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Abstract

Purpose: The aim of this study is to develop predictive models to predict organ at risk (OAR) complication
level, classification of OAR dose-volume and combination of this function with our in-house developed
treatment decision support system.

Materials and methods: We analysed the support vector machine and decision tree algorithm for predicting
OAR complication level and toxicity in order to integrate this function into our in-house radiation treatment
planning decision support system. A total of 12 TomoTherapyTM treatment plans for prostate cancer were
established, and a hundred modelled plans were generated to analyse the toxicity prediction for bladder and
rectum.

Results: The toxicity prediction algorithm analysis showed 91·0% accuracy in the training process. A scatter
plot for bladder and rectum was obtained by 100 modelled plans and classification result derived. OAR
complication level was analysed and risk factor for 25% bladder and 50% rectum was detected by decision
tree. Therefore, it was shown that complication prediction of patients using big data-based clinical
information is possible.

Conclusion: We verified the accuracy of the tested algorithm using prostate cancer cases. Side effects can be
minimised by applying this predictive modelling algorithm with the planning decision support system for
patient-specific radiotherapy planning.
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INTRODUCTION

A number of treatment plans are generated for
each patient in order to establish the optimal
radiation treatment plan. The final treatment
plan is selected by applying a quantitative analysis
method by determining the delineation shape of
the planning target volume, organ at risk (OAR)
and a qualitative analysis method based on the
dose volume histogram (DVH).

However, there is no guarantee that the
treatment plan selected by this analysis and
evaluation will not cause radiotherapy side effects
in the patient. Therefore, if the radiation onco-
logists and medical physicists consider historical
clinical data on complications with typical
treatment plan factors, such as DVH and OAR
dose constraint range, they can establish the
optimal treatment plan minimising OAR concerns

by suppressing the normal tissue complication
probability (NTCP) and increasing the tumour
control probability (TCP).

Current advances in diagnostic and therapeutic
technologies are under research and develop-
ment through innovative tools that combine
oncology, diagnostics, genetics and computer
science to improve the quality of life of patients
after treatment. Thus, the clinical decision
support system is also being researched using
clinical big data with application of prediction
modelling using a machine learning algorithm.
The role of the prediction model in the radiation
treatment decision support system is to maximise
tumour control and minimise side effects after
treatment and to determine whether the plan
offers acceptable dose risk by applying classifica-
tion and regression methods to dose-volume data
using an existing clinical database.1

Table 1. Characteristics of the patients with prostate cancer

Patients 1 2 3 4 5 6 7 8 9 10 11 12

Clinical diagnosis Prostate cancer
PD (Gy) 77 77 77 77 77 77 77 77 77 77 77 77
FD (Gy) 2·2 2·2 2·2 2·2 2·2 2·2 2·2 2·2 2·2 2·2 2·2 2·2
Fraction 35 35 35 35 35 35 35 35 35 35 35 35
Age 73 75 79 73 79 68 75 69 76 57 64 78
TNM stage T1c T3b T2c T1c T3a T3a T3b T1c T1c T2b T3a T3b

N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0
M0 M0 M0 M0 M0 M0 M0 M0 M0 M0 M0 M0

Histological diagnosis Adenocarcinoma
OP Y Y Y Y Y Y Y Y Y Y Y Y
Chemotherapy Y Y Y Y Y Y Y N N Y Y Y
Weight (kg) 60·50 95·60 80·00 75·00 65·45 80·70 78·00 81·00 69·10 52·65 72·20 97·95

Note: To establish original treatment plans for patients (n = 12).
Abbreviations: PD, prescription dose; FD, fractional dose; OP, operation; TNM, tumour-node-metastasis.

Figure 1. Established dose volume histogram (DVH) of bladder and rectum for 12 patients with prostate cancer (n = 12).
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Table 2. Dose-volume constraints for bladder and rectum as organs at risk

Prostate

Volume 25% bladder 50% bladder 25% rectum 50% rectum
Dose (Gy) 29–30 25–26 27–28 24–25
Maximum dose (Gy) <80

Figure 2. Model of a radiation treatment planning decision support system (a) and its predictive modelling flow chart for the support
vector machine algorithm (b) of this study.
Abbreviations: PITV, prescription isodose to target volume; CI, conformity index; HI, homogeneity index; TCI, target coverage
index; MHI, modified homogeneity index; CN, conformity number; COSI, critical organ scoring index; QF, quality factor
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With this aim, Zhang et al. recently studied
complication prediction of radiation therapy
using machine learning in the field of radiation
therapy.2 In addition, Guidi et al. are also making

progress in studies to predict criticality in which
machine learning algorithms target particular
cases, such as patients with head and neck
cancer.3

Table 3. Classification of bladder and rectum complications by 100 modelled plans for the support vector machine algorithm (n = 100)

Modelled
plan

Dose (Gy) Complication Modelled
plan

Dose (Gy) Complication

Bladder Rectum Bladder Rectum

1 80·0377 77·9819 NC 51 80·3914 78·3167 NC
2 79·6505 78·9365 NC 52 79·3221 79·8448 NC
3 76·1811 79·2330 NC 53 78·0480 78·1449 NC
4 77·6200 78·9067 NC 54 80·1392 79·7010 NC
5 77·4846 78·8788 NC 55 77·2004 79·8897 NC
6 78·5789 79·4210 NC 56 79·0379 78·6822 NC
7 78·8271 79·6142 C 57 79·6613 79·5449 NC
8 77·1987 78·7761 C 58 79·6883 78·4031 NC
9 78·4139 79·2300 NC 59 76·4638 78·9204 NC
10 76·9016 79·7037 C 60 78·1089 78·6489 NC
11 80·1479 78·6796 NC 61 77·3774 78·2692 NC
12 76·4127 79·0802 NC 62 78·3918 79·6447 NC
13 78·6748 79·3314 C 63 77·8309 78·2732 NC
14 80·8180 78·0694 C 64 76·1092 79·0914 NC
15 80·1506 78·1815 NC 65 80·4119 79·9812 NC
16 80·5519 79·1045 C 66 80·7564 79·3584 NC
17 79·8819 78·8390 NC 67 76·5465 79·8955 NC
18 76·8203 78·8539 NC 68 79·8080 79·7441 NC
19 80·2812 78·9812 C 69 76·6590 78·4122 NC
20 77·9303 78·0680 C 70 76·1768 79·6625 NC
21 79·8707 79·7474 NC 71 76·2645 78·8370 NC
22 80·0537 78·3673 C 72 78·1316 78·5324 NC
23 77·8346 78·3078 NC 73 78·8725 79·9957 NC
24 78·0072 78·5484 NC 74 76·3180 79·9355 NC
25 78·3074 79·0777 NC 75 80·3172 79·7227 NC
26 77·1998 79·9182 NC 76 78·6868 78·5264 NC
27 77·8006 79·3755 NC 77 76·9282 79·6660 NC
28 80·9858 79·6930 NC 78 80·4061 78·4209 NC
29 80·4397 79·2423 NC 79 79·9404 79·9549 NC
30 80·5549 78·8034 NC 80 79·7061 79·2188 NC
31 78·3315 79·7445 NC 81 79·9936 78·4416 NC
32 77·8646 78·8211 NC 82 78·8844 79·4065 NC
33 76·7901 79·9276 NC 83 78·4796 79·5722 NC
34 76·7348 78·5325 NC 84 77·2741 79·1082 NC
35 77·6375 79·7284 NC 85 76·3125 79·3722 NC
36 76·7663 79·4000 NC 86 77·0770 78·5326 NC
37 76·3330 78·5323 NC 87 78·6952 79·6816 NC
38 79·4022 79·3970 NC 88 80·2204 78·0121 NC
39 78·1475 79·3029 NC 89 77·6894 79·8281 NC
40 79·2097 78·1327 NC 90 77·4124 78·4549 NC
41 79·8559 79·6310 NC 91 78·3786 78·6659 NC
42 78·1151 78·8874 NC 92 78·1064 78·1041 NC
43 80·2623 78·5010 NC 93 78·1939 79·6165 NC
44 80·1614 78·6939 NC 94 76·5212 79·1112 NC
45 76·1559 79·3378 NC 95 77·2312 79·4407 NC
46 77·3598 78·1836 NC 96 77·7528 79·4644 NC
47 77·4777 79·1634 NC 97 80·7835 78·4271 NC
48 80·8127 79·6918 NC 98 80·5662 79·4653 NC
49 76·7704 78·5975 NC 99 77·2284 79·5797 NC
50 79·3743 79·9104 NC 100 79·6497 79·2562 NC

Abbreviation: NC, non-complication.
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However, no known published studies
have integrated machine learning algorithms
and dosimetrical and biological index analysis
functions into a radiation treatment planning
decision support system to determine the
optimal plan.

Cao et al. performed integrated analysis studies
of dosimetrical and biological index data using
prostate cancer cases.4,5 In addition, big data
analysis studies of prostate cancer using machine
learning approaches have been performed.6–8

According to Çınar et al., prostate cancer is cur-
rently the most common type of cancer in men
except lung cancer.6 Therefore, we used prostate
cancer cases as the model system.

The aim of this study was to develop a pre-
dictive model solution that includes the functions
of support vector machine and decision tree
algorithm to predict OAR complication level
and suitable classification of OAR dose-volume
values and to combine this function with an in-
house developed treatment decision support
system in a preliminary study.

MATERIAL AND METHODS

Patient group
The target population was 12 male patients with
adenocarcinoma of the prostate, for whom 12
treatment plans had been established. The patient
characteristics are as follows: average age, 72 years;
average weight, 75·68kg; tumour-node-metastasis
(TNM) stage, T1c-T3b, N0 andM0 (Table 1). The
treatment planning system used was TomoTher-
apy® (Accuray Incorporated, Sunnyvale, CA,USA).

Table 4. Complication prediction for bladder and rectum using 20
representative plans for the decision tree algorithm (n = 20)

Plan 25%
bladder

50%
bladder

25%
rectum

50%
rectum

Complication

1 42·5103 24·6570 17·7323 6·5689 NC
2 34·6096 22·5537 24·0404 15·4760 NC
3 56·6986 28·8961 25·0143 12·5988 NC
4 60·6693 36·7794 18·6604 6·6963 NC
5 59·8209 32·3455 25·1762 8·1739 NC
6 29·4472 16·9597 32·3111 12·7246 NC
7 61·2788 38·0032 41·8223 16·5369 C
8 30·1537 13·7383 11·3235 4·1326 NC
9 25·6640 11·3204 31·2221 6·6586 NC
10 35·3631 22·2015 18·8032 7·0208 NC
11 21·1052 6·1848 17·3420 5·0307 NC
12 14·7914 4·2515 21·4121 3·3405 NC
13 59·3810 59·0841 50·2707 50·6603 C
14 58·5683 42·6852 59·5842 55·8519 C
15 55·0244 54·8645 55·2236 55·3067 NC
16 56·3760 47·7500 54·0928 41·2431 NC
17 58·9306 49·8144 50·9266 55·7675 NC
18 44·3577 54·6872 46·4401 53·3388 C
19 51·3241 42·5009 44·9372 56·5772 C
20 45·1958 42·4967 50·8894 56·3337 NC

Abbreviation: NC, non-complication; C, complication.

Figure 3. Scatter plot of patient organs at risk (OARs) with the support vector machine for 100 modelled plans.
Note: red dot (·): correctly classified as NC; red cross (x): misclassified as NC. (a) Bladder scatter plot with modeled plans; (b) rectum
scatter plot with modeled plans.
Abbreviation: NC, non-complication.
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The DVHs for the OARs of bladder and
rectum are shown in Figure 1.

We developed an in-house planning decision
support programme to input DVH information
from the treatment plan and integrated the results
of this study into our system. As an example, we

used dose-volume data of the OAR to predict
complications as a constraint value (Table 2).

Predictive modelling using machine
learning algorithm

The machine learning algorithm for the radiation
treatment planning decision support system can be
used in the prediction of complications in OARs
exposed to radiation as the peripheral target during
radiation therapy.9 That is, the predictive modelling
algorithm calculates the results using comprehensive
data in accordance with the state of the indicator
characteristic of the patients and treatment plans.

Accordingly, there is a need to verify the results
of late toxicity through a decision tree model or
dose-volume data analysis based on current
knowledge and historical clinical outcomes.

A prediction model can be applied using index
data such as age, TNM stage, gender, prescribed
dose, tumour control probability and survival
rate.10 In addition, the support vector machine
(SVM) algorithm can be applied to classify the
different OAR dose constraints.2 The DVH
of the patients during radiation therapy is a
significant predictive indicator.10

Figure 4. Receiver operating characteristic (ROC) of the classifier with the support vector machine.
Note: Area under curve (AUC) = 0·8107, (a) = positive class for complication, (b) = positive class for non-complication.

Figure 5. Confusion matrix for support vector machine analysis and
the predicted class for non-complication (NC) with 91·0% accuracy.
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Therefore, we used the DVH data of patients
as input parameters for the application of clinical
big data, and machine learning techniques were
used in the SVM and decision tree as described
previously for complication prediction.2

Support vector machine
The algorithm is developed to select the best
classifier to separate two groups by drawing a per-
pendicular line between groups in the hyperplane.
In the case of the nonlinear model, the kernel
method is used to distinguish the linear machine.9

A hyperplane is defined as the set of all points
x∈Rdimension that satisfy h(x) = 0, where h(x) is
the function of the hyperplane, as follows in
equation (1) in d dimensions:7,8

h xð Þ=wTx + b (1)

In this study, we modelled the SVM algorithm
using dose-volume input in test and training
models as shown in the flow chart in Figure 2.
Figure 2a shows the entire analysis system
from the treatment planning data, including
quantitative analysis for homogeneity index,
conformity index and conformation number and
dosimetrical indices, TCP, NTCP of biological
indices in addition to a big data-based prediction
algorithm, to the results. The predictive algorithm

component is further defined as in Figure 2b,
which describes how dose-volume data for every
patient is used as the input and the training and
test processes involved in the SVM for classifica-
tion to achieve an accurate final outcome.

A total of 100 model plans were generated
based on 12 treatment plans for analysis of the
support vector machine algorithm (Table 3).

Decision tree
A decision tree requires that critical decision
points be selected for outgoing confirmation
based on specific conditions by selecting a final
value with these conditions. This can be for-
malised by a simple pattern and is an algorithm
that can be programmed using machine learning.

The decision point Xj≤ v divides the input data
space,R, into two sections:RY andRN. The division
of R into RY and RN also derives a binary section of
the corresponding input data point DInput. This
means that a division point of the formXj≤ v derives
the data into sections, as in equations (2) and (3).

DY = fxj x 2 DInput; xj ≤ vg (2)

DN = fx j x 2 DInput; xj > vg (3)

Figure 6. Decision tree for grade 2 rectal complication classification for 100 plans with 25% bladder, 50% rectum, 30% bowel.
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where DY is the group of data points lying in
region RY, and DN is the group of input points
lying in RN.

8

To analyse the decision tree algorithm, we
calculated an additional eight plans based on the
12 original treatment plans, expanding the analysis
to 20 plans. Table 4 shows the doses (Gy) of 25%
bladder, 50% bladder, 25% rectum and 50% rectum
using this prediction.

RESULTS

The results of analysis with the machine learning
algorithm showed 91·0% accuracy after the
training process with respect to 100 modelled
plans using SVM.

In addition, the OAR complication analysis
showed possible classification of potential risk factors
as complication (C) and non-complication (NC)
relative to 25% bladder, 50% rectum and 30% bowel
using the decision tree. Therefore, we could com-
bine a programme including this machine learning
algorithm and our in-house developed planning
decision support system to allow complication
predictions for patients based on clinical big data.

Predictive modelling analysis results
SVM
Figure 3 shows the results of classification
analysis for bladder and rectum with respect to
the 100-model plan. Quadratic SVM analysis
correctly separated NC cases: red dots in Figure 3

Figure 7. Integrated flow chart of toxicity prediction, dosimetric biological index analysis and overall factors for SMARTRT.
Abbreviation: DVH, dose volume histogram; PTV, planning target volume; OAR, organ at risk; TCP, tumour control probability;
NTCP, normal tissue complication probability; PITV, prescription isodose to target volume; CI, conformity index; HI, homogeneity
index; TCI, target coverage index; MHI, modified homogeneity index; CN, conformity number; COSI, critical organ scoring index;
RO, radiation oncology; DB, database; RTOG, radiation therapy oncology group; EUD, equivalent uniform dose.
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indicate correct classification, and red crosses
showmisclassified NC. The true positive rate and
false positive rate were obtained to demonstrate
the performance of the SVM classifier for the
analysis and showed an area under curve of
0·8107 (Figure 4).

In addition, confusion matrix analysis was
performed to calculate the error matrix, showing
a 91% rate of accuracy for the predicted class and
true class (Figure 5).

Decision tree
As a result of the decision tree analysis, compli-
cation prediction was possibly based on the dose
of 25% bladder, 50% rectum and 30% bowel.
When the radiation oncologists and medical
physicists decide the final treatment plans before
radiation therapy, the dose constraint for every
OAR makes it complicated to determine an
optimal plan; thus, a method considering these
complex factors would be a useful analytical tool
to predict complications (Figure 6).

Integration with SMARTRT

SMARTRT is an in-house radiation treatment
planning decision support system (PDSS) that was
developed to give a final scoring scheme that
included DVH information for the patient from the
treatment plan and functions with dosimetrical and
biological index analysis through the overall quality
factor result. However, if the toxicity prediction
function is added into the SMARTRT programme
using clinical big data and comprehensive clinical
side effects could be linked to solve complication
prediction, we might be able to achieve the optimal
patient-specific PDSS (Figure 7).

DISCUSSION AND CONCLUSION

To improve the quality of life of the patient after
treatment, more accurate patient treatment plans
are needed in the field of radiation oncology. This
should allow more accurate prognosis of patient
outcomes after treatment. This issue is being
addressed by planning decision support system

Figure 8. The artificial intelligence (AI)-based integrated clinical decision support system of this study.
Abbreviation: DICOM RT, Digital Imaging and Communications in Medicine Radiation Therapy.
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research using fundamental DVH analysis, as well
as dosimetrical and biological indices with TCP
and NTCP.4,11–13

The treatment plan has to be compared more
accurately according to the optimum patient-
specific PDSS, which includes a predictive
model-based function and will represent a sig-
nificant breakthrough in patient care through
machine learning research that can be linked to
clinical big data (Figure 7). We present the total
artificial intelligence-based integrated clinical
decision support system of this study in Figure 8.
This system includes an intelligent clinical deci-
sion support algorithm with machine learning
and deep learning as the artificial intelligence
system using clinical big data that could be
further expanded.

Machine learning analysis-based studies with
clinical cases in radiation oncology are being
researched.14–18 Therefore, it seems likely that
more patient cases and multi-institutional studies
will be compiled to increase the amount of
training data and provide more accurate results.
This will be the foundation for the development
of optimal patient-specific PDSS for prognosis.
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