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Abstract

The distribution of parasites within host populations and communities, and the mechanisms
responsible for these patterns, are poorly understood aspects of wildlife parasitology. Here, we
evaluate the influence of the average abundance of endoparasite variance, using endoparasites
of lizards from the Caatinga domain (semiarid region), north-eastern Brazil. We hypothesized
that, due to the high number of generalist endoparasite species, they may occur randomly
throughout host populations in an aggregate pattern. In addition, we evaluated the degree
to which sample variance is influenced by the average abundance of endoparasite species, pat-
terns of co-occurrence and dominance among endoparasite species and similarities between
abundance and the richness of endoparasite infracommunities in several host species. Between
September 2015 and February 2016, 2141 lizards (1233 infected) from 16 species were col-
lected from six Caatinga areas. In total, 25,687 endoparasites were collected, which belonged
to 13 species including nematodes, pentastomids, cestodes, trematodes and acanthocephalans.
Parasite–host associations documented here included 39 newly identified interactions.
Endoparasites occurred in a typical aggregate pattern of distribution within their hosts;
there was no measurable preference related to the acquisition of hosts by endoparasites.
Despite the new records, endoparasites found were commonly associated with lizards in
Caatinga environments, which may reflect fauna composed of generalist endoparasite species.

Introduction

Historically, ecological studies have been conducted at different hierarchical scales, such as
ecosystems, communities, guilds and populations (Rynkiewicz et al., 2015); this result in the
reduction of complexity facilitates comparing these components in different habitats and local-
ities (Thomas et al., 2005). Studies of species abundance, occurrence and fluctuation are con-
sidered central themes in Ecology (Holt et al., 2003). Parasites are considered good model
organisms for testing ecological hypotheses since they are abundant in natural environments.
In addition, their habitat (hosts) have well-defined limits and, depending on the group, can be
effectively replicated (Pietrock & Marcogliese, 2003).

The study of parasites does have unique characteristics when compared to that of free-living
organisms (Holmes & Price, 1980). Characteristics such as dispersion and recruitment are
closely related to the ecology and phylogeny of parasite hosts (Poulin, 2007). Infrapopulations
(sensu Bush et al., 1997) describe all individuals of a given parasitic species present in a single
host specimen at the same time. Host characteristics including size and sex, seasonality, diet and
habitat influence the composition and distribution of species within infrapopulations (Esch et al.,
1990; Holt et al., 2003; Poulin, 2007).

The component community (all infrapopulations living within a particular host species) is
frequently an aggregate of host populations (Shaw & Dobson, 1995). Usually, hosts offer het-
erogeneous environments for infection by parasites, and individual variations in behaviour,
genetics and immune responses may contribute to the aggregation of parasites (Poulin,
2013). The aggregation of parasites is so prevalent with regard to host associations that it
has been proposed as a premise to define the ecological relationship between parasite and
host (Crofton, 1971; Pacala & Dobson, 1988). An aggregate distribution may provide import-
ant information regarding the relationship between parasites and their hosts, and some models
have been proposed to identify factors that determine such distribution patterns, such as host
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density, mortality rate, size, age and sex (May & Anderson,
1979; Gordon & Rau, 1982; Adjei et al., 1986; Rousset et al.,
1996; Combes, 2001).

Some patterns describing models of occurrence and distribu-
tion of parasites in wild hosts have been proposed. They include
the competitive exclusion (King, 1964), increased prevalence
(Janovy et al., 1995) and resource partitioning (Mouillot et al.,
2003) models. Additionally, null models (Harvey et al., 1983;
Krasnov et al., 2006) can be used to evaluate whether the occur-
rence of parasites is random in different host species or if it is the
result of interspecific interactions (Ulrich & Gotelli, 2010, 2013).
The organization of communities may present somewhere along a
continuum that extends between randomness and structure
(Price, 1987; Poulin, 1996; Leung, 1998; Rolff, 2000; Lacerda
et al., 2013), where communities composed of small populations,
or an organism with low vagility, are typically randomly orga-
nized (Gotelli & Rohde, 2002).

An alternative explanation for the aggregate distribution of
parasites regards the relationship between the variance and
the mean parasite abundance per host, which indicates how
aggregation may be regulated by mean infection value (Shaw
& Dobson, 1995). This assumption is based on the aggregate
distribution of organisms, and follows Taylor’s law of species
distribution (Taylor, 1961), in which the density of organisms
varies proportionally in relation to the mean of the population
density. Cooccurrence models can also be used to characterize
parasite communities, where pairs of parasites may have posi-
tive or negative associations with levels of host infection
(Price, 1987). These results may be difficult to interpret, since
they reflect competition and/or specialization in the exploit-
ation of a particular host (historical or current). Therefore, it
is necessary to test more hypotheses concerning the mechan-
isms that shape parasite communities, especially those living
within terrestrial hosts (Poulin, 1996; Krasnov et al., 2006;
Budischak et al., 2012).

In the present study, we evaluate the influence of average
abundance on the variance of endoparasites observed within
lizards living in semiarid areas of the Caatinga in north-eastern
Brazil. Studies on lizard endoparasites from Caatinga have
become more frequently produced in recent years (Ávila et al.,
2012; Brito et al., 2014a; Araujo Filho et al., 2017; Teixeira
et al., 2017; Teles et al., 2017), but our understanding of endo-
parasite community structures with regard to both the abundance
and aggregation patterns of parasites is lacking (Ávila et al., 2012;
Araujo Filho et al., 2014). The endoparasitic fauna of Caatinga
lizards is composed mainly of generalists, where parasite abun-
dances are positively related to the size, sex and reproductive per-
iod of the hosts, as well as with the rainy season, which indicate
that multiple factors determine the patterns of resource use by
parasitic species (Anjos et al., 2007; Almeida et al., 2008; Ávila
et al., 2012; Lima et al., 2017; Oliveira et al., 2017; Teixeira
et al., 2017; Teles et al., 2017).

Thus, our goals were to determine the community compos-
ition of lizard endoparasites and test the following hypothesis:
(H0) due to interspecific competition, the occurrence of endopar-
asites within hosts is structured, and is homogeneously distribu-
ted; and (H1) due to the abundance of generalist endoparasitic
species, they may occur randomly within host populations in
an aggregate pattern. In addition, we determined the degree to
which sample variance is influenced by the average abundance
of endoparasitic species, patterns of cooccurrence and dominance
among endoparasitic species and similarities between the

abundance and richness of infracommunities of endoparasites
in several host species.

Materials and methods

Study areas

Samples were collected from three areas of Alto Sertão, Sergipe,
Northeast Brazil. Each area was composed of two sampling
sites, which resulted in a total of six sample units. Area I was
located in Porto da Folha (Quilombola settlement of Mocambo)
and Poço Redondo (private farm) municipalities; area II was
located in the Poço Redondo municipality (Grota do Angico
Natural Monument and the Angico Farm); and area III was
located in Canindé do São Francisco (Jerimum Farm) and
Porto da Folha (Quilombola settlement of Mocambo) municipal-
ities. The most distant areas were approximately 40 km apart.

All sampling sites were located in the Caatinga domain, a
semiarid region of north-eastern Brazil with a ‘BSh’ climate,
according to Köppe, which belongs to the Southern Sertaneja
Depression (Ab’Saber, 1974; Velloso et al., 2002), in the Alto
Sertão region of Sergipe state. The rainfall levels vary in accord-
ance with a four-month rainy season and eight-month dry season.
The average annual precipitation level is approximately 500 mm,
and the average annual temperature varies between 26 and 28°C.
Vegetation within the area is composed of typical plants from the
arboreal shrubby of Caatinga, in which cacti and bromeliads are
present (Andrade-Lima, 1981; Sá et al., 2004).

Data collection

Sites were visited for 30 days, within dry (April and August 2016)
and rainy (September 2015 and February 2016) seasons.
Specimens were collected using pitfall traps and by actively
searching for animals. After collection, the specimens were eutha-
nized and deposited in the Herpetological Collection of the
Federal University of Paraíba (Universidade Federal da Paraíba
– CHUFPB).

Lizards were dissected under a stereomicroscope, and lung,
stomach, liver, gallbladder and small and large intestine tissues
were analysed. Further cavities were searched for endoparasites.
Endoparasites were counted and preserved in 70% ethanol for
subsequent analyses. Specimens were identified to the lowest pos-
sible taxonomic level with the aid of a microscope equipped with
an image analyser (Carl Zeiss Microimaging GmbH, Gottingen,
Germany) and mounted on temporary slides with the use of
either a lactic acid medium (nematodes), Hoyer’s medium (pen-
tastomids) or stained with acetic carmine and mounted in
Eugenol (acanthocephalans, trematodes and cestodes).

Statistical analysis

Ecological terminology used was in accordance with definitions
provided in Bush et al. (1997). To determine the distribution
pattern of the infrapopulations (all endoparasites of a particular
species present in a population of hosts), the dispersion index
(DI) was calculated, which ranged from zero to one using
Quantitative Parasitology 3.0 software (Rózsa et al., 2000). A DI
of zero indicated that all species were uniformly distributed and
a DI of one indicated that all endoparasites were found in only
one host (Poulin, 1993). In addition, the Morisita index of
aggregation was calculated by computing the abundance of
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species, which had an associated P-value (chi-square), using
XLstat software (Addinsoft, 2004).

To test whether the endoparasitic community was randomly
distributed across host species, a pseudo community analysis
was performed with 10,000 randomizations of a null model.
The presence–absence matrix was built with species of endopar-
asites (rows) and hosts species (columns). We used the algorithm
‘R3’ because it maintained the specialization of each endoparasitic
species, but considered the possibility of using newly available
resources (Winemiller & Pianka, 1990).

Linear regression analysis was performed between variance of
mean intensity (log10) and the average abundance of endopara-
sites, to identify a possible degree of restriction in aggregation,
although this parameter is influenced by aggregate populations,
reflecting possible competition for space (host/site of infection)
and/or the ‘limit abundance’ that a host specimen can support
(Shaw & Dobson, 1995).

The normality of abundance and richness was assessed using
the Shapiro–Wilk test. The data were not normally distributed
(Wald = 0.410, P < 0.0001; W = 0.803, P < 0.0001, respectively).
Therefore, the Spearman and Pearson correlation test was used
to evaluate whether pairs of endoparasitic species were correlated.
The Bray–Curtis similarity index was performed to evaluate
the relationship between the richness and abundance of an endo-
parasitic infracommunity within each group of hosts analysed.
Species assessed included Gymnodactylus geckoides Spix, 1825;
Phyllopezus pollicaris Spix, 1825 (Phyllodactylidae); Ameivula
ocellifera Spix, 1825 (Teiidae); Vanzosaura multiscutata Amaral,
1993 (Gymnophthalmidae); and Tropidurus hispidus Spix, 1825
and T. semitaeniatus Spix, 1825 (Tropiduridae). At least ten speci-
mens from each of these species were collected in each area stud-
ied. A similarity matrix was constructed using the Bray–Curtis
method. Analyses were performed using the R program (Core
Team, 2019).

Dominance (d) of endoparasitic species was calculated according
to the Berger–Parker index (Magurran, 2013). Later, the Kruskal–
Wallis test was performed to determine whether differences in the
dominance of the component community among host species
and within each host species were significant (only endoparasitic
species with prevalence greater than 5% were considered).

Results

A total of 2141 lizards were dissected, which belonged to 16 dif-
ferent species. Species identified included Acratosaura mentalis
(number of specimens (n) = 62; mean snout-vent length ± stand-
ard deviation (SVL) = 48.1 ± 9.5); Ameiva (n = 12; SVL = 77.6 ±
38.5); Ameivula ocellifera (n = 541; SVL = 65.7 ± 10.1);
Coleodactylus meridionalis (n = 1; SVL = 17.1); G. geckoides (n =
477; SVL = 38.7 ± 2.4); Hemidactylus brasilianus (n = 1; SVL =
39.1); Hemidactylus mabouia (n = 1; SVL = 59.7); Iguana (n = 2;
SVL = 124.3); Lygodactylus klugei (n = 65; SVL = 27.5 ± 2.1);
Brasiliscincus heathi (n = 25; SVL = 63 ± 5.7); Phyllopezus polli-
caris (n = 173; SVL = 60.6 ± 9.3); Polychrus acutirostris (n = 1;
SVL = 126.8); Tropidurus hispidus (n = 354; SVL = 71.1 ± 16.2);
T. semitaeniatus (n = 307; SVL = 67.6 ± 10.2); Tupinambis meria-
nae (n = 7; SVL = 90 ± 5.1); and V. multiscutata (n = 112; SVL =
32.4 ± 2.1). A total of 25,687 endoparasites were collected and
identified, which included nematodes, pentastomids, acanthocepha-
lans, trematodes and cestodes, from a total of 13 taxa (table 1) from
1233 host organisms.

Of the total number of hosts analysed, 57.58% were parasitized
by at least one species, and an average of 20.8 ± 15.5 parasites
were found in each infected host. A total of 39 new host records
were identified (table 1). Within the host population, 23.76% were
infected by two species of endoparasites; 6.40% were infected by
three species; 1.54% were infected by four species; 0.24% were
infected by five species; and only two specimens of T. hispidus
(0.16%) were each infected by six endoparasitic species.

Nematodes were the most highly prevalent type of endopara-
sitic organism identified. Of the seven species that were found
at a prevalence greater than 5%, five were nematodes, and one
species of Pentastomida and Cestoda were also found (table 1).
All endoparasitic species exhibited a typical aggregate distribution
patterns (table 2). Although subtle variations were observed
between monoxenic and heteroxenic species, the latter type
produced slightly higher discrepancy values.

The occurrence of endoparasites in the host community did
not differ significantly from that which would be expected to
occur at random, and the observed index value of 0.617 was
not smaller than the simulated index of 0.497, which indicated
the absence of community structure (P > 0.9). Variance observed
was strongly explained by mean value observed (F942; R² = 0.98;
P < 0.001) (fig. 1). In other words, there was a regulatory effect
that affected the average number of parasites per host, and this
restriction generated the aggregation limit observed.

The species of endoparasites possessing the greatest correlation
values were congeners Physaloptera lutzi and P. retusa (table 3).
Similarly, monoxenic species were positively correlated, but the
only species that was associated with others was Parapharyngodon
alvarengai. Similarity analysis revealed that phylogenetically similar
hosts, or those with similar foraging habits, possessed similar
endoparasitic fauna (table 4). Sympatric lizards T. hispidus and
T. semitaeniatus had endoparisitic fauna that were the most similar.

Endoparasitic species exhibited different levels of dominance
within each host species (table 5). Similarly, dominance was
significantly variable among host species (Shannon index
H’ = 19.67; Degrees of freedon GL = 11; P < 0.001). For the teiid
species A. ocellifera, the dominant species was the monoxenic
nematode Pharyngodon cesarpintoi. For the lizards, G. geckoides,
Brasiliscincus heathi and T. semitaeniatus, the dominant species
was the monoxenic nematode Parapharyngodon alvarengai.
Phlopezpezus pollicaris exhibited a high degree of dominance,
and the monoxenic species, Spauligodon oxkutzcabiensis, was the
most important. For the T. hispidus host, the heteroxenic species,
P. lutzi, and the monoxenic species, P. alvarengai, had the highest
dominance values.

Discussion

Thirteen endoparasitic species were determined to be associated
with lizards. Monoxenic nematodes were the most prevalent,
which included P. alverengai, P. cesarpintoi and S. oxkutzcabiensis
(Pharyngodonidae) species. These species were most prevalent
within T. hispidus, T. semitaeniatus, A. ocellifera and P. pollicaris
hosts. The absence of intermediate hosts, coupled with the habit
of some lizards of ‘tasting’ the environment with their tongue
(personal observation), may contribute to high infection rates
of endoparasites with direct cycles (Anderson, 2000). However,
foraging mode, contact between susceptible hosts and population
density may also contribute to increases observed within this cat-
egory. Pharyngodon were prevalent within lizards (Gupta et al.,
2009; Anjos et al., 2012; Brito et al., 2014a; Teles et al., 2017).
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Table 1. Endoparasites associated with the lizards collected in the Caatinga environment, a semiarid region of the Alto Sertão of Sergipe, Northeast Brazil.

Parasite Host % I_F I_S Abu H L_C

NEMATODA

Pharyngodonidae

Parapharyngodon alvarengai Acratosaura mentalisa 3.5 2 LI 2 1

Ameiva ameiva 20 3 LI 6 2

Ameivula ocellifera 3.5 3.7 ± 0.9 SI, LI 71 19

Gymnodactylus geckoides 28.5 1.9 ± 1 LI 261 136

Lygodactylus klugeia 2.1 2 LI 2 1

Brasiliscincus heathi 48 2.8 ± 1.8 LI 34 12

Phyllopezus pollicaris 6.3 4.1 ± 1.5 LI 46 11

Tropidurus hispidus 52.8 5.4 ± 5.4 SI, LI 1017 187

Tropidurus semitaeniatus 46.9 7.4 ± 7.3 SI, LI 1072 144

Vanzosaura multiscutataa 6.2 1 LI 1 1

Total 42.2 4.9 2512 514 M

Pharyngodon cesarpintoi Ameiva ameiva 3.5 102 LI 102 1

Ameivula ocellifera 63.2 44 ± 67.5 S, SI, LI 15,061 342

Lygodactylus klugeia 5.8 3 S 3 1

Phyllopezus pollicarisa 4 14.7 ± 4 LI 103 7

Tropidurus hispidusa 1.4 19 ± 3.1 S, LI 95 5

Tropidurus semitaeniatusa 4.5 6.4 ± 2.2 S, LI 90 14

Tupinambis merianaea 14.2 15 LI 15 1

Vanzosaura multiscutataa 1.7 3 LI 3 1

Total 30 42.5 15,472 372 M

Spauligodon oxkutzcabiensis Acratosaura mentalisa 32.2 3.4 ± 2.3 LI 68 20

Ameivula ocelliferaa 2 4.4 ± 1.4 LI 49 11

Gymnodactylus geckoides 2.7 6.3 ± 2.8 LI 82 13

Lygodactylus klugei 2.1 1 LI 1 1

Phyllopezus pollicaris 75.1 28 ± 32.3 SI, LI 3651 130

Tropidurus hispidusa 1.9 5.7 ± 1.1 LI 40 7

Tropidurus semitaeniatusa 0.8 1 LI 1 1

Vanzosaura multiscultataa 2.6 1 LI 1 1

Total 14.5 22.2 3893 184 M

Heterakidae

Strongyluris oscari Ameivula ocellifera 2.5 1.6 ± 0.6 L, LI 23 14

Gymnodactylus geckoidesa 0.5 10 LI 10 1

Ligodactylus klugeia 5.8 2 S 2 1

Tropidurus hispidus 12.1 10.8 ± 5.8 L, SI, LI 467 43

Tropidurus semitaeniatus 57.6 12.7 ± 10.8 L, OES, S, SI, LI 1487 117

Total 13.4 12.2 1989 176 M

Physalopteridae

Physaloptera lutzi Ameivula ocellifera 1.4 6.5 ± 1 S, CAV 52 8

Ameiva ameiva 8.3 2 S 2 1

Gymnodactylus geckoides 2.3 1.2 ± 0.2 S 14 11

Lygodactylus klugei 9.2 5 ± 2.1 S 30 6

(Continued )
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Table 1. (Continued.)

Parasite Host % I_F I_S Abu H L_C

Tropidurus hispidus 46 6.5 ± 5.7 S, SI, LI, CAV 1063 163

Tropidurus semitaeniatus 3.9 1.5 ± 0.3 S 18 12

Vanzosaura multiscutata 0.9 3 S 3 1

Total 9.5 5.8 1182 202 H

Physaloptera retusa Ameivula ocelliferaa 0.5 5.6 ± 0.4 S, LI 17 3

Tropidurus hispidus 6.2 5.2 ± 3.3 S, SI, LI, CAV 116 22

Tropidurus semitaeniatusa 1.6 5 CAV 5 5

Tupinambis merianae 14 1 S 1 1

Total 2.5 3.6 139 31 H

⍰⍰⍰Onchocercidae

Piratuba sp. Acratosaura mentalisa 1.6 1 CAV 1 1

Ameivula ocelliferaa 1.8 4.7 ± 1 CAV, OVA 47 10

Gymnodactylus geckoides 0.8 2.7 ± 0.3 CAV 11 4

Lygodactylus klugeia 1.5 1 CAV 1 1

Tropidurus hispidus 2.5 8.4 ± 2.1 CAV 76 9

Tropidurus semitaeniatusa 0.6 2 CAV 2 2

Total 1.3 5.4 138 27 H

Cosmocercidae Gymnodactylus geckoidesa 0.4 2 S, L 4 2

Tropidurus semitaeniatusa 0.9 1.3 S, CAV 4 3

Vanzosaura multiscutataa 0.8 1 CAV 1 1

Total 0.3 2.4 9 6 M

Rhabdochonidae

Trichospirura sp. Phyllopezus pollicaris 1.6 2 GB 6 3

Tropidurus semitaeniatusa 0.3 1 GB 1 1

Total 0.3 2.4 7 4 H

PENTASTOMIDA

Raillietiellidae

Raillietiella mottae Acratosaura mentalisa 12.9 2.3 ± 1.2 L 19 8

Ameivula ocelliferaa 2.9 4.3 ± 0.9 L 70 16

Gymnodactylus geckoides 2.9 1.7 ± 0.4 L 25 14

Hemidactylus mabouia 100 1 L 1 1

Lygodactylus klugeia 1.5 1 L 1 1

Phyllopezus pollicaris 11.5 1.8 ± 0.7 L 37 20

Tropidurus hispidus 10.7 6.1 ± 4.2 L 234 38

Tropidurus semitaeniatus 1.9 2.6 ± 0.4 L 16 6

Vanzosaura multiscutataa 3.5 1.5 ± 0.3 L 6 4

Total 8.4 3.9 409 108 H

ACANTOCEPHALA

Oligacanthorhynchidae

Oligacanthorynchus sp. Ameivula ocelliferaa 1.1 8 ± 1.3 F, SI, CAV 48 6

Gymnodactylus geckoidesa 0.2 1 F 1 1

Phyllopezus pollicarisa 2.3 2.7 ± 0.4 F, SI, LI 11 4

Tropidurus semitaeniatus 0.3 1 LI 2 1

(Continued )
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The genus is composed of monoxenic species, which are parasites
of vertebrates, with a wide global distribution pattern (Ávila &
Silva, 2010; Campião et al., 2014; Goldberg et al., 2016).

The most important hosts (prevalence > 45%) for P. alvarengai
were T. hispidus (52.82%) and T. semitaeniatus (46.90%). Previous
studies (Anjos et al., 2012; Brito et al., 2014a) reported high preva-
lence values for P. alverengai within the same host species in differ-
ent regions of Caatinga. Concerning the host A. ocellifera, the
prevalence of the nematode P. cesarpintoi was high (63.21%). In
addition, the nematode, S. oxkutzcabiensis, was highly prevalent
(75.14%) within the host P. pollicaris, which was a finding that

was similar to that which was reported previously in Caatinga
(Lima et al., 2017). Despite being considered generalists, these spe-
cies were more prevalent in particular hosts than others. This vari-
ation may be associated with undescribed cospeciation mechanisms,
as well as with the specific microhabitat and diet of the hosts (Esch
et al., 1990; Hamann et al., 2006; Brito et al., 2014b).

The most prevalent heteroxenic endoparasites were P. lutzi
in T. hispidus (46.04%) and P. retusa in T. merianae (14.02%)
(Physalopteridae). Physalopterids are endoparasites of several
vertebrates (Goldberg et al., 1998; Campião et al., 2014) and
can be found in 38 omnivorous lizards in Brazil (Ávila &

Table 1. (Continued.)

Parasite Host % I_F I_S Abu H L_C

Total 0.6 5.2 62 12 H

Cystacanto Ameivula ocelliferaa 0.7 1.2 ± 0.2 S, CAV 5 4

Gymnodactylus geckoidesa 0.4 3 S, CAV 6 2

Phyllopezus pollicaris 0.5 2 S 2 1

Tropidurus hispidusa 0.2 6 S 6 1

Tropidurus semitaeniatus 0.6 5 S 10 2

Total 0.5 3.9 29 10 H

CESTODA

Linstowiidae

Oochorystica sp. Acratosaura mentalisa 3.2 1.5 S, SI 3 2

Ameiva ameiva 16.6 1.5 SI 3 2

Ameivula ocellifera 6.2 3.3 ± 1.3 S, SI 114 34

Brasiliscincus heathi 28 1.5 ± 0.9 SI 11 7

Tropidurus hispidus 2.8 2.7 ± 0.6 SI, CAV 27 10

Tropidurus semitaeniatus 7.8 4.1 ± 2.7 S, SI, CAV 99 24

Total 6.4 3.3 257 79 H

TREMATODA

Dicrocoeliidae

Euparadistomum paraenses Tropidurus hispidusa 1.69 4.16 ± 0.5 GB 25 6

Total 0.3 4.1 25 6 H

aNew records of hosts. Prevalence (%). I_F, mean intensity of infection; I_S, infection site; Abu, abundance; H, number of hosts; L_C, life cycle; M, monoxenic; He, heteroxenic; L, L; S, stomach;
SI, small intestine; LI, large intestine; GB, gallbladder; CAV, cavity; OES, oesophagus; OVA, ovary.

Table 2. Morisita aggregation index.

Taxa Imor Mclu Muni Imst P D

Physaloptera lutzi 2.11 1.10 0.89 0.50 P < 0.001 0.95

Physaloptera retusa 21.39 1.64 0.37 0.55 P < 0.001 0.98

Raillietiella mottae 9.21 1.32 0.68 0.52 P < 0.001 0.96

Strongyluris oscari 2.66 1.06 0.93 0.50 P < 0.001 0.94

Parapharyngodon cesarpintoi 2.39 1.00 0.99 0.50 P < 0.001 0.89

Spauligodon oxkutzcabiensis 3.45 1.03 0.96 0.50 P < 0.001 0.94

Parapharyngodon alvarengai 1.05 1.05 0.95 0.50 P < 0.001 0.80

Oochorystica sp. 10.86 1.52 0.49 0.52 P < 0.001 0.97

Imor, index value; Mclu, upper values; Muni, lower values; Imst, standardized index value; P, chi-square test value for each distribution; D, Poulin’s discrepancy index. When Imor is >Mclu, the
distribution is considered aggregate. Values of Imst >0.5 indicate aggregated distribution.
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Silva, 2010; Araujo Filho et al., 2014; Lima et al., 2017).
The prevalence of these endoparasites varies according to
the area considered (Brito et al., 2014a; Lima et al., 2017), and it
may be related to changes in intermediate host communities and
seasonality (Narayanan et al., 1961; Vasconcellos et al., 2010).

The pentastomid genus Raillietiella (Raillietiellidae) infects a
wide variety of insectivorous lizards in Brazil (Vrcibradic et al.,
2002; Almeida et al., 2008; Ribeiro et al., 2012; Brito et al.,
2014a; Sousa et al., 2014; Lima et al., 2017). Herein, the genus
was most highly prevalent in A. mentalis (12.9%), P. pollicaris
(11.56%) and T. hispidus (10.73%) lizards. As demonstrated by
Lima et al. (2017), species of Raillietiella were prevalent in
gecko hosts (Gekkonidae and Phyllodactylidae), and their high
degree of prevalence within A. mentalis (Gymnophthalmidae)
and their newly discovered association with Raillietiella mottae
may be a result of the species’ flexibility, in the infection of new
hosts, variations in host use and the availability intermediates.
These variations have also been found in several other
Raillietiella species (Kelehear et al., 2011, 2012).

Trichospirura nematodes occur in amphibians (Moravec &
Kaiser, 1994), lizards (Goldberg et al., 1998) and mammals
(Bain & Junker, 2013) and were first recorded to infect lizards
in South America by Lima et al. (2017) in Caatinga. We found
few specimens of Trichospirura sp. that were associated with
the gallbladder of P. pollicaris (1.69%) and T. semitaeniatus
(0.32%), the latter of which is a new record. The trematode
Euparadistomum paraenses was found in the gallbladder of the
lizard T. hispidus, which was the first record of that genus of
endoparasite infecting lizards globally. Typically, they parasitize
marsupial mammals (Betterton, 1980), and the low prevalence
determined (1.69%) may indicate an accidental infection by the
parasitic species. Other new host records (table 1) indicate the
potential for the exploration of host lizard assemblages, since
endoparasitic species of intermediate prevalence values may not
have been found to date due to either their absence or insufficient
host population samples in certain areas.

Regarding distribution patterns, all component communities
considered in this study exhibited aggregate distribution patterns
and high discrepancy values. Endoparasite populations of lizards
are aggregated even when the hosts lived in different microhabi-
tats and have different diets and foraging activities (Anjos et al.,
2012; Barreto-Lima et al., 2012; Macedo et al., 2017; Cabral

Fig. 1. Relationship between variance and mean abundance (log10; F942; R² = 0.98; P <
0.001) of endoparasites associated with lizards, collected in a semiarid Caatinga
environment, Northeast Brazil.
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et al., 2018; Ribeiro et al., 2018). Individual susceptibility, food
specificity and variability with regard to exposure to infective
parasitic forms are responsible for the distribution of parasites
among hosts (Anderson & May, 1979; Anderson & Gordon,
1982). Heteroxenic endoparasites have higher discrepancy values
than monoxenic species; and infective forms can occur in
environmental ‘pockets’ and accumulate in individuals used as
intermediate hosts, which may contribute to the aggregation of
endoparasitic populations (Anderson & May, 1979; Anderson &
Gordon, 1982).

Anjos et al. (2012) identified depauperate fauna dominated by
generalist endoparasites in T. hispidus and determined intermedi-
ate values of discrepancy (D = 0.51) in Caatinga areas in Ceará
(CE) state. Ribeiro et al. (2012) determined that discrepancy values
were high for the nematode genus, Rhabdias sp. (D = 0.83), in a
population of the Anolis brasiliensis lizard species in the same
area. Cabral et al. (2018) determined that values of discrepancy
were high for P. alvarengai (0.68), Physalopteroides venacioi
(0.97), Physaloptera sp. (0.98) and Strongyluris oscari (0.98) nema-
todes associated with the Mabuya arajara lizard species in the
humid forest within the Araripe Plateau (as ‘brejo de altitude’), CE.

In the Atlantic Forest, the nematode species S. oscari and
Oswaldocruzia burseyi exhibited intermediate discrepancy values
(D = 0.57 and D = 0.62, respectively), which were associated
with the population of the lizard, Enyalius perditus, in the state
of Minas Gerais (Barreto-Lima et al., 2012). For teiid lizards in
the Amazon region, Macedo et al. (2017) found determined inter-
mediate (D = 0.52) to high (D = 0.92) discrepancy values for
endoparasitic nematodes. In addition to aggregation, we deter-
mined that average abundance strongly influenced the number
of endoparasites per host observed, and determined the variance
of samples (fig. 1). Due to the nature of the parasite/host relation-
ship, an interpretation of these values can clarify aspects of the
acquisition and establishment of infrapopulations (Shaw &
Dobson, 1995).

Infrapopulations may be directly influenced by host species
and, thus, be distributed according to their genetic predisposition
(Schad & Anderson, 1985; Quinnell, 2003), immune response
(Galvani, 2003) and duration of exposure of the host to infective
forms (Gordon & Rau, 1982). As a result, older hosts tend to be
more highly infected than juvenile hosts, which may result in
higher mortality rates within the age category (Rousset et al., 1996).

Table 4. Similarity between the lizard species grouped according to the composition of the endoparasites fauna, using the Bray–Curtis index.

Ameivula
ocellifera

Gymnodactylus
geckoides

Phyllopezus
pollicaris

Tropidurus
hispidus

Tropidurus
semitaeniatus

Ameivula ocellifera 1

Gymnodactylus
geckoides

0.022 1

Phyllopezus pollicaris 0.025 0.073 1

Tropidurus hispidus 0.044 0.207 0.064 1

Tropidurus
semitaeniatus

0.036 0.191 0.047 0.567 1

Table 5. Berger–Parker dominance index and Kruskal–Wallis test (H = 19.67; GL = 11) corresponding to variation in dominance within each host species. Statistically
significant p-value (bold).

Host P. lu
P.
re

R.
mo St. os

Ph.
ce

Sp.
ox

Pir.
sp

Pa.
al

Ooc.
sp

E.
pa

Oli.
sp

Tri.
sp P-value

(Am.
oc)

0.3 0.1 0.4 0.1 96.7 0.3 0.3 0.4 0.7 0 0.3 0 0.012

(Ac.
me)

0 0 20.4 0 0 73.1 1 2.1 3.2 0 0 0 0.340

(Aa.
am)

1.7 0 0 0 90.2 0 0 5.3 2.6 0 0 0 0.601

(G. ge) 3.4 0 6.1 2.4 0 20.2 2.7 64.6 0 0 0.2 0 0.005

(L. kl) 75 0 2.5 5 7.5 2.5 2.5 5 0 0 0 0 0.780

(B. he) 0 0 0 0 0 0 0 75.5 24.4 0 0 0 0.001

(P. po) 0 0 0.9 0 2.6 94.7 0 1.1 0 0 0.2 0.1 0.007

(T. hi) 30.2 4.6 6.6 13.3 2.7 9.7 2.1 29 0.7 0.5 0 0.1 0.004

(T. se) 0.6 0.2 0.5 53.4 3.2 0.03 0.07 38.1 3.5 0 0.07 0.03 0.008

(T. me) 0 6.2 0 0 93.7 0 0 0 0 0 0 0 0.530

(V. mu) 20 0 40 0 20 6.6 0 13.3 0 0 0 0 0.360

Lizards: Am. oc, Ameivula ocellifera; Ac. me, Acratosaura mentalis; Aa. am, Ameiva; G. ge, Gymnodactylus geckkoides; L. kl, Ligodactylus klugei; B. he, Brasiliscincus heathi; P. po, Phyllopezus
pollicaris; T. hi, Tropidurus hispidus; T. se, T. semitaeniatus; T. me, Tupinambis merianae; V. mu, Vanzosaura multiscutata. Endoparasites: P. lu, Physaloptera lutzi; P. re, P. retusa; R. mo,
Raillietiella mottae; St. os, Strongyluris oscari; Ph. ce, Pharyngodon cesarpintoi; Sp. ox, Spauligodon oxkutzcabiensis; Pir. sp, Piratuba sp.; Pa. al, Parapharyngodon alvarengai; Ooc. sp,
Oochorystica sp.; E. pa, Euparadistomum paraenses; Oli. sp, Olygachantharynchus sp.; Tri. sp, Trichospirura sp.

8 J.A. Araujo Filho et al.

https://doi.org/10.1017/S0022149X19001147 Published online by Cambridge University Press

https://doi.org/10.1017/S0022149X19001147


Small differences in the niche occupied by individuals from the
same population facilitate the occurrence of encounters different
from the infective forms present in the environment (Janovy &
Kutish, 1988), thus increasing the aggregate pattern of infection
with parasitic species. Lizard populations may exhibit individual
variations with respect to niche use, especially in communities
that have few species (Costa et al., 2008); unfortunately, there is
a lack of knowledge regarding subpopulation distributions in liz-
ard hosts, making it difficult to compare and understand the dis-
tribution patterns of parasites.

Regarding the pseudo community analysis, for parasite species,
assemblages are likely structured as a result of nesting (González
& Oliva, 2009), temporal variation (Krasnov et al., 2006) and
aggregation (Leung, 1998). However, there have also been reports
of assemblages of various groups of hosts including fish, amphi-
bians, birds and mammals with no apparent structure (Gotelli
& Rohde, 2002; González & Oliva, 2009; Ulrich & Gotelli 2010,
2013; Delfino et al., 2011; Lacerda et al., 2013).

According to our model, host infection occurs randomly, and
endoparasite occurrence is randomly distributed across hosts.
When intraspecific interactions between endoparasites does not
significantly shape the component community, it does not differ
significantly from the community predicted by the null model
(Poulin, 1996). Communities composed of few species or those
that are generalists are typically not structured (Gotelli &
Rohde, 2002; González & Oliva, 2009). With regard to lizards,
especially those living in Caatinga environments, few endoparasite
species are specific to lizard hosts, such as the nematodes
Ozolaimus cirratus and O. megatyphlon. Alaeuris caudatus and
A. vogelsangi are, however, specific parasites of iguanas, and
Gynaecometra bahiensis specifically parasitizes Polycrhus acutiros-
tris. These specificities are probably related to arboreal habits and
the herbivorous and omnivorous diets of hosts, respectively (Ávila
& Silva, 2010; Araujo Filho et al., 2014; Teles et al., 2017).

The resources sought by parasites may occur in hosts of dis-
tinct taxa, which may contribute to the formation of random
communities. This does not necessarily indicate a low degree of
richness, competitive exclusion or lack of interaction among spe-
cies (Brooks et al., 2006). For the Caatinga domain, historical and
ecological factors, and seasonality and geographic variations have
a greater influence on the establishment of endoparasite commu-
nities (Brito et al., 2014a, b; Araujo Filho et al., 2017; Lima et al.,
2017; Teixeira et al., 2017; Teles et al., 2017).

According to Jaenike (1996), to understand the effects of
variance on average abundance, the following premise must be
considered: (1) the parasite has the ability to regulate host fit-
ness; and (2) average abundance depends on parasite frequency
within the host population. Thus, the greater the degree of para-
site aggregation, the greater the fitness of the host population. If
the degree of aggregation is low, the fitness of the host popula-
tion is also low (Shostak & Dick, 1987; Jaenike, 1996). Similarly,
aggregation is associated with increased fitness of the parasite
population.

In contrast, aggregation can facilitate meeting potential part-
ners for reproduction. Heavily infected hosts may have high mor-
tality rates (Adjei et al., 1986), compromising the maintenance of
infrapopulations (provided the life cycle of the species does not
depend on the death of its host). The restriction of variance on
the average abundance of parasitic species provides a balance
between aggregation and infrapopulation viability, which can be
evolutionarily established (Wilson et al., 2002). This mechanism
may be especially prominent in parasitic species and may be

one of the primary ecological forces shaping infrapopulation
distribution (Shaw & Dobson, 1995; Lagrue et al., 2015). This
association has been found in several studies of aggregated popu-
lations of parasites (Anderson & Gordon, 1982; Shaw & Dobson,
1995; Wilson et al., 2002; Poulin, 2013).

It is widely accepted that variance dominated by the mean
indicates that there is a restriction in the level of aggregation
within a population. This results in a trade-off between a high
degree of aggregation of endoparasites, which can cause high
mortality rates in their hosts (Rousset et al., 1996), and low levels
of aggregation, which may cause difficulties in finding partners
for reproduction. As a result, populations of parasites are pro-
duced that have optimal levels of aggregation (Poulin, 2007).
We found that 98% of the variance observed was explained by
mean abundance, a value that was unexpectedly high. Shaw &
Dobson (1995) reviewed the relationship between mean variance
and abundance in 269 populations of hosts (amphibians, birds
and mammals) and found that 87% of observed variance is related
to average abundance. However, there was a lack of research on
reptiles, especially in semiarid areas, so comparisons with this
work are not straightforward.

In the endoparasitic species P. lutzi and P. retusa, a positive
correlation between abundance and the use of intermediate and
definitive hosts was observed (Anderson, 2000). Parapharyngodon
alvarengai was positively correlated with P. lutzi, P. retusa and
S. oscari species. Pharyngodon cesarpintoi and S. oxkutzcabiensis
exhibited a negative (or low degree of) correlation with all other
species. These species may be considered generalist when infecting
lizards, but their abundance and prevalence were greater in teiid
and gecko hosts, respectively (Ávila & Silva, 2010; Brito et al.,
2014a; Lima et al., 2017). Taxonomic proximity and life cycle
may contribute to associations found; however, competition,
density-dependence and use of resources by endoparasites may
also be important, but these features are difficult to measure in nat-
ural populations. Nevertheless, P. alvarengai was the only species
that presented a statistically significant association with the other
species. This relationship was likely enhanced by the generalist
habit and monoxenic cycle of P. alvarengai. The species has been
present in nearly all studies that have included lizards of South
America (Ávila & Silva, 2010; Brito et al., 2014a; Galdino et al.,
2014).

The hosts of endoparasite species that were most similar were
T. hispidus and T. semitaeniatus. In addition to their taxonomic
proximity, these species shared similar microhabitats and diets
(Rodrigues, 2003; Gomes et al., 2015). Gimnodactylus geckoides
was similar to tropidurids, and is a species with general foraging
habits, which may contribute to the similarities between the endo-
parasites observed (Rodrigues, 2003). These species are com-
monly associated with rocky areas, and have general diets
(Rodrigues, 2003; Gomes et al., 2015). The use of similar habitats
and consumption of similar diets may contribute to similarities
observed in the composition of endoparasite species (Hamann
et al., 2006; Brito et al., 2014b).

There was significant variation observed regarding the domin-
ance of endoparasites among host species, as well as within each
host species. For the component community present in A. ocelli-
fera, dominance was determined by the pharyngodonid, P. cesar-
pintoi. This endoparasite genus is widely dispersed in South
America, and infects several families of lizards, notably infecting
Teiidae (Ávila & Silva, 2010). In G. geckoides and B. heathi, the
nematode P. alvarengai was the dominant species. Along with
other pharyngodonids, P. alvarengai has a monoxenic cycle and
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is commonly found in generalist lizards (Ávila et al., 2012, Brito
et al., 2014a).

Within the host species P. pollicaris, the nematode S. oxkutzca-
biensis was dominant. The nematode has been frequently asso-
ciated with lizards (Gekkota) in several environments of South
America (Ávila & Silva, 2010), including semiarid regions
(Brito et al., 2014a, b; Lima et al., 2017). The generalist lizard
T. hispidus had the greatest number of associated endoparasites
in this study. The species is widely dispersed in Caatinga areas
and its habitat use and diet is variable (Rodrigues, 2003). The het-
eroxenic nematode P. lutzi was the dominant species in the infra-
community of this host. Physaloptera sp. are often associated with
carnivorous lizards (Bursey et al., 2005; Ávila & Silva, 2010; Brito
et al., 2014a; Lima et al., 2017). The component community of the
tropidurid, T. semitaeniatus, is primarily composed of the nema-
tode S. oscari, which infects a wide range of hosts from different
families in South America (Ávila & Silva, 2010).

To the best of our knowledge, this is the first study to evaluate
the influence of average abundance on endoparasitic variance in
semiarid areas, and our results indicate that endoparasite infrapo-
pulation variance are highly restricted by average abundance per
host values. Further, the structure of the component community
regarding the use of host species is random.

Environments that are subjected to large seasonal variations
have high parasite aggregation values, because species can syn-
chronize the release of infective forms according to season,
which may contribute to increased levels of infection and aggre-
gation (Sherrard-Smith et al., 2015). In contrast, parasite popula-
tions that are highly interactive (e.g. occupy the same site of
infection) tend to be more strongly regulated by average abun-
dance (Bottomley et al., 2005). These assumptions may be espe-
cially true for lizard hosts in semiarid regions, and their effects
in other groups of hosts should be assessed.
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