈ ΔK} of maximal ideals of Z. By
[20, 8.7.15], there exists the largest ideal J(K) in R such that J(K) ∩ Z = K, and it
follows from [20, 8.7.16] that J(K) = ∩t∈ΔK

Mt. Now J ∩ Z = K implies that J ⊆ J(K).
Thus, if φ has the property that φ(Mt) ⊆ t for all t ∈ Δ, then φ(J) ⊆ φ(J(K)) ⊆
∩t∈ΔK

φ(Mt) ⊆ ∩t∈ΔK
t = K ⊆ J .

If R is properly infinite, then Mt = Rt+ JR for each t ∈ Δ by [20, 8.7.21 (1)]. Thus,
if φ(JR) = 0, then we have φ(Mt) = φ(R)t ⊆ t for all t ∈ Δ. Conversely, if φ(Mt) ⊆ t for
all t, then φ(JR) = φ(∩t∈ΔMt) ⊆ ∩t∈Δt = 0. �

Corollary 4.9. A unital positive Z-module map φ : R → Z ⊆ R is in the point-norm
closure of elementary such maps (that is, φ ∈ E(R)

p.n.
) if and only if φ(Mt) ⊆ t for each

t ∈ Δ.

Proof. By [24, 2.2] and [25, 2.1] each completely contractive map φ : R → Z ⊆ R
which preserves all ideals of R is in the point-norm closure of maps of the form x �→ a∗xb =∑n
j=1 a

∗
jxbj , where n ∈ N, aj , bj ∈ R, a := (a1, . . . , an)T , b := (b1, . . . , bn), ‖a‖ ≤ 1 and

‖b‖ ≤ 1. If φ is unital, then we can modify such maps to unital maps in the same way as
in the proof of Theorem 2.1, which shows that φ ∈ E(R)

p.n.
. �

Corollary 4.10. Let ω be a state of the form ω = μ ◦ φ, where μ = ω|Z and φ : R → Z
is a unital positive Z-module map. If φ(Mt) ⊆ t for each t ∈ Δ, then ω is maximally
mixed. In particular, tracial states are maximally mixed.

Proof. Suppose that ρ ∈ ω ◦ E(R). Then, ρ|Z = ω|Z = μ, hence

ω = μ ◦ φ = (ρ|Z) ◦ φ = ρ ◦ φ.
By Corollary 4.9 φ can be approximated in the point-norm topology by a net of maps
φk ∈ E(R)

p.n.
. Then, ω(x) = limk(ρ(φk(x))) for all x ∈ R. This shows that ω ∈ ρ ◦ E(R),

so ω is maximally mixed.
Any tracial state ω annihilates the properly infinite part of R, hence we assume that

R is finite. Then, ω = (ω|Z) ◦ τ , where τ is the central trace on R [20, 8.3.10]. Since
Mt is of the form Mt = {a ∈ R : τ(a∗a) ∈ t} by [20, 8.7.17], for a ∈Mt, we have by the
Schwarz inequality τ(a)∗τ(a) ≤ τ(a∗a) ∈ t. This implies that τ(a) ∈ t. Thus, τ(Mt) ⊆ t,
hence ω is maximally mixed by the first part of the corollary. �

Are all maximally mixed states on W∗-algebras of the form specified in Corollary 4.10?
Not quite. To investigate this, we still need some preparation.

Lemma 4.11. For each state ω on R there exists a positive Z-module map φ : R → Z
such that ω = (ω|Z) ◦ φ and p := φ(1) is a projection with ω(p) = 1.

Proof. Let Φ be the universal representation of R, so that R�� is the weak* closure of
Φ(R). Then, the ∗-homomorphism Φ−1 : Φ(R) → R can be weak* continuously extended
to a ∗-homomorphism Ψ : R�� → R; set ω̃ = ω ◦ Ψ [20, 10.1.1, 10.1.12]. Let Z̃ be the
centre of R��. Since ω̃ is weak* continuous, by [17] or [27, 1.4], there exists a unique
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Z̃-module homomorphism ψ : R�� → Z̃ such that ω̃ = (ω̃|Z̃) ◦ ψ and ψ(1) is the support
projection q of ω̃|Z̃. It is not hard to verify that φ := (Ψ|Z̃) ◦ ψ ◦ Φ has the properties
stated in the lemma. �

Let ω be a state on R, μ = ω|Z and let φ, p be as in Lemma 4.11, so that ω = μ ◦ φ.
Let J be an ideal of R and K = J ∩ Z. Let (ek) and (fl) be approximate units in J and
K (respectively). Then

‖ω|K‖ = ‖μ|K‖ = lim
l
μ(fl) and ‖ω|J‖ = lim

k
μ(φ(ek)). (4.2)

We may regard (fl) and (φ(ek)) as two bounded increasing nets in the positive part
of the unit ball of C(Δ) (∼= Z), hence they converge pointwise to some lower semi-
continuous functions f and g (respectively) on Δ. The ideal K of C(Δ) is of the
form K = {a ∈ C(Δ) : a|Δc

K = 0} for some open subset ΔK of Δ and since (fl) is an
approximate unit for K, it follows that f is just the indicator function χΔK

of ΔK .
Let Δp be the clopen subset of Δ that correspond to the projection p = φ(1) (that is,
p = χΔp

, the indicator function of Δp). Since fl ∈ J and (ek) is an approximate unit
for J , limk ekfl = fl, hence gfl = limk φ(ek)fl = limk φ(ekfl) = φ(fl) = flφ(1) = flp and
gf = liml gfl = liml flp = fp, that is (g − χΔp

)χΔK
= 0. This means that

g(t) = 1 ∀t ∈ Δp ∩ ΔK . (4.3)

Since (ek) is an approximate unit, for any k1 and k2, there exists k3 ≥ k1, k2 so
that ek3 ≥ ek1 and ek3 ≥ ek2 , and (fl) have the analogous property. Thus, f = supl fl,
g = supk φ(ek) and we may apply the version of the monotone convergence theorem
for nets [12, 7.12]. Thus, denoting by μ̂, the Radon measure on Δ that corresponds
to μ, we have liml μ(fl) = supl μ(fl) = supl

∫
Δ
fl dμ̂ =

∫
Δ

supl fl dμ̂ =
∫
Δ
f dμ̂ = μ̂(f) and

similarly limk μ(φ(ek)) = μ̂(g). Therefore, by (4.2), the equality ‖ω|J‖ = ‖ω|K‖ is equiv-
alent to μ̂(g) = μ̂(f) = μ̂(ΔK). By (4.3), this condition μ̂(g) = μ̂(f)) means that 0 =
μ̂(g − f) =

∫
Δc

K∪Δc
p
(g − f) dμ̂ =

∫
Δc

K
(g − χΔK

) dμ̂ =
∫
Δc

K
g dμ̂, since μ̂(Δc

p) = 0 (because
μ(p) = 1). As g ≥ 0, we conclude that ‖ω|J‖ = ‖ω|K‖ if and only if g(t) = 0 for μ̂-almost
all t ∈ Δc

K . Since (ek) is an approximate unit of J , φ(ek)(t) > 0 for some k if and only if
φ(a)(t) �= 0 for some a ∈ J . Hence, since g = supk φ(ek),

{t ∈ Δc
K : g(t) > 0} = ∪k{t ∈ Δc

k : φ(ek)(t) > 0} = ∪a∈J{t ∈ Δc
K : φ(a)(t) �= 0}.

This proves the following lemma. (Note that g is lower semi-continuous, hence the set
Δφ(J)|Δc

K 	=0 in the lemma is μ̂-measurable.)

Lemma 4.12. ‖ω|J‖ = ‖ω|(J ∩ Z)‖ if and only if μ̂(Δφ(J)|Δc
K 	=0) = 0, where

Δφ(J)|Δc
K 	=0 =

⋃
a∈J

{t ∈ Δc
K : φ(a)(t) �= 0}. (4.4)

Here, K = J ∩ Z and Δc
K is the set of all common zeros of elements of K.

The following theorem says that maximally mixed states are those for which the
corresponding φ almost (with respect to μ̂) preserve ideals.
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Theorem 4.13. Let ω be any state on R. Let ω = μ ◦ φ, where μ = ω|Z and φ : R →
Z is a positive Z-module map with φ(1) a projection. Denote by μ̂ the Radon measure on
Δ that corresponds to μ. Then, ω is maximally mixed if and only if μ̂(Δφ(J)|Δc

K 	=0) = 0
for each ideal J in R, where K = J ∩ Z, Δc

K = {t ∈ Δ : K ⊆ t} and Δφ(J)|Δc
K 	=0 is the

set defined in (4.4).

Proof. Suppose that ρ ∈ ω ◦ E(R). Then, ρ|Z = ω|Z and by Theorem 3.4 ‖ρ|J‖ ≤
‖ω|J‖ for each ideal J of R. If μ̂(Δφ(J)|Δc

K 	=0) = 0 for each J , then by Lemma 4.12 ‖ω|J‖ =
‖ω|(J ∩ Z)‖ for each J , hence ‖ω|J‖ = ‖ω|(J ∩ Z)‖ = ‖ρ|(J ∩ Z)‖ ≤ ‖ρ|J‖. Therefore,
by Theorem 3.4 ω ∈ ρ ◦ E(R), which proves that ω is maximally mixed.

Conversely, if μ̂(Δφ(J0)|Δc
K 	=0) > 0 for some ideal J0, then by Lemma 4.12

‖ω|(J0 ∩ Z)‖ < ‖ω|J0‖. Let ψ : R → Z be any positive unital Z-module map that pre-
serves ideals. (For example, the central trace, if R is finite, as we have seen in the
proof of Corollary 4.10. If R is properly infinite, preservation of ideals is equivalent
to ψ(JR) = 0 by Lemma 4.8, so we can take for ψ the composition R η→ R/JR ι→ Z,
where η is the natural map and ι is an extension of the inclusion Z → R/JR. Here Z
is regarded as contained in R/JR since Z ∩ JR = 0, and ι exists by the C∗-injectivity
of Z.) Let ρ = μ ◦ ψ. Since ψ(J) ⊆ J ∩ Z for each J , the set Δψ(J)|Δc

J∩Z 	=0 is empty,
hence by Lemma 4.12 ‖ρ|J‖ = ‖ρ|(J ∩ Z)‖. Since ρ|Z = μ = ω|Z, we have ‖ρ|J‖ =
‖ρ|(J ∩ Z)‖ = ‖ω|(J ∩ Z)‖ ≤ ‖ω|J‖ for all J , hence ρ ∈ ω ◦ E(R) by Theorem 3.4. But
‖ω|J0‖ > ‖ω|(J0 ∩ Z)‖ = ‖ρ|(J0 ∩ Z)‖ = ‖ρ|J0‖ implies that ω /∈ ρ ◦ E(R). Hence, ω is
not maximally mixed. �
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