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Spin-down of a baroclinic vortex by irregular
small-scale topography
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This study explores the impact of small-scale variability in the bottom relief on the
dynamics and evolution of broad baroclinic flows in the ocean. The analytical model
presented here generalizes the previously reported barotropic ‘sandpaper’ theory of
flow–topography interaction to density-stratified systems. The multiscale asymptotic
analysis leads to an explicit representation of the large-scale effects of irregular bottom
roughness. The utility of the multiscale model is demonstrated by applying it to the
problem of topography-induced spin-down of an axisymmetric vortex. We find that
bathymetry affects vortices by suppressing circulation in their deep regions. As a
result, vortices located above rough topography tend to be more stable than their
flat-bottom counterparts. The multiscale theory is validated by comparing corresponding
topography-resolving and parametric simulations.
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1. Introduction

The interaction of large-scale ocean circulation patterns with topography has been a
subject of persistent oceanographic interest for at least seventy years (Munk & Palmén
1951; McWilliams 1974; Holloway 1987, 1992; Tréguier & McWilliams 1990; Sengupta,
Piterbarg & Reznik 1992; Dewar 1998; Olbers et al. 2004; Radko & Kamenkovich
2017; Arbic et al. 2019). However, despite the emerging consensus regarding its general
significance, specific mechanisms of topographic control are still uncertain and much
debated. Perhaps our incomplete understanding of the role of bathymetry – and related
difficulties in representing its subgrid effects in global simulations – can be ascribed
to the breadth of the problem. Topography affects large-scale patterns through a variety
of processes operating on a wide range of scales. Much attention has been given to
the analyses of bottom pressure torque (Hughes & de Cuevas 2001; Jackson, Hughes
& Williams 2006; Stewart, McWilliams & Solodoch 2021), with particular emphasis
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on lee-wave-induced drag (Naveira Garabato et al. 2013; Eden, Olbers & Eriksen 2021;
Klymak et al. 2021). Bathymetry can also control large-scale flows by affecting their
stability and associated mixing characteristics (e.g. Chen, Kamenkovich & Berloff 2015;
Brown, Gulliver & Radko 2019; LaCasce et al. 2019; Radko 2020). The topographically
induced energy transfer from balanced flows to unbalanced phenomena could represent a
critical link between the large-scale forcing of the ocean at the sea surface and irreversible
mixing in its interior (Dewar & Hogg 2010; Dewar, Berloff & Hogg 2011). Topographic
steering is yet another commonly invoked mechanism for the regulation of large-scale
currents (Marshall 1995; Wåhlin 2002).

Our study is focused on less explored, and more difficult to quantify, indirect effects
of topography. We are interested in the tendency of rough topography to interact
with large-scale currents by generating small-scale eddies associated with considerable
Reynolds stresses that, in turn, influence the evolution of primary flows (Radko 2020;
Gulliver & Radko 2022). The present investigation builds on the previously reported
barotropic model of topographic control (Radko 2022), which contains further background
information. The latter study examined the interaction of broad currents with irregular
seafloor utilizing techniques of multiscale mechanics (Gama, Vergassola & Frisch 1994;
Novikov & Papanicolau 2001; Mei & Vernescu 2010) and has been dubbed the sandpaper
model. The chosen moniker underscores the cumulative impact of a multitude of
small-scale topographic features by invoking the association with fine abrasive particles
of sandpaper. The model of Radko (2022) was couched in terms of a quasi-geostrophic
framework, which made it possible to exclude wave-induced drag and focus the analysis
exclusively on eddy stresses. Unlike earlier multiscale theories of topographic control
(Benilov 2000, 2001; Vanneste 2000, 2003; Goldsmith & Esler 2021), the sandpaper model
determines the topographic forcing from the prescribed statistical spectrum of small-scale
bathymetry. This, in turn, makes the problem of bathymetric control analytically tractable
and, ultimately, leads to a rigorous asymptotics-based parameterization of the flow forcing
by the seafloor roughness.

The present model extends the multiscale theory of Radko (2022) to baroclinic flows,
layered and continuously stratified. We develop an explicit closure for the topographically
induced eddy stresses and validate it by comparing topography-resolving simulations
with their parametric counterparts. The sandpaper theory is used to investigate the
spin-down of large-scale baroclinic vortices (figure 1). We discover that the influence of
topography on such structures is twofold. Topography-induced stresses adversely affect
the circulation in regions close to the seafloor. As a result, large-scale flows eventually
become equivalent-barotropic, with swift currents constrained to the upper regions and
the abyssal zone becoming largely quiescent – patterns that are representative of coherent
oceanic eddies (Olson 1991). It is also shown that topography stabilizes vortices by
suppressing baroclinic instability. This form of instability is caused by the interaction
of perturbations at different levels (Phillips 1951) and, therefore, the topographic arrest
of abyssal motions dramatically reduces its intensity. We hypothesize that topographic
stabilization, illustrated by the sandpaper model, contributes to the surprising sensitivity
of oceanic flows to seafloor roughness (LaCasce et al. 2019; Radko 2020; Gulliver &
Radko 2022).

The paper is organized as follows. Section 2 presents the set-up and governing
equations. The multiscale theory for layered flows is developed in § 3 and the resulting
parameterization is used to investigate the spin-down and stability of large-scale vortices
(§ 4). Section 5 describes the continuously stratified version of the sandpaper model. The
results are summarized, and conclusions are drawn, in § 6.
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Spin-down of a baroclinic vortex by small-scale topography
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Figure 1. Schematic diagram illustrating the set-up of the stratified sandpaper model. A large-scale vortex is
spinning above the irregular seafloor and its intensity varies with depth.

2. Formulation: the layered model
The interaction of large-scale flows with topography is studied using the multilayer
framework, which is commonly referred to in the oceanographic literature as the isopycnal
model. In the quasi-geostrophic approximation (e.g. Pedlosky 1987), the governing
equations are

∂q∗
1

∂t∗
+ J(ψ∗

1 , q∗
1)+ β∗ ∂ψ

∗
1

∂x∗ = ν∗∇4ψ∗
1 , q∗

1 = ∇2ψ∗
1 + f ∗

0
2

g′∗H∗
1
(ψ∗

2 − ψ∗
1 ),

∂q∗
i

∂t∗
+ J(ψ∗

i , q∗
i )+ β∗ ∂ψ

∗
i

∂x∗ = ν∗∇4ψ∗
i , i = 2, . . . , (n − 1), q∗

i = ∇2ψ∗
i + f ∗

0
2

g′∗H∗
i
(ψ∗

i−1 + ψ∗
i+1 − 2ψ∗

i ),

∂q∗
n

∂t∗
+ J(ψ∗

n , q∗
n)+ β∗ ∂ψ

∗
n

∂x∗ = ν∗∇4ψ∗
n − γ ∗∇2ψ∗

n , q∗
n = ∇2ψ∗

n + f ∗
0

2

g′∗H∗
n
(ψ∗

n−1 − ψ∗
n )+ f ∗

0
η∗

H∗
n
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where ψ∗
i is the streamfunction in layer i associated with the velocity field (u∗

i , v
∗
i ) =

(−∂ψ∗
i /∂y∗, ∂ψ∗

i /∂x∗), H∗
i is the reference layer thickness, η∗ is the topographic height

and J is the Jacobian. The asterisks represent dimensional quantities. The lateral viscosity
is denoted by ν∗ and γ ∗ = (1/H∗

n)
√
ν∗

Ef ∗
0 /2 is the Ekman drag coefficient, where ν∗

E
is the vertical eddy viscosity in the bottom boundary layer. In the context of the
mesoscale spin-down problem, ν∗ and γ ∗ represent dissipation induced by small-scale
turbulent mixing, rather than molecular friction. Theoretical development is simplified
by assuming identical density differences between adjacent layers �ρ∗ = ρ∗

i − ρ∗
i−1 ,

although the generalization to variable �ρ∗ is straightforward. The reduced gravity in
(2.1) is denoted by g′∗ = g∗(�ρ∗/ρ∗

0 ), where g∗ ≈ 9.8 m s−2, and β∗ ≡ ∂f ∗/∂y∗ is the
meridional gradient of planetary vorticity. Parameters H∗

0 , ρ∗
0 and f ∗

0 are the reference
values of the ocean depth, density and Coriolis parameter, respectively.

This study explores the interaction of large-scale flow patterns of the lateral extent O(L∗)
with much smaller scales O(L∗

S) that are present in topography. We assume that these small
scales are limited to a finite interval

L∗
min < L∗

S < L∗
C. (2.2)
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The range of small scales is constrained from below to ensure that the Rossby numbers are
uniformly low:

Ro = max
x,y,t,i

(
|∇2ψ∗

i |
f ∗
0

)
� 1, (2.3)

as demanded by the quasi-geostrophic approximation. The representative large-scale
velocity in the upper (usually most active) layer is denoted by U∗, and the number of
controlling parameters is reduced by non-dimensionalizing ψ∗

i , x∗, y∗ and t∗ as follows:

ψ∗
i = U∗L∗ψi, x∗ = L∗x, y∗ = L∗y, t∗ = L∗

U∗ t. (2.4a–d)

For convenience, the depth variation is non-dimensionalized in a different manner:

η∗ = U∗H∗
n

f ∗
0 L∗ η. (2.5)

To be specific, we consider scales that reflect typical sizes and intensities of oceanic
mesoscale eddies:

U∗ = 0.1 m s−1, L∗ = 105 m, H∗
0 = 4000 m, f ∗

0 = 10−4 s−1. (2.6a–d)

The non-dimensionalization in (2.4) and (2.5) reduces the governing equations (2.1) to
∂q1

∂t
+ J(ψ1, q1)+ β

∂ψ1

∂x
= ν∇4ψ1, q1 = ∇2ψ1 + F1(ψ2 − ψ1),

∂qi

∂t
+ J(ψi, qi)+ β

∂ψi

∂x
= ν∇4ψi, i = 2, . . . , (n − 1), qi = ∇2ψi + Fi(ψi−1 + ψi+1 − 2ψi),

∂qn

∂t
+ J(ψn, qn)+ β

∂ψn

∂x
= ν∇4ψn − γ∇2ψn, qn = ∇2ψn + Fn(ψn−1 − ψn)+ η,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.7)

where

Fi = L∗2f ∗
0

2

g′∗H∗
i
, β = L∗2

U∗ β
∗, ν = ν∗

U∗L∗ , γ = L∗

U∗ γ
∗. (2.8a–d)

To explore the interaction between flow components of large and small lateral extent,
we introduce the scale-separation parameter

ε = L∗
C

L∗ � 1. (2.9)

This parameter is used to define the new set of spatial and temporal scales (xS, yS) that
describe the dynamics of small-scale processes. These variables are related to the original
ones through

(xS, yS) = ε−1(x, y), (2.10)

and the spatial derivatives in the governing system (2.7) are replaced accordingly:
∂

∂x
→ ∂

∂x
+ ε−1 ∂

∂xS
,

∂

∂y
→ ∂

∂y
+ ε−1 ∂

∂yS
. (2.11a,b)

We assume that Fi, β and γ are O(1) quantities, whilst the lateral viscosity (ν) is small
and therefore rescaled in terms of ε:

ν = ε2ν0. (2.12)

Equation (2.12) implies that friction could be significant on small scales but its direct
impact on the large-scale dynamics is weak.
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Spin-down of a baroclinic vortex by small-scale topography

Topographic patterns considered in the following model vary on both large and small
scales:

η = ηL(x, y)+ ηS(xS, yS). (2.13)

The most natural way to separate bathymetry into small-scale and large-scale components
– and the one used in our numerical simulations – is based on the Fourier transform:

η = 1√
�k�l

∫∫
κ<2π/LC

η̃(k, l) exp(ikx + ily) dk dl︸ ︷︷ ︸
ηL

+ 1√
�k�l

∫∫
κ>2π/LC

η̃(k, l) exp(ikx + ily) dk dl︸ ︷︷ ︸
ηS

, (2.14)

where (k, l) are the wavenumbers in x and y, tildes denote Fourier images, κ ≡ √
k2 + l2,

(�k,�l) = (2πL−1
x , 2πL−1

y ) and (Lx, Ly) is the domain size. The component ηL of
decomposition (2.14) gently varies on relatively large scales and ηS represents small-scale
variability.

For representative magnitudes of depth variation η∗ ∼ 300 m (Goff & Jordan 1988;
Goff 2020), their non-dimensional counterparts significantly exceed unity: η ∼ 10. This
variability is mostly associated with relatively small lateral scales (∼10 km). Therefore,
the small-scale depth variation is rescaled as

ηS = ε−1η0. (2.15)

3. Multiscale model

We now proceed to develop a baroclinic version of the sandpaper theory. Our approach is
analogous to the barotropic model of Radko (2022) and only an abbreviated description is
offered here. To capture the interaction of large-scale patterns with small-scale topography,
the solution for ψi is sought in terms of power series in ε � 1:

ψi = ψ
(0)
i (x, y, t)+ εψ

(1)
i (x, y, xS, yS, t)+ ε2ψ

(2)
i (x, y, xS, yS, t)+ · · · . (3.1)

The expansion opens with a large-scale pattern ψ(0)i that does not vary on small scales.
We modify the governing equations (2.7) using (2.11)–(2.15) and substitute series (3.1)
in the resulting expressions, combining terms of the same order in ε. The leading-order
O(ε−2) balance in all layers except for the bottom one is trivially solved by

ψ
(1)
i = 0, i = 1, . . . , (n − 1), (3.2)

whereas for the lowest layer we use the steady small-scale pattern ψ(1)n = ψ
(1)
n (xS, yS) that

satisfies

∇2
Sψ

(1)
n + η0(xS, yS) = 0, (3.3)

where ∇2
S ≡ ∂2/∂x2

S + ∂2/∂y2
S. This balance represents the tendency for expulsion of

small-scale potential vorticity (PV) in the lowest layer (Radko 2022).
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The O(ε−1) balances in the upper layers are satisfied by

ψ
(2)
i = 0, i = 1, . . . , (n − 1), (3.4)

and the corresponding balance for the bottom layer amounts to(
∂ψ

(0)
n

∂x
+ ∂ψ

(1)
n

∂xS

)
∂ς

(2)
n

∂yS
−
(
∂ψ

(0)
n

∂y
+ ∂ψ

(1)
n

∂yS

)
∂ς

(2)
n

∂xS
= ν0∇4

Sψ
(1)
n − γ∇2

Sψ
(1)
n , (3.5)

where ς
(2)
n ≡ ∇2

Sψ
(2)
n . The physical interpretation of (3.5) is straightforward. The

advection of the small-scale PV field – represented by ς(2)n at the leading order – by
the primary large-scale flow is balanced by explicit dissipation. While ψ(1)n is rigidly
controlled by topography and therefore is steady, the second-order correction ψ(2)n is
time-dependent and sensitive to the changes in the large-scale flow (ψ(0)n ). It is also
interesting to note that while the lateral friction (ν) is weak and does not affect the
large-scale flow directly, its indirect influence can be substantial. Friction affects the
small-scale pattern through the advective–diffusive balance (3.5). The small-scale eddies,
in turn, can influence large-scale flows by generating substantial Reynolds stresses.

The evolutionary equations are obtained from the O(1) balances by averaging them in
small-scale variables, which yields

∂q(0)1
∂t

+ J(ψ(0)1 , q(0)1 )+ β
∂ψ

(0)
1
∂x

= 0, q(0)1 = ∇2ψ
(0)
1 + F1(ψ

(0)
2 − ψ

(0)
1 ),

∂q(0)i
∂t

+ J(ψ(0)i , q(0)i )+ β
∂ψ

(0)
i
∂x

= 0, i = 2, . . . , (n − 1), q(0)i = ∇2ψ
(0)
i + Fi(ψ

(0)
i−1 + ψ

(0)
i+1 − 2ψ(0)i ),

∂q(0)n

∂t
+ J(ψ(0)n , q(0)n )+ β

∂ψ
(0)
n

∂x
+ D + γ∇2ψ

(0)
n = 0, q(0)n = ∇2ψ

(0)
n + Fn(ψ

(0)
n−1 − ψ

(0)
n )+ ηL,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

where

D =
〈
∂ψ

(1)
n

∂xS

∂ς
(2)
n

∂y
− ∂ψ

(1)
n

∂yS

∂ς
(2)
n

∂x

〉
xS,yS

. (3.7)

Angle brackets represent mean values, with the averaging variables listed in the subscript.
In (3.6), we readily recognize the original governing equations that are modified in

two ways. They no longer contain explicit lateral friction, which is not surprising since
viscosity is treated as a weak higher-order correction. More significant, however, is
the appearance of term D in the equation for the bottom layer, which represents the
topographic forcing of large-scale flows by small-scale bottom roughness. It should be
emphasized that topographic forcing (D) originates from the averaged nonlinear advective
term J(ψ ′

n,∇2ψ ′
n) in (2.7), where ψ ′

n = ψn − ψ
(0)
n , and represents the eddy-induced

mixing of momentum. This finding brings precious insight into the physics of topographic
control. It implies that the primary role of topography in the sandpaper model is the
generation of small-scale eddies that affect large-scale flows through the associated
Reynolds stresses. In contrast, the topographic “form drag” acting directly on the
large-scale current, which is represented by term J(ψ(0)n , ηS), does not affect the
large-scale circulation at the leading order.

At this point, it becomes necessary to express the topographic forcing (3.7) in terms
of zero-order flow components. This challenge is met by recognizing that ψ(1)n can be
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Spin-down of a baroclinic vortex by small-scale topography

computed for any given pattern of small-scale topography using (3.3) and ς(2)n can be
obtained from (3.5). The analytical steps used to eliminate ς(2)n between (3.5) and (3.7)
are essentially identical to those taken in the barotropic model (Radko 2022) but, for
convenience, they are reproduced in Appendix A. The result of these developments is
the explicit expression for D in terms of large-scale velocities:

D = G
(
∂

∂x

(
vn

u2
n + v2

n

)
− ∂

∂y

(
un

u2
n + v2

n

))
, G = 2π

∫
|η̃S|2

(γ
κ

+ νκ
)

dκ, (3.8)

where (k, l) are the wavenumbers, κ = √
k2 + l2, (un, vn) = (−∂ψn/∂y, ∂ψn/∂x) and η̃S

represents the Fourier image of the small-scale component of topography. To lighten up
notation, we omit superscripts ‘(0)’ in leading-order flow components since the subsequent
discussion is focused exclusively on their dynamics. Note that the coefficient G in the
topographic forcing term (3.8) is uniquely determined by the bathymetric spectrum and
the explicit dissipation parameters (γ, ν). Therefore, (3.8) can be viewed as a rigorous
parameterization of the topographic forcing of large-scale flows. It should be emphasized,
however, that the performance of this closure is contingent on the effective homogenization
of small-scale PV, as demanded by (3.3). The extent to which the homogenization is
realized in nature may be configuration-dependent.

To help in implementing the sandpaper theory in more utilitarian applications, we also
include the dimensional expression of the topographic forcing:

D∗ = G∗
(
∂

∂x∗

(
v∗

n

u∗2
n + v∗2

n

)
− ∂

∂y∗

(
u∗

n

u∗2
n + v∗2

n

))
, G∗ = 2πf ∗2

0
H∗2

n

∫
|η̃∗

S |2
(
γ ∗

κ∗ + ν∗κ∗
)

dκ∗.

(3.9)

The topographic forcing term D∗ can be introduced in the dimensional quasi-geostrophic
equation for the bottom layer (2.1) to represent the effects of unresolved bathymetry.
We also note that adding topographic forcing (3.9) in the PV equation is equivalent to
modifying the horizontal momentum equations as follows:

∂u∗
n

∂t∗
+ u∗

n
∂u∗

n

∂x∗ + v∗
n
∂u∗

n

∂y∗ − f ∗v∗
n = − 1

ρ∗
n

∂p∗
n

∂x∗ − G∗u∗
n

u∗ 2
n + v∗ 2

n
+ ν∗∇2u∗

n,

∂v∗
n

∂t∗
+ u∗

n
∂v∗

n

∂x∗ + v∗
n
∂v∗

n

∂y∗ + f ∗u∗
n = − 1

ρ∗
n

∂p∗
n

∂y∗ − G∗v∗
n

u∗ 2
n + v∗ 2

n
+ ν∗∇2v∗

n ,

⎫⎪⎪⎬
⎪⎪⎭ (3.10)

where p∗
n is the pressure field in the bottom layer. Formulation (3.10) permits the

implementation of the proposed parameterization in isopycnal general circulation models
(e.g. Bleck 2002), commonly used for large-scale ocean simulations.

4. Spin-down of a baroclinic vortex

The objective of the following simulations is twofold. We examine the mechanics of
topographic spin-down of circular vortices and concurrently assess the performance
characteristics of the parametric model (3.8). The latter goal is achieved by comparing
topography-resolving simulations with their parametric counterparts. The configuration
of the spin-down experiments is illustrated in figure 1.
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The bottom topography is represented by the observationally derived spectrum of Goff
& Jordan (1988):

P∗
η = h∗ 2(μ− 2)

(2π)3k∗
0l∗0

(
1 +

(
k∗

2πk∗
0

)2

+
(

l∗

2πl∗0

)2
)−μ/2

. (4.1)

Following Nikurashin et al. (2014), we assume

μ = 3.5, k∗
0 = 1.8 × 10−4 m−1, l∗0 = 1.8 × 10−4 m−1, h∗ = 305 m. (4.2a–d)

After non-dimensionalization, (4.1) reduces to

Pη = C

(
1 +

(
κ

2πL∗k∗
0

)2
)−μ/2

, C = μ− 2

(2π)3

(
f ∗
0 h∗

U∗H∗
nk∗

0

)2

. (4.3)

For topography-resolving simulations, we reconstruct bottom topography as a sum of
Fourier modes with random phases and spectral amplitudes conforming to (4.3). The
range of small-scale variability (2.2) is specified by assigning Lmin = 0.03 and LC =
0.3 ,which is dimensionally equivalent to L∗

min = 3 km and L∗
C = 30 km. The components

of topography with wavelengths outside of this interval (2πκ−1 > LC and 2πκ−1 < Lmin)
are excluded from the bathymetric spectrum.

All experiments, parametric and topography-resolving, are performed with the two-layer
(n = 2) model. The simulations are initiated with the Gaussian streamfunctions for both
layers:

ψG
1 = exp(−r2)

ψG
2 = A exp(−r2)

r =
√

x2 + y2.

}
(4.4)

Without loss of generality, the effective non-dimensional radius and the amplitude
of the upper layer flow are set to unity. The second-layer amplitude (A) determines
the initial baroclinicity of the vortex (4.4). The governing equations are integrated
using the de-aliased pseudo-spectral model employed in our previous works (e.g.
Radko & Kamenkovich 2017; Radko, McWilliams & Sutyrin 2022). A relatively wide
computational domain of size (Lx, Ly) = (8, 8) is used to limit the influence of boundary
conditions. The topography-resolving simulations employ a fine mesh with (Nx,Ny) =
(2048, 2048) grid points. The parametric simulations, which do not require the resolution
of small-scale bathymetry, are performed on a much coarser grid with (Nx,Ny) =
(256, 256). For our baseline configuration, we assume F1 = 10 and F2 = 10

3 , which
corresponds to g′∗ = 0.01 m s−1, H∗

1 = 1 km and H∗
2 = 3 km. The lateral viscosity is

ν = 10−4 and γ = β = 0.
While topography-resolving simulations are readily performed using (2.7), numerical

treatments of the parametric system demand the modification of (3.6). One of the
complications is caused by the singularity of the topographic forcing term (3.8) in
locations where the absolute velocity in the bottom layer V = √

u2
n + v2

n is zero. Following
Radko (2022), this problem is mitigated by introducing the modified velocity

Vm = V

tanh2(δV)
, (4.5)

where δ � 1. In all simulations reported here, we use δ = 25. While Vm ≈ V for most of
the vortex area, (4.5) guarantees that the modified velocity is non-zero at any given point.
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Spin-down of a baroclinic vortex by small-scale topography

The expression for D is adjusted accordingly:

Dm = G
(
∂

∂x

(
vn

VVm

)
− ∂

∂y

(
un

VVm

))
. (4.6)

Another technical complication is caused by the lack of explicit lateral dissipation in (3.6),
which is scaled as O(ε2) in the asymptotic theory. Since lateral viscosity is required to
control the numerical stability of nonlinear simulations, it is reintroduced in the parametric
model as follows:
∂q1

∂t
+ J(ψ1, q1)+ β

∂ψ1

∂x
= ν∇4ψ1, q1 = ∇2ψ1 + F1(ψ2 − ψ1),

∂qi

∂t
+ J(ψi, qi)+ β

∂ψi

∂x
= ν∇4ψi, i = 2, . . . (n − 1), qi = ∇2ψi + Fi(ψi−1 + ψi+1 − 2ψi),

∂qn

∂t
+ J(ψn, qn)+ β

∂ψn

∂x
+ Dm + γ∇2ψn = ν∇4ψn, qn = ∇2ψn + Fn(ψn−1 − ψn)+ ηL.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.7)

Our first comparison of the topography-resolving and parametric models is based on the
vortex spin-down experiment performed with A = 0.5 (figure 2). The instantaneous (t =
10) streamfunction patterns ψ1 and ψ2 in the topography-resolving simulation are shown
in figure 2(a,b), and their parametric counterparts in figure 2(c,d). Topography-resolving
and parametric simulations are generally consistent with each other. They reveal a major
reduction in the streamfunction amplitudes, from (1, 0.5) in the upper and lower layers
initially to (0.69, 0.13) in the topography-resolving run and to (0.71, 0.15) in the parametric
simulation. Such agreement instils confidence in the ability of the sandpaper model to
capture the essential physics of the flow–topography interaction. This belief is reinforced
by comparing the lower-layer vorticity and topography in figure 3, which presents a
magnified view of a small region in the vortex interior:

Ω = {0.4 < x < 0.6, 0.4 < y < 0.6}. (4.8)

According to (3.3), the vorticity and topographic patterns represent mirror images of
each other, ς2 ≈ −ηS, and even the visual inspection of figure 3 readily confirms this
proposition. For a more quantitative assessment, we compute the correlation coefficient of
ς2 and ηS:

c = 〈ς2ηS〉Ω√
〈ς2

2 〉
Ω

〈η2
S〉Ω

= −0.98. (4.9)

Such anticorrelation is the spectacular manifestation of the small-scale PV homogenization
– the cornerstone of the sandpaper theory.

To further explore the spin-down dynamics, we turn to the temporal record of kinetic
energy Ei = 1

2 〈|∇ψi|2〉x,y, where i = 1, 2. Once again, the topography-resolving and
parametric simulations (figure 4) are generally in agreement. Qualitative differences in the
energy patterns are observed only at the initial stage of the simulation (t < 1), when E1
in the topography-resolving experiment decreases much more rapidly than its parametric
counterpart. Afterwards (t > 1), the spin-down rates become much closer. The transient
initial response reflects the adjustment of the flow field in the topography-resolving
simulation to the balanced state characterized by the small-scale PV homogenization.
Particularly telling in this regard is the record of the correlation coefficient (4.9), which
changes over the adjustment period 0 < t < 1 from c = −0.03 to c = −0.92. While the
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Figure 2. Streamfunction patterns in the topography-resolving (t-r) experiment at t = 10 in the (a) upper and
(b) lower layers. (c,d) The corresponding patterns in parametric simulations (par).
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Figure 3. Magnified views of the (a) lower-layer vorticity and (b) depth perturbation in the small area (4.8).

energy substantially decreases in both layers, the spin-down of the lower one is more
dramatic. By t = 20, the system transitions to a nearly steady equivalent-barotropic state
in which the abyssal region is effectively quiescent and circulation is limited to the upper
layer. For reference, figure 4 also includes the energy record from the corresponding
flat-bottom experiment. The vortex barely changes throughout this simulation (0 < t <
30), and its upper (lower) layer energy reduces by less than 2 % (3 %).

In the next example, we reverse the sense of rotation in the lower layer by assigning
A = −0.5. The time series of energy in this case (figure 5) reveal a considerably different
evolutionary pattern (cf. figure 4). While the abyssal flow still rapidly slows down, the
upper layer accelerates, almost doubling its energy. This spin-up is attributed to the release
of the potential energy associated with the sloping interface between the upper and lower
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Figure 4. Time series of mean kinetic energy in the upper (a) and lower (b) layers for the experiment with
A = 0.5. The topography-resolving, parametric and flat-bottom simulations are indicated by solid, dashed and
dotted curves, respectively.

layers. As the abyssal circulation weakens, the interface flattens due to the Margules effect
(von Helmholtz 1888; Margules 1906). The associated reduction of the available potential
energy of the system prompts its partial transfer into the kinetic energy of the upper
layer. However, by t ≈ 20, the system evolves to an equivalent-barotropic state. As in
the previous example (figure 4), the topography-resolving and parametric simulations are
generally consistent. The only significant differences in the corresponding energy patterns
occur during the brief initial adjustment period (t < 1).

An interesting aspect of the evolution of a vortex with counter-rotating circulations at
different levels is its stability. In such structures, the sign of radial PV gradients changes
with depth, and therefore these vortices meet the linear instability criterion (Dritschel
1988). To further explore this issue, the topography-resolving and flat-bottom simulations
in figure 5 were extended in time to t = 100. The results (figure 6) reveal the profound
influence of the seafloor roughness on vortex stability. The vortex in the flat-bottom
experiment gradually loses its axial symmetry and eventually splits into two smaller
eddies. In contrast, the vortex above irregular topography remains coherent and nearly
steady throughout the entire simulation. This topographic stabilization is consistent with
our earlier findings (Gulliver & Radko 2022) and calls for a more systematic analysis.

To this end, we take advantage of the dramatic reduction in the computational cost
of simulations brought by the parametric model, which makes it feasible to explore the
relevant parameter space in detail. Of particular interest is the analysis of the maximal
growth rate of unstable perturbations (λ). This quantity is computed by linearizing the
parametric equations (4.7) with respect to the basic state (4.4). Since all simulations
with irregular seafloor are characterized by the suppression of the abyssal circulation
(figures 4 and 5), we focus on the equivalent-barotropic vortices with A = 0. The
linearized equations are integrated in time, starting from the random distribution of
perturbations (ϕ1, ϕ2) = (ψ1 − ψG

1 , ψ2). We employ the spectral algorithm analogous to
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Figure 5. Same as in figure 4, but for the experiment with A = −0.5.
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Figure 6. Snapshots of ψ1 at (a,b) t = 70, (c,d) t = 75 and (e, f ) t = 80 in the topography-resolving (a,c,e) and
flat-bottom ( f -b) (b,d, f ) simulations.
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Figure 7. (a) Temporal records of 1
2 ln(E′

1) for various values of G. The maximal growth rates are determined
from the best linear fits to these records over the second half of the integration interval. (b) Growth rates
obtained in this manner are plotted as a function of G.

the one used for the nonlinear simulations. Since linearized simulations do not require
explicit dissipation, the lateral friction terms (ν∇2ψi) are not included. The linear system
eventually becomes dominated by the most rapidly amplifying mode, which makes it
possible to determine the maximal growth rate.

The procedure used to compute λ is illustrated in figure 7. Figure 7(a) presents the
temporal records of 1

2 ln(E′
1), where E′

1(t) = 1
2 |∇ϕ1|2 is the perturbation energy in the

upper layer. As previously, we assume F1 = 10 and F2 = 10
3 . The calculations were

performed for various values of the coefficient G in the topographic forcing term (4.6),
a subset of which is shown in figure 7(a). In each case, after a brief period of adjustment,
the perturbation starts growing/decaying exponentially. The maximal growth rates are
evaluated from the best linear fit to 1

2 ln(E1) over the second half of each simulation
(250 < t < 500) and plotted as a function of G in figure 7(b). These diagnostics reveal
that the growth rates rapidly decrease with increasing G. For sufficiently high values of G,
the vortex becomes linearly stable.

To offer a more systematic analysis of the growth rates and their dependencies on
governing parameters, we independently vary G and F1 (the inverse Burger number),
whilst maintaining the original layer depth ratio of R = H2/H1 = F1/F2 = 3. The
resulting growth rate pattern λ(F1,G) in figure 8(a) reveals higher susceptibility of
relatively large-scale (high-F1) vortices to baroclinic instability. In figure 8(b), we assume
F1 = 10 and examine the dependence of growth rates on G and R. As expected, λ decreases

953 A7-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

94
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.944


T. Radko

5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0

G

R

0.2

0.4

0.6

0.8

1.0
λ(R, G)(×10–3)

5 10 15 20
0

0.05

0.10

0.15

0.20

0.25

0.30

0

G

F1

0.2

0.4

0.6

0.8

1.0
λ(F1, G)(×10–3)(a)

(b)

Figure 8. Growth rate (λ) is plotted as (a) a function of G and F1 and (b) a function of G and R.

with increasing R, which implies that relatively shallow vortices that are confined to
subsurface regions tend to be more stable than their deeper counterparts.

However, the most significant revelation in figure 8 is the remarkable sensitivity of
vortices to even the smallest values of topographic forcing. For G > Gcr ≈ 10−3, the
Gaussian upper-layer vortex becomes stable for all relevant values of F1 and F2. For a
representative topography spectrum (4.2), this critical value (Gcr) can be achieved either
with νcr = 1.5 × 10−5 (ν∗

cr = 0.15 m2 s−1) or with γcr = 0.065 (γ ∗
cr = 6.5 × 10−8 s−1).

Note that the explicit dissipation coefficients in this study represent eddy-induced (rather
than molecular) processes. Although the estimates of submesoscale mixing are poorly
constrained by observations and models, it is very likely that (ν, γ ) in the ocean
commonly exceed these instability thresholds (νcr, γcr). For instance, the analysis of
several observational datasets consolidated by Li et al. (2018) suggests that the effective
lateral viscosities are scale-dependent and can be described (in MKS units) by an empirical
relation ν∗ = 10−6a1.8, where a is the scale of a phenomenon of interest. For the range of
topographic scales considered in this study (3 × 103 m < L∗

S < 3 × 104 m), this estimate

yields 1 m2 s−1 <∼ ν∗ <∼ 100 m2 s−1 exceeding ν∗
cr by at least an order of magnitude.

The broadly representative Ekman friction coefficient in the oceanic bottom boundary
layer is γ ∗ ∼ 10−7 s−1 (e.g. Arbic & Flierl 2004). This value also exceeds the critical
threshold (γ ∗

cr) and therefore the Reynolds stresses attributed to the Ekman friction are
by themselves sufficient to stabilize coherent vortices. Furthermore, we should keep in
mind that the foregoing analysis is based on the quasi-geostrophic model, which a priori
excludes internal gravity waves and the associated wave-induced topographic drag. The
wave drag can be substantial (e.g. Arbic et al. 2019) and acts in the same sense as the
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Spin-down of a baroclinic vortex by small-scale topography

Reynolds stresses in the sandpaper model, which is expected to stabilize vortices even
more. Thus, it appears that bottom roughness may be the answer to the long-standing
mystery of the remarkable longevity and stability of the ocean rings (e.g. Dewar &
Killworth 1995, 1999; Dewar et al. 1999).

5. Continuously stratified model

While the foregoing theory and associated simulations were based on a multilayer model,
some reflection suggests that they can be generalized for continuously stratified flows.
To that end, we consider the continuously stratified quasi-geostrophic framework (e.g.
Pedlosky 1987):

∂q∗

∂t∗
+ J(ψ∗, q∗)+ β∗ ∂ψ∗

∂x∗ = ν∗∇2ψ∗, q∗ = ∇2ψ∗ + ∂

∂z∗

(
f ∗2
0

N∗2
∂ψ∗

∂z∗

)
, (5.1)

where N∗(z) = √−(g∗/ρ∗
0 )(∂ρ̄

∗/∂z∗) is the background pattern of the Brunt–Väisälä
frequency. The boundary conditions at the sea surface and bottom are as follows:

∂

∂t∗

(
∂ψ∗

∂z∗

)
+ J

(
ψ∗,

∂ψ∗

∂z∗

)
= 0 at z∗ = H∗,

∂

∂t∗

(
f ∗
0
∂ψ∗

∂z∗

)
+ J

(
ψ∗, f ∗

0
∂ψ∗

∂z∗ + N∗2
0 η

∗
)

+ r∗N∗2
0 ∇2ψ∗ = 0 at z∗ = 0,

⎫⎪⎪⎬
⎪⎪⎭ (5.2)

where r∗ = √
ν∗

E/2f ∗
0 and N∗

0 = N∗|z∗= 0. The governing equations are non-
dimensionalized as follows:

ψ∗ = U∗L∗ψ, (x∗, y∗) = L∗(x, y), z∗ = H∗z, t∗ = L∗

U∗ t, (η∗, r∗) = U∗L∗f ∗
0

H∗N∗2
0
(η, r),

(5.3a–e)
which reduces (5.1) to

∂q
∂t

+ J(ψ, q)+ β
∂ψ

∂x
= ν∇2ψ, q = ∇2ψ + ∂

∂z

(
S−1 ∂ψ

∂z

)
, (5.4)

where S = (H∗N∗/L∗f ∗
0 )

2. The non-dimensional boundary conditions take the form

∂

∂t

(
∂ψ

∂z

)
+ J

(
ψ,
∂ψ

∂z

)
= 0 at z = 1 (5.5)

and

∂

∂t

(
∂ψ

∂z

)
+ J

(
ψ,
∂ψ

∂z
+ η

)
+ r∇2ψ = 0 at z = 0. (5.6)

We retain most assumptions of the sandpaper theory (2.9)–(2.13). However, in the
continuously stratified model, it is more convenient to treat small-scale topographic
variability ηS as an order-one quantity and rescale the large-scale component as ηL = εηL0.
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T. Radko

The bottom drag is assumed to be weak and is rescaled as

r = εr0. (5.7)

In addition, we introduce the small-scale vertical coordinate zS = ε−1z and replace z
derivatives in governing equations (5.4) and (5.6) by

∂

∂z
→ ∂

∂z
+ ε−1 ∂

∂zS
. (5.8)

To represent relatively slow topographic spin-down, we also introduce two sets of temporal
variables t1 = εt and t = t0, replacing temporal derivatives by

∂

∂t
→ ∂

∂t0
+ ε

∂

∂t1
. (5.9)

Following the layered model, we seek the solution for ψ in terms of power series in ε:

ψ = ψ(0)(x, y, t0, t1)+ εψ(1)(x, y, z, xS, yS, zS, t0, t1)

+ ε2ψ(2)(x, y, z, xS, yS, zS, t0, t1)+ · · · . (5.10)

The leading-order O(ε−2) interior balance is solved by assuming the small-scale pattern
ψ(1) that satisfies

∇2
Sψ

(1) + 1
S
∂2ψ(1)

∂z2
S

= 0. (5.11)

This statement represents the small-scale PV homogenization tendency – the counterpart
of (3.3) in the layered model. The boundary conditions at this order are trivially satisfied.

To solve (5.11), we apply the Fourier transform in (xS, yS):

− κ2
S ψ̃

(1) + 1
S
∂2ψ̃

(1)

∂z2
S

= 0 → ψ̃(1) = C1 exp(−
√

SκSzS)+ C2 exp(
√

SκSzS). (5.12)

The relevant solution for ψ̃(1) is represented by the first (decaying upward) component of
(5.12). This root is also consistent with the layered version of the sandpaper model (§ 3),
in which the direct effects of topography are localized to regions immediately above the
seafloor.

At O(ε−1) , the solution with ψ̃(1) = C1 exp(−√
SκSzS) unconditionally satisfies the

boundary condition at the sea surface, whereas the boundary condition at zS = z = 0 is
satisfied if

ηS + ∂ψ(1)

∂zS
= 0. (5.13)

The constant C1 in (5.12) is readily determined from (5.13), leading to

ψ̃(1) = η̃S√
S0κS

exp(−
√

S0κSzS), (5.14)

where S0 = (H∗N∗
0/L

∗f ∗
0 )

2. Equation (5.14) implies that the vertical extent of the region
of direct topographic forcing is set by the abyssal stratification and the effective horizontal
wavenumber of rough topography.
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Spin-down of a baroclinic vortex by small-scale topography

The large-scale evolutionary interior equation is obtained by averaging the O(1) balance
in (xS, yS), which yields

∂q(0)

∂t0
+ J(ψ(0), q(0))+ β

∂ψ(0)

∂x
= 0,

∂q(0)

∂t1
= 0, (5.15a,b)

where q(0) ≡ ∇2ψ(0) + (∂/∂z)((1/S)(∂ψ(0)/∂z)).
This finding implies that the effects of bathymetry do not explicitly appear in the

interior equation. The bottom boundary condition, on the other hand, offers a direct link
to topographic forcing. Its O(1) component takes the form

∂

∂t0

(
∂ψ(0)

∂z

)
+ J

(
ψ(0),

∂ψ(0)

∂z

)
+ ∂ψ(0)

∂x
∂2ψ(2)

∂yS∂zS
− ∂ψ(0)

∂y
∂2ψ(2)

∂xS∂zS

+ ∂ψ(1)

∂xS

∂2ψ(2)

∂yS∂zS
− ∂ψ(1)

∂yS

∂2ψ(2)

∂xS∂zS
+ r0∇2

Sψ
(1) = 0. (5.16)

When (5.16) is averaged in (xS, yS), we arrive at

∂

∂t0

(
∂ψ(0)

∂z

)
+ J

(
ψ(0),

∂ψ(0)

∂z

)
= 0 at z = 0, (5.17)

and subtracting (5.17) from (5.16) yields

∂ψ(0)

∂x
∂2ψ(2)

∂yS∂zS
− ∂ψ(0)

∂y
∂2ψ(2)

∂xS∂zS
+ ∂ψ(1)

∂xS

∂2ψ(2)

∂yS∂zS
− ∂ψ(1)

∂yS

∂2ψ(2)

∂xS∂zS
+ r0∇2

Sψ
(1) = 0.

(5.18)

The effects of topography are brought to the fore by averaging the O(ε) balance of the
bottom boundary condition in (xS, yS), which results in

∂

∂t1

(
∂ψ(0)

∂z

)
+ J(ψ(0), ηL0)+ DS + r0∇2ψ(0) = 0 at z = 0, (5.19)

where

DS =
〈
∂ψ(1)

∂xS

∂2ψ(2)

∂y∂zS
− ∂ψ(1)

∂yS

∂2ψ(2)

∂x∂zS

〉
xS,yS

. (5.20)

This term represents the forcing of large-scale flow by small-scale topography. To express
DS in terms of large-scale velocities, we eliminate ψ(2) between (5.18) and (5.20). This
procedure is described in Appendix B and the sought-after expression is given in (B10).

At this point, the multiscale analysis is completed, and we can cast the results in terms
of original variables. For the bottom boundary condition, this is accomplished using (5.17)
and (5.19) to evaluate (∂/∂t0)(∂ψ(0)/∂z) and (∂/∂t1)(∂ψ(0)/∂z), respectively, and (5.9) to
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compute the net temporal variation:

∂

∂t

(
∂ψ

∂z

)
+ J

(
ψ,
∂ψ

∂z
+ ηL

)
+ Dbc + r∇2ψ = 0 at z = 0, (5.21)

where we omitted the superscripts ‘(0)’ in describing the leading-order components. The
topographic forcing function Dbc in (5.21) takes the form

Dbc = εDS = Gbc

(
∂

∂x

(
v0

u2
0 + v2

0

)
− ∂

∂y

(
u0

u2
0 + v2

0

))
, (5.22)

where (u0, v0) are the large-scale velocities at z = 0 and

Gbc = εGS = 2πr
S0

∫
|η̃S| 2κ dκ. (5.23)

The interior equation is reconstructed using (5.9) and (5.15), which shows that it is
not affected directly by the bottom topography. Likewise, the upper boundary condition
(5.5) retains its original form. Thus, the combination of (5.4), (5.5) and (5.21) represents
the asymptotics-based parameterization of rough bathymetry in the continuously stratified
quasi-geostrophic model.

6. Discussion

Topography can profoundly influence ocean circulation and its transport characteristics.
Yet, our understanding of the specific mechanisms of topographic control remains limited,
and so is our ability to concisely represent the effects associated with the variability of
the seafloor depth. To address these challenges, we develop the stratified version of the
sandpaper model (Radko 2022) designed to capture the interaction between small-scale
bathymetry and baroclinic large-scale flows. The model utilizes techniques of multiscale
mechanics and leads to a closed set of large-scale equations.

The dynamic transparency of the asymptotic multiscale model makes it possible
to physically interpret the chain of events involved in the topographic regulation of
large-scale currents. The principal feature of the flow field predicted by the model is
the homogenization of the PV in the immediate proximity of rough topography. This
tendency leads to the formation of stationary small-scale flows in the abyssal ocean that
are rigidly controlled by bathymetry. They interact with the original current, producing
secondary small-scale but time-dependent structures that are modulated on large scales.
The nonlinear interaction between the primary and secondary small-scale patterns, in
turn, produces the Reynolds stresses that adversely affect large-scale circulation. In
contrast, the topographic form drag acting directly on the large-scale flow is shown to
be inconsequential in the proposed theory.

To validate the theoretical model, we consider the vortex spin-down problem. Specific
calculations are performed using the empirical spectrum of topography (Goff &
Jordan 1988) derived by sampling the ocean depth with echo-sounding systems. We
compare topography-resolving simulations of baroclinic axisymmetric vortices with their
parametric counterparts, confirming the ability of the asymptotic sandpaper model to
capture key physical mechanisms at play. In both types of simulations, the flow evolution is
characterized by the inexorable weakening of the abyssal circulation. Eventually, the vortex
attains the equivalent-barotropic form with a largely quiescent bottom layer. It is interesting
that the topographically induced weakening of abyssal flows has also been reported
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for models with uniform bottom slope (Thierry & Morel 1999). However, the physical
mechanism of equivalent-barotropization in the latter configuration is fundamentally
different.

Another robust tendency revealed by this analysis is the topographic stabilization of
axisymmetric vortices. While this effect has already been observed in topography-resolving
simulations of Gulliver and Radko (2022), the more efficient parametric model permits
its systematic exploration over a wide range of governing parameters. We argue that the
conditions for topographic stabilization are unrestrictive and commonly met in nature,
which could explain the abundance of long-lived mesoscale eddies in all ocean basins
(e.g. Chelton, Schlax & Samelson 2011).

The present study can be further advanced in several directions. It would be highly
desirable to continue the development of the multiscale sandpaper model. While
technically challenging, attempts to move beyond the quasi-geostrophic approximation
to more general shallow-water or Navier–Stokes systems can produce new physical
insights into the flow–topography interaction. One of the principal limitations of the
quasi-geostrophic approximation is its inability to represent internal waves and the
associated topographic form drag, which is thought to play a significant role in regulating
oceanic circulation (Eden et al. 2021; Klymak et al. 2021). Capturing topographically
induced Reynolds stresses and the lee-wave drag in a single framework may help to
quantify their relative contributions in various regions of the parameter space. An
interesting theoretical problem is posed by the singularity of the topographic forcing
(3.8) in the limit of a weak abyssal flow. This complication was met by introducing a
simple ad hoc regularization, which served well for the present purpose. However, the full
understanding of topographic control calls for in-depth analysis of the weak flow limit and,
perhaps, the development of an alternative asymptotic model for slow currents.

Another distinct avenue of investigation involves broadening the spectrum of
applications. The dramatic impact of the irregular small-scale topography on the vortex
dynamics and stability serves as an important proof of concept. It suggests that numerous
other oceanic phenomena – including subtropical gyres, large-scale waves, interior jets
and boundary currents – could also be affected by rough topography and their dynamics
can be efficiently explored using the sandpaper model.
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Appendix A. Auxiliary steps in the development of the isopycnal model

Our objective here is to express the topographic forcing function (3.7) for the layered
model in terms of large-scale flow properties. The starting point is the transition to the
flow-following small-scale coordinate system

x′
S = xS cos θ + yS sin θ,

y′
S = −xS sin θ + yS cos θ.

}
(A1)

The flow-orientation variable θ in (A1) is defined by

cos(θ) = un

V
, sin(θ) = vn

V
, (A2a,b)
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where (un, vn) ≡ (−∂ψ(0)n /∂y, ∂ψ(0)n /∂x) and V = √
u2

n + v2
n . Note that components of

(3.5) and (3.7) are invariant with respect to the transition to the flow-following frame of
reference. Therefore, in the new coordinate system, (3.5) takes the form

V
∂ς

(2)
n

∂x′S
+ Jx′S,y′

S(ψ
(1)
n , ς(2)n ) = ν0∇′4

S ψ
(1)
n − γ∇′2

S ψ
(1)
n (A3)

and (3.7) is written as

DS = ∂

∂y
(DV cos θ − DU sin θ)− ∂

∂x
(DV sin θ + DU cos θ), (A4)

where

DV =
〈
∂ψ(1)

∂x′S
ς(2)n

〉
x′S,y′

S

, DU =
〈
∂ψ1

∂y′
S
ς(2)n

〉
x′S,y′

S

. (A5)

Term DU represents eddy-induced mixing of vorticity in the direction of large-scale flow.
This component is inconsequential in the statistical sense, which can be demonstrated as
follows. Reversing the x′ orientation of small-scale bathymetry ηS → ηS(−x′

S, y′
S) reverses

the vorticity sign ς(2)n → ς
(2)
n (−x′

S, y′
S), which, in turn, reverses the sign of DU . Thus, any

statistical averaging that assigns equal weights to a given pattern of ηS and its mirror image
will result in the cancellation of the net contribution of individual realizations to DU .

To obtain an explicit expression for DV , we integrate (A5) by parts: DV =
−〈ψ(1)n (∂ς

(2)
n /∂x′

S)〉x′S,y′
S and eliminate ∂ς(2)n /∂x′

S using (A3), which yields

DV = V−1〈ψ(1)n Jx′S,y′
S(ψ

(1)
n , ς(2)n )〉x′S,y′

S︸ ︷︷ ︸
DJ

− V−1ν0〈ψ(1)n ∇′4
S ψ

(1)
n 〉x′S,y′

S︸ ︷︷ ︸
Dν

+ V−1γ 〈ψ(1)n ∇′2
S ψ

(1)
n 〉x′S,y′

S︸ ︷︷ ︸
Dγ

. (A6)

Term DJ is eliminated by virtue of the following identity:

〈ψ(1)n Jx′S,y′
S(ψ

(1)
n , ς(2)n )〉x′S,y′

S =
〈
∂

∂x′S

⎛
⎝ψ(1)n

2

2
∂ς

(2)
n

∂y′
S

⎞
⎠− ∂

∂y′
S

(
ψ
(1)2
n

2
∂ς

(2)
n

∂x′S

)〉
x′S,y′

S

= 0

(A7)

and the treatment of Dν and Dγ is based on the Parseval theorem. Term Dν is expressed as

Dν = −V−1ν0

∫∫
ψ̃(1)n · conj(κ4

S ψ̃
(1)
n ) dk′

S dl′S, (A8)

where (k′
S, l′S) are the small-scale wavenumbers in the flow-following coordinate system:

k′
S = kS cos θ + lS sin θ,

l′S = −kS sin θ + lS cos θ,

}
(A9)

and κ2
S = k′2

S + l′2S .
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Using (3.3), we express ψ̃(1)n in terms of η̃0:

κ2
S ψ̃

(1)
n = η̃0. (A10)

For statistically isotropic patterns of bathymetry, power spectra are uniquely determined
by the absolute wavenumber and (A8) can be reduced, using (A10), to

Dν = −2πV−1ν0

∫∫
|η̃0|2κS dκS. (A11)

The bottom drag component is determined in a similar manner:

Dγ = −2πV−1γ

∫ |η̃0|2
κS

dκS, (A12)

and the net topographic forcing term (A4) reduces to

D = G
(
∂

∂x

(
cos θ

V

)
− ∂

∂y

(
sin θ

V

))
, (A13)

where

G = 2π

∫ (
γ

κS
+ ν0κS

)
|η̃0|2 dκS. (A14)

Appendix B. Auxiliary steps in the development of the continuously stratified model

The following analysis establishes the direct link between the topographic forcing function
(5.20) and the characteristics of the large-scale flow. These developments mirror the steps
taken in the isopycnal model (Appendix A), albeit they pertain to the bottom boundary
condition and, in the current context, z = 0. As previously, calculations are performed in
the flow-following frame of reference (A1), and the flow-orientation variable is defined
using the circulation immediately above the seafloor:

cos(θ) = u0

V
, sin(θ) = v0

V
, (B1)

where (u0, v0) ≡ (−∂ψ(0)/∂y, ∂ψ(0)/∂x) at z = 0 and V =
√

u2
0 + v2

0. In the new
coordinate system, (5.18) takes the form

V
∂2ψ(2)

∂x′S∂zS
= ∂ψ(1)

∂y′
S

∂2ψ(2)

∂x′S∂zS
− ∂ψ(1)

∂x′S
∂2ψ(2)

∂y′
S∂zS

− r0∇′2
S ψ

(1) (B2)

and (5.20) is written as

DS = ∂

∂y
(DV cos θ − DU sin θ)− ∂

∂x
(DV sin θ + DU cos θ), (B3)

where

DV =
〈
∂ψ(1)

∂x′S
∂ψ(2)

∂z

〉
x′S,y′

S

, DU =
〈
∂ψ1

∂y′
S

∂ψ(2)

∂z

〉
x′S,y′

S

. (B4)

As in the isopycnal model (Appendix A), term DU can be shown to be inconsequential
based on its symmetries. To obtain an explicit expression for DV , we integrate the
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first expression in (B4) by parts: DV = −〈ψ(1)(∂2ψ(2)/∂x′
S∂zS)〉x′S,y′

S and eliminate
∂2ψ(2)/∂x′

S∂zS using (B2), which yields

DV = V−1

〈
ψ(1)

(
∂ψ(1)

∂x′S
∂2ψ(2)

∂y′
S∂zS

− ∂ψ(1)

∂y′
S

∂2ψ(2)

∂x′S∂zS

)〉
x′S,y′

S︸ ︷︷ ︸
DJ

+ V−1r0〈ψ(1)∇′2
S ψ

(1)〉x′S,y′
S︸ ︷︷ ︸

Dr

.

(B5)
The first (DJ) component of (B5) vanishes:

DJ = V−1

〈
∂

∂x′S

(
(ψ(1))

2

2
∂2ψ(2)

∂y′
S∂z

)
− ∂

∂y′
S

(
(ψ(1))

2

2
∂2ψ(2)

∂x′S∂z

)〉
x′S,y′

S

= 0. (B6)

The remaining term (Dr) can be simplified using the Parseval identity

DV = Dr = V−1r0

∫∫
ψ̃
(1) · conj(κ2

S ψ̃
(1)
) dk′

S dl′S. (B7)

Using (5.14), we express DV in terms of η̃S:

DV = r0

V0S0

∫∫
|η̃S|2 dk′

S dl′S. (B8)

In this study, we consider statistically isotropic patterns of bathymetry, with power spectra
that are uniquely determined by the absolute wavenumber, which further reduces (B8) to

DV = 2πr0

V0S0

∫
|η̃S|2κS dκS. (B9)

Combining (B3) and (B9), we arrive at the sought-after expression for small-scale
topographic forcing:

DS = GS

(
∂

∂x

(
cos θ

V

)
− ∂

∂y

(
sin θ

V

))
, (B10)

where

GS = 2πr0

S0

∫
|η̃0| 2κS dκS. (B11)
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