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We report high-spatial-resolution measurements of the thermal boundary layer (BL)
properties in turbulent thermal convection. The experiment was made near the lower
conducting plate of a water-filled rectangular convection cell of height 0.76 m, with a
Prandtl number Pr = 4.3 and over the Rayleigh-number range 2×1010 < Ra< 7×1011.
Time series of the local temperature at various vertical distance z from the plate
were measured. Statistical properties of the profiles of the temperature, i.e. the mean
temperature 〈T〉, fluctuating temperature root mean square (r.m.s.) σT , temperature
skewness ST , and flatness FT , and those of the temperature time derivative, i.e. the
r.m.s. σ ′T , skewness S′T and flatness F′T of the derivative, are studied. It is found that
most of these quantities exhibit some degree of invariability with Ra, especially for the
regime inside the thermal BL. When comparing with the mean temperature profiles,
the profiles of the second moment of temperature seem to possess a higher level of
universality. It is shown that the distance δσ from the plate to the maximal temperature
r.m.s. position provides a natural length scale for the characterization of the thermal
BL, as the statistical properties of the temperature field, such as its r.m.s., skewness
and flatness, are all sharply different below and above this length scale, i.e. below δσ ,
σT increases linearly with the vertical distance z from the plate and ST is close to zero
and FT is close to three and both quantities remains nearly constant, whereas above δσ
the decay of σT obeys a logarithmic behaviour and ST and FT both exhibit a hill-like
structure. It is also found that near the plate 〈T〉, σT and σ ′T all increase linearly with z.
Our observations further reveal that such linear dependence occurs within a self-similar
region of the thermal BL, where the temperature probability density functions can be
scaled onto a single distribution that differs slightly from the Gaussian distribution.
The Ra-dependencies of various thermal BL properties are also studied and our
results yield δth/H = (6.85 ± 0.70)Ra−0.33±0.03, δσ/H = (2.86 ± 0.30)Ra−0.31±0.03 and
δ′σ/H = (25 ± 3)Ra−0.38±0.05, where H is the height of the cell, δth and δ′σ are the BL
thicknesses determined respectively from the profiles of 〈T〉 and σ ′T .
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1. Introduction
Turbulent Rayleigh–Bénard (RB) convection, i.e. an enclosed fluid layer heated from

below and cooled from above, is a classical model system that has long been used to
study the complicated convection phenomenon that occur ubiquitously in nature and
in many engineering applications (Ahlers, Grossmann & Lohse 2009; Lohse & Xia
2010; Chillà & Schumacher 2012). The convective motion enhances dramatically the
heat transport through the fluid layer, and understanding its nature is of fundamental
interest and of great importance in the study of turbulent RB convection. The global
heat transport is usually measured in terms of the Nusselt number Nu, defined as

Nu= J

χ 4 /H , (1.1)

which depends on the turbulent intensity and the fluid properties that are characterized,
respectively, by the Rayleigh number Ra and the Prandtl number Pr , namely

Ra= αg1H3

νκ
and Pr = ν

κ
, (1.2)

where J is the heat-current density across the fluid layer with a height of H and with
an applied temperature difference of 1, g the gravitational acceleration, and α, ν, χ
and κ are the thermal expansion coefficient, kinematic viscosity, thermal conductivity
and thermal diffusivity of the convecting fluid, respectively.

The velocity and temperature fields within a very thin layer at the top and bottom
plates, i.e. the kinematic and thermal boundary layers (BLs), play an essential role
in the thermal convection system, especially in the global heat transport across the
fluid layer. For example, the Nusselt number Nu is related, directly and intimately,
to the thickness of the top and bottom thermal BLs because within which essentially
all of the temperature drop of the system occurs and heat is transported mainly via
conduction. In addition, almost all theories put forward to predict the relation between
Nu and (Ra,Pr) are based on certain assumptions for the BLs, such as the stability
assumption of the thermal BL for the early marginal stability theory (Malkus 1951),
the laminar BL assumption for the Grossmann & Lohse (2000, 2001, 2004) theory
and the turbulent BL assumption for the theories of Shraiman & Siggia (1990), of
Dubrulle (2001, 2002), and of Grossmann & Lohse (2011) for the multiple scaling in
the so-called ultimate regime. On the other hand, theories with different assumptions
for the BL properties may yield the same predictions for the global quantities, such as
the Nu–Ra scaling relation (Castaing et al. 1989; Shraiman & Siggia 1990). Therefore,
direct characterization of the BL properties is of great importance for validating all
of these assumptions and to gain an insight into the nature of turbulent heat transfer
in turbulent RB system. However, compared with the large number of global heat
transport measurements for various working fluids and cell geometries with wide
parameter range and great precision (Castaing et al. 1989; Chavanne et al. 1997, 2001;
Ashkenazi & Steinberg 1999; Glazier et al. 1999; Niemela et al. 2000; Ahlers &
Xu 2001; Lam et al. 2002; Roche et al. 2002, 2010; Xia, Lam & Zhou 2002;
Funfschilling et al. 2005; Sun et al. 2005; Niemela & Sreenivasan 2006; He et al.
2012; Zhou et al. 2012), experimental studies of the BL properties, especially the
thermal BL structures in the high-Rayleigh-number regime, are rather limited. The
objective of the present experimental investigation is to fill this gap by performing
high-spatial-resolution measurements of temperature profiles in the vertical direction
off the bottom plate in a water-filled rectangular cell of height 0.76 m and over the
Rayleigh-number range 2× 1010 < Ra< 7× 1011.
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Before the detailed presentation of our results, we first briefly review previous
measurements of the thermal BL in turbulent RB system. Table 1 summarizes results
of the temperature profiles and of scaling properties of the thermal BL thickness from
some recent experimental studies.

1.1. Scaling of the thermal BL thickness
From an experimental point of view, the thermal BL thickness can be determined
from either the time-averaged temperature profiles or the temperature root-mean-square
(r.m.s.) profiles. For the former, the thickness δth is defined as the distance at which
the tangent of the mean-temperature profile at the plate crosses the bulk temperature,
while the later yields the thickness δσ that is the distance from the plate to the
maximal temperature r.m.s. position. Tilgner et al. (1993) measured δth in a cubic cell
filled with water at fixed Ra (=1.1 × 109) and Pr (=6.6) and found in their case that
the thermal BL is entirely buried in the viscous BL. Belmonte et al. (1993, 1994)
further made thermal BL measurements in a cubic cell filled with room-temperature
gas (Pr = 0.7) and over the Rayleigh number range from 5 × 105 to 1011 and their
results showed that δth ' δσ ∼ Ra−2/7 for Ra > 2 × 107. Naert et al. (1997) carried
out measurements of the thermal BL thickness in mercury (Pr = 0.024) over the
Rayleigh number range 106 < Ra < 108, where the viscous BL is found to be thinner
than the thermal one. Their results showed that δth coincides with δσ and both scale
as Ra−0.2±0.02. The spatial structures of the thermal BL in water and in the regime
108 < Ra < 1010 are systematically studied first by Lui and Xia in a cylindrical cell
(Lui & Xia 1998) and then by Wang and Xia in a cubic cell (Wang & Xia 2003).
Both of these works showed that the BL thickness above the bottom plate depends on
the horizontal positions and the scaling exponent of δth with Ra varies between −0.35
and −0.28. However, this position dependence is suggested to eventually vanish, i.e.
δth tends to become uniform across the plate, at very high Ra. This behaviour can
now be understood from the shape evolution in the circulation path of the large-scale
circulation (LSC). It was observed that the shape of the LSC evolutes from a tilted
and nearly elliptical shape at low Ra to a squarish shape at high Ra (Niemela &
Sreenivasan 2003; Xia, Sun & Zhou 2003; Sun & Xia 2005). The squarish-shaped
LSC at high Ra would make the mean flow near the horizontal plates parallel to the
plates and hence lead to the uniformity of the BLs that are modulated and stabilized
by the shear of the mean flow. Recent experiments using air as working fluid in
a cylindrical cell over the Ra range 109 < Ra < 1012 by du Puits et al. (2007b)
reported that δth ∼ Ra−0.2540 and δσ ∼ Ra−0.4051. Maystrenko et al. (2007) extended
these measurements to the range 6 × 107 6 Ra . 6 × 108 in a long rectangular cell,
but still using air as a working fluid, and they found that δσ ∼ Ra−0.43 above the
middle of a convection roll structure. In a more recent experimental work, Sun et al.
(2008) studied systematically the properties of both the viscous and thermal BLs in
a rectangular cell with Ra varying from 109 to 1010 and the results showed that
δth/H = 6.10Ra−0.32±0.05.

1.2. Profiles of the mean temperature and temperature r.m.s.

How the mean temperature 〈T〉 and temperature r.m.s. σT = 〈(T − 〈T〉)2〉1/2 change
with the vertical distance z from the plate, especially for the regions within the thermal
BL and inside the mixing zone, is also an issue of considerable interest in the study
of turbulent thermal convection, partly due to its relevance to the heat transport from
the plates and to the differentiating of various models that made different predictions
for the distribution of the temperature profiles, such as power-law profiles predicted
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by Prandtl (1932) for 〈T〉 and by Priestley (1959) and Adrian (1996) for σT , and
logarithmic profiles by Castaing et al. (1989) for σT . Here 〈· · ·〉 represents a time
average. Experimental studies, however, have shown some ambiguous observations.

For the mean-temperature profile, early measurements revealed that 〈T〉 increases
linearly with z from the plate and the linear region covers, on average, nearly 60 %
of the thickness of the thermal BL (Belmonte et al. 1994). Some later experiments
further revealed that the 〈T〉 profile can be divided into three regions: a linear region
near the plate where heat is transported upwards mainly by conduction; a ‘horizontal’
or plateau region away from the plate where the gradient of the mean temperature
is nearly zero and convection dominates; and a transitional region in between (Lui &
Xia 1998; Wang & Xia 2003). These studies also focused on the universality of the
mean-temperature profiles and showed that the scaled profiles at various positions but
for the same Ra are self-similar, whereas those measured at different Ra do not show
an invariant form (Lui & Xia 1998; Wang & Xia 2003). In a theoretical study, Ching
(1997) found a connection between the shape of the temperature profile and the heat
flux. Shishkina & Thess (2009) found that near the heating and cooling plates the
non-dimensional temperature profiles obey neither a logarithmic nor a power law, but
can be approximated by a universal stretched exponential function.

For the temperature r.m.s. profile, a well-defined maximum (σT)max was found for
the profile (Tilgner et al. 1993; Belmonte et al. 1993, 1994) and the distance from
the position of this maximal temperature fluctuation to the plate was suggested to be
a measure of the thermal BL thickness (Tilgner et al. 1993). Wang & Xia (2003)
further found that the temperature r.m.s. profiles measured at the same position but
different Ra can be brought to collapse onto a single curve, whereas those with
different positions but for the same Ra do not show a universal form. For the shape
of the temperature r.m.s. profile within the regime of the so-called mixing zone, Chillá
et al. (1993) found a logarithmic dependence of σT on z and related this dependence to
the exponential tails of the spatial distribution of temperature fluctuations. Fernandes
& Adrian (2002) also reported the observed logarithmic profile for σT . In contrast,
du Puits et al. (2007b) observed that the profiles of σT obey a power-law behaviour
with the scaling exponents depending on both Ra and Γ . In our previous work, we
have made a systematically experimental study of the viscous BL properties (Sun
et al. 2008). Profiles of the mean temperature and its fluctuations in the Rayleigh-
number range 109 < Ra < 2 × 1010 near the plate were also measured and, hence, the
thermal BL. Our results, however, showed that both the power law and the logarithmic
dependence can be used to fit the measured σT profiles to some degree, which may be
due to the moderate Ra in this study. Note that similar results have also been observed
previously (Belmonte et al. 1994; Maystrenko et al. 2007).

Very recently, Ahlers et al. (2012) studied the interior of turbulent RB convection
over a high-Ra range by using a combination of experiment (4 × 1012 6 Ra 6 1015)
and simulation (Ra= 2× 1012). They found that both the mean and r.m.s. temperatures
vary logarithmically with the distance from the plates over a wide range of z/H. These
authors also showed that the amplitude of the logarithmic profile is largest near the
cell’s sidewall and becomes small when the cell’s centre is approached.

The apparent disagreements of the above results indicate that experimentally how
〈T〉 and σT vary with z is far from settled, which prompted us to carry out the present
experiment. Here, we report new measurements of the thermal BL properties, made
in a rectangular cell with height 0.76 m, performed with high spatial resolution, and
extended to a higher Ra range 2 × 1010 < Ra < 7 × 1011. Our results reveal that 〈T〉

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

73
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.73


204 Q. Zhou and K.-Q. Xia

and σT both increase linearly with z for z . δσ (within the thermal BL), while the
profiles of σT follows a logarithmic behaviour inside the mixing zone.

1.3. Profiles of skewness of temperature derivative (increments)
Belmonte & Libchaber (1996) used the skewness of the temperature time derivative
to study the coherent structures of thermal fluctuations in a cubic cell filled with
pressured gas (helium, nitrogen and sulfur hexafluoride) at room temperature and
spanned a range of Ra from 5 × 105 to 1011 with Pr = 0.7. Their results showed
that near but outside the cold thermal BL the skewnesses of both the temperature and
its time derivative are smaller than zero, corresponding to the sharp front of thermal
plumes and indicating the active signature of the temperature fluctuations. Zhou & Xia
(2002) studied the profiles of the skewnesses of the ‘plus’ and ‘minus’ temperature
increments in a water-filled cylindrical cell at fixed Prandtl number Pr ' 4 and over
varying Rayleigh numbers 2 × 108 < Ra < 2 × 1010. They found that a gap exists
between the two skewnesses within the region where most of plume mixing, merging
and clustering take place (called the mixing zone), but vanishes inside the thermal
BL and inside the convective central core. However, the detailed information of the
temperature derivative or increments profiles are still missing, which is one of the
objectives of the present study.

1.4. Organization of the present paper
The remainder of this paper is organized as follows. In § 2, we describe the convection
cell used in the experiments and details of high-spatial-resolution measurements of
the local temperature. The experimental results are presented and analysed in § 3,
which is divided into five parts. Section 3.1 compares and discusses the time series of
temperature measured at different vertical distances from the bottom plate. We present
and discuss the statical properties of the temperature profiles in § 3.2 and of the
temperature time derivative profiles in § 3.4 and show the analysis of the self-similar
regime in § 3.3. The Ra dependence of the thermal BL properties are presented and
discussed in § 3.5. We summarize our findings and conclude in § 4.

2. Experimental set-up and parameters
The purpose of the investigation is to study the thermal BL structure, which can

be used to differentiate the various theoretical models that have different assumptions
for the BL. Since most of these models are essentially two-dimensional and the
BL properties in convection cells with some kind of axial symmetry, such as the
most widely used cylindrical cell, will be inevitably modified and perturbed by the
stochastic azimuthal meandering (Brown & Ahlers 2006; Xi, Zhou & Xia 2006)
and the sloshing motion (Xi et al. 2009; Zhou et al. 2009) of the LSC, we chose
a rectangular-shaped cell to perform the measurements of the temperature profiles
and the thermal BL thickness. A detailed description of the apparatus has been
discussed previously (Xia et al. 2003). The experiment was conducted at the Chinese
University of Hong Kong. The length L, width W and height H of the cell are
81 cm × 20 cm × 76 cm, respectively, and the cell aspect ratios are thus given by
Γx ≡ L/H = 1.07 and Γy ≡W/H = 0.26. With this geometry, the axis symmetry does
not exist and the LSC would be confined in the (x, z) plane (Xia et al. 2003; Zhou,
Sun & Xia 2007b; Zhou & Xia 2008) (see figure 1). Therefore, the perturbation of the
stochastic azimuthal meandering and the sloshing motion of the LSC to the thermal
BL can be neglected and the velocity in this plane will be the dominant component of
the LSC (Xia et al. 2003).
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W

Large-scale
circulation

Stainless steel
capillary tubing

Bottom plate

Thermistor

FIGURE 1. Schematic drawing of the temperature measurement system above the bottom
plate and the coordinates for the experiment.

The temperature profiles presented here were measured along the vertical axis
that passes through the centre of the bottom plate and the measurement coordinate
system is defined in figure 1. A glass-encapsulated thermistor (AB6E3-B10KA103J,
Thermometrics) that has a sensing head of 0.24 mm in diameter and a thermal time
constant of 10 ms in water, is used to measure the local temperature field above
the bottom plate. Therefore, the smallest distance that can be reached between the
temperature probe and the bottom plate is 0.12 mm, corresponding to one half the
sensor’s diameter. The thermistor is threaded through a stainless steel capillary tubing
with outer diameter of 2 mm and inner diameter of 1 mm and then fixed on a
computer-controlled transitional stage that can be moved in steps of 0.001 mm along
the vertical direction. This arrangement allows the precise adjustment of the vertical
distance between the sensor and the bottom plate. The accuracy of the thermistor
is determined mainly by the calibration process and was better than 0.01 ◦C in the
present case.

Distilled and degassed water was used as the working fluid. During the
measurements, the mean temperature of the working fluid was kept at 40 ◦C,
corresponding to the Prandtl number Pr = 4.3. The cell was levelled to within
0 ± 0.06◦ in all measurements. By changing the temperature difference 1 between
the top and bottom plates, Ra was varied from 2.6 × 1010 to 6.4 × 1011 while Pr was
kept nearly constant. To avoid the heat leakage, the flanges of the top and bottom
plates were insulated by 3 cm thick nitrile rubber sheets and the system was wrapped
by several layers of Styrofoam. For each Ra, at least 55 vertical positions below
z = 50 mm (z is the distance from the bottom plate) were chosen to perform the
measurements and at each position the resistance of the thermistor was recorded by
a 6.5-digit multimeter (Keithley Model 2700) with a sampling rate ∼15 Hz and over
a time span of 40–100 min depending on Ra. The temperature profiles were then
obtained from the measured resistance using a calibration conversion curve. To extend
the temperature profiles to the central core region of the convection cell, we also
measured the local temperature field at an additional five vertical positions between
z = 50 mm and z = H/2 = 380 mm for Ra = 4.0 × 1010 and 3.2 × 1011. For the
data reproducibility, we have performed two sets of independent measurements for
Ra= 9.8 × 1010. Within the experimental uncertainty, the two measured data show the
same results for the temperature profiles up to the fourth moment.
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FIGURE 2. Time series of temperature T measured at Ra = 3.2 × 1011 and at different z
from the bottom plate. The dashed lines in (a,e) mark the measured mean temperatures
of the bottom plate and the bulk fluids, respectively: (a) z = 0.20 mm (0.28δth); (b)
z = 0.71 mm (0.99δth); (c) z = 2.33 mm (0.99δu); (d) z = 28.3 mm (mixing zone); (e)
z= 380 mm (cell centre).

3. Results and discussion
3.1. Time series of the local temperature

Figure 2 shows the time series, over a time interval of 100 s, of the local temperature
measured at five different distances from the bottom plate. The corresponding
temperature probability density functions (p.d.f.) are plotted in figure 3. The
measurements were carried out at Ra= 3.2 × 1011. At this Ra, the bottom plate
temperature Tb and the mean bulk temperature T0 measured at cell centre are,
respectively, 49.8 and 40.3 ◦C, the thickness of the thermal BL δth = 0.72 mm and
that of the viscous BL is δu = 2.36 mm (Zhou & Xia 2010). Therefore, the results
shown in figures 2 and 3 correspond to several typical positions: (a) within the thermal
BL; (b) at the edge of the thermal BL; (c) at the edge of the viscous BL; (d) far away
from both the BLs and within the mixing zone; and (e) at the cell centre.

Figure 2(a) shows the local temperature at the position (z = 0.20 mm) that is very
close to the bottom plate and inside the thermal BL. The measured temperature
fluctuates around its mean value that is close to the bottom plate temperature Tb

(indicated by the dashed line in figure 2a). The corresponding p.d.f. (diamonds, shown
in green online) shown in figure 3(a) revealed that the distribution of the temperature
at such position has a nearly Gaussian shape, although a little asymmetry can be found
from its two tails, i.e. the temperature is skewed slightly toward higher temperature
values. As we shall see in § 3.3, this distribution is typical for the temperature within
the thermal BL.
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FIGURE 3. (Colour online) The p.d.f.s of the local temperature T measured at
Ra= 3.2× 1011 and at different z from the bottom plate.

When z is increased toward δth, the measured mean temperature decreases rapidly
from close to Tb to the mean bulk temperature T0 but its fluctuations increase. At
z= δσ = 0.48 mm the temperature r.m.s. reaches its maximal value. Figure 2(b) shows
the measured temperature around the position of the thermal BL (z = 0.71 mm). One
sees clearly that there are a large number of temperature bursts toward the high
temperature values. These temperature bursts are manifestations of thermal plumes
because the signal with a pulse-like shape, i.e. a temperature burst, would be detected
when a thermal plume passing through the thermal sensor. Note that when expanding
the time series, one can see the cliff-ramp-like structures as reported by Zhou & Xia
(2002) and Xi et al. (2009), which are signatures of thermal plumes.

As the measuring position is further shifted far away from the thermal BL, the
temperature time series, such as those shown in figure 2(c,d), seem to consist of
contributions from two kinds of fluids: a fraction of tepid fluid that has a relatively
constant background temperature and a fraction of very hot fluids that come from
the bottom thermal BL and manifested as temperature bursts, i.e. the moving hot
plumes. A remarkable feature revealed by these figures is that the fraction of hot fluids
decreases at increasing distance from the thermal BL (figure 2c,d) and no such burst
can be found at the cell centre (figure 2e), implying the decreasing plume number at
increasing z. Further analysis indicates that the decrease of the number of temperature
bursts occurs within the mixing zone, which is determined from the properties of the
‘plus’ and ‘minus’ temperature skewness profiles (Zhou & Xia 2002). As most plume
mixing, merging, and clustering take place within the mixing zone (Castaing et al.
1989; Zhou, Sun & Xia 2007a), the plume number decreases within such a regime
when away from the thermal BL (Zhou et al. 2007a). The decrease of the plume
number can also be reflected by the evolution of the temperature p.d.f.s in figure 3(b).
It is seen that as z increases the probability of observing higher temperature events
(the right tail), corresponding to the number of thermal plumes (or temperature bursts),
decreases and eventually vanishes near the cell centre. Meanwhile, the distribution of
the bulk background temperature remains nearly unchanged and is similar to that of
the central bulk region.

3.2. Properties of the temperature profiles
We discuss the temperature profiles in this section. As reported in § 1.2, contradicting
observations exist regarding the time-averaged temperature profiles within the thermal
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FIGURE 4. (Colour online) Profiles of the mean temperature 〈T〉 measured at Ra= 3.2× 1011

(a) and 4× 1010 (b). The insets show an enlarged portion of the profiles close to the plate. The
solid lines illustrate the definition of the thermal BL thickness δth.

BL. Belmonte et al. (1994) observed a linear portion in the mean-temperature profiles,
whereas du Puits et al. (2007b) observed that outside a very short linear regime near
the plate the mean-temperature profiles obey a power-law behaviour. For reference,
table 1 summarizes several recent experimental observations of the distribution of the
mean-temperature profiles.

Figure 4 shows the results from typical profile measurements at Ra = 3.2 × 1011

and 4 × 1010, where the mean temperature 〈T〉 is plotted as a function of the vertical
distance z from the bottom plate (measurements were made up to z = 50 mm; as 〈T〉
remains constant after z & 20 mm, for clarity, only data for z up to 30 mm are shown).
It can be seen that when moving away from the bottom plate 〈T〉 first decreases
dramatically in a very thin layer, then experiences a transition and finally tends to the
mean bulk temperature. This agrees well with previous observations of three regions of
the thermal BL (Lui & Xia 1998; Wang & Xia 2003). To see clearly the decreasing
tendency of 〈T〉, we plot in the insets of figure 4 enlarged near-boundary portions of
the 〈T〉 profiles. It is seen clearly from the figures that near the bottom plate the z
dependence of 〈T〉 is linear. This linear region is found to hold for all Ra investigated,
to cover nearly 60–70 % of δth and to be covered by 10–20 data points (depending
on Ra). Further analysis of 〈T〉 indicates that within experimental uncertainty the
extrapolation of the linear part of the temperature profile meets the temperature of
the bottom plate Tb as z tends to zero. This is in agreement with some previous
temperature measurements in room-temperature gases (Tilgner et al. 1993; Belmonte
et al. 1993, 1994) and in water (Lui & Xia 1998; Wang & Xia 2003; Sun et al.
2008). Figure 4 also shows the definition of δth (as illustrated by solid lines). The Ra
dependence of the thermal BL properties will be discussed in § 3.5.

In the present study, high-spatial-resolution temperature measurements allow us
to examine systematically the universal properties of the mean-temperature profile
near the thermal BL. To do this, we plot in figure 5(a) near-plate portions of
five typical scaled profiles with their values of Ra indicated on the graph. Here
Θ(z) ≡ [Tb − 〈T〉(z)]/(Tb − T0) is the mean temperature (subtracted from that of the
bottom plate) normalized by the temperature difference between the bottom plate and
the bulk fluids, and the vertical distance z is scaled by the respective thermal BL
thickness δth. We found that all profiles within the linear region show a universal form,
whereas those within the transitional region cannot be simply scaled to collapse onto a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

73
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.73


Thermal boundary layer structure in turbulent RB convection 209

0.2

0.4

0.6

0.8

1.0

0 1 2 3

(a)

(c)

(b)

0

0.5

1.0

1.5

10–3 10–210–4 10–1

1.0

1.5

10–210–3 10–1

FIGURE 5. (Colour online) The scaled time-averaged temperature Θ(z)≡ [Tb−〈T〉(z)]/(Tb−
T0) as a function of the vertical position z in linear (a) and semi-log (b,c) plots for various Ra.
The dashed line in (a) represents the temperature profile of a laminar, zero-pressure gradient
BL according to Pohlhausen for Pr = 4.3. The solid lines in (c) are the logarithmic fits to the
corresponding data. For clarity, the data in (b,c) have been shifted vertically.

single curve. The spread (non-universality) is due to BL fluctuations/plume emissions.
Note that this feature was also observed by previous studies in both cylindrical (Lui &
Xia 1998) and cubic (Wang & Xia 2003) cells.

For comparison, the theoretical temperature profile of a laminar, zero-pressure
gradient BL, according to Pohlhausen (1921), is also plotted as a dashed line in
figure 5(a). Within the transitional region of the profiles, one sees that the approach
to asymptotic value is always slower than that of the laminar profile, which is similar
to the velocity BL case (du Puits, Resagk & Thess 2007a; Sun et al. 2008). This can
be attributed to the emissions of thermal plumes from the BLs. According to previous
numerical studies (Zhou et al. 2010, 2011b; Scheel, Kim & White 2012; Stevens
et al. 2012; Shi, Emran & Schumacher 2012; Verzicco 2012), the temperature profiles
are much closer to the Pohlhausen profile, if they are resampled in the dynamical
reference frame that fluctuates with the instantaneous thermal BL thickness. Owning to
the nature of the measurement technique used in the present study, we are not able to
obtain the instantaneous temperature profiles and thus cannot apply the dynamical BL
rescaling analysis.

In figure 5(b), the scaled time-averaged temperature is also plotted as a function
of z/H in a semi-log plot to see whether there is a logarithmic layer for the
measured temperature profiles. There seems to exist a logarithmic range for the
scaled temperature over roughly 2 × 10−3 . z/H . 2 × 10−2 for high-Ra cases. To
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FIGURE 6. (Colour online) Diagnostic functions (a) dΘ/d ln(z/H) (for logarithmic profile)
and (b) d lnΘ/d ln(z/H) (for power-law profile) for Ra = 6.4 × 1011. The insets show an
enlarged portion of the approximated plateau regions, respectively.

see this more clearly, we plot in figure 5(c) an enlargement of the relevant range.
While one sees no discernible logarithmic ranges for the two low-Ra data sets,
the three higher-Ra data sets seem to exhibit a logarithmic range as shown by
respective solid lines in the figure. For the measured temperature profiles, we note
that the logarithmic layer could be identified only for Ra > 9.8 × 1010 and the
logarithmic range appears to be a little wider for higher Ra. Furthermore, if we
adopt the definition Θ ′(z) ≡ [〈T〉(z) − T0]/1 and use the logarithmic relation Θ ′(z) =
A × ln(z/H) + B to fit the relevant data, these yield A = −0.022,−0.015,−0.014 and
B = −0.101,−0.052,−0.040 for Ra = 9.8 × 1010, 3.2 × 1011, 6.4 × 1011, respectively.
We note that these fitted parameters are of the same order as those obtained recently
by Ahlers et al. (2012). Nevertheless, the amplitude A of the logarithmic profiles
are quite small and for the limited logarithmic range of less than one decade one
can also use other functions to fit the data, such as a power-law function. To see
this more clearly, we follow the idea of Shishkina & Thess (2009) and evaluate the
diagnostic functions dΘ/d ln(z/H) and d lnΘ/d ln(z/H). The diagnostic functions for
logarithmic and power-law behaviours are plotted in figure 6(a,b), respectively, for
Ra= 6.4× 1011. A certain plateau might be seen from both functions within the range
3 × 10−3 . z/H . 10−2, but one cannot tell which behaviour is better to describe the
mean temperature profile in the bulk. Therefore, based on the present data we cannot
state conclusively that there is a logarithmic layer for the temperature profiles along
the cell’s central line, and this will be the subject of future studies.

We now examine the r.m.s. temperature profiles. Figure 7(a–d) show the results for
the profiles of the normalized temperature r.m.s. σT/ (σT)max obtained at five typical
Ra. The global features of the profiles shown in figure 7(a) are similar to previous
measurements, i.e. σT/ (σT)max first experiences a sharp increase near the plate, reaches
its maximum at z = δσ , and then decreases when the measuring position is shifted to
the convective central core. We further found that (σT)max occurs at the position that
is just located at the upper end of the linear portion of the 〈T〉 profile and the ratio
δσ/δth varies between 0.6 and 0.7 and is essentially independent of Ra. This value is a
little smaller than those found by Belmonte et al. (1994) in a cubic cell filled with SF6

(δσ/δth ' 1) and by Wang & Xia (2003) in a cubic cell filled with water (δσ/δth = 0.8).
A possible explanation for this difference could be due to the different large-scale flow
modes that is induced by different geometries of the convection cells. Figure 7(a) also
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FIGURE 7. (Colour online) Profiles of the normalized temperature r.m.s. σT/ (σT)max versus
the normalized vertical distance z/δσ from the bottom plate in linear–linear (a,b), log–log (c)
and semi-log (d) plots at various Ra. The solid lines in (b,d) are, respectively, the linear and
the logarithmic fits to the corresponding portions of the profiles.

shows that the normalized profiles measured at different Ra can be brought to collapse
onto a single curve, which is in contrast with the profiles of the mean temperature
that exhibit certain spread within the transitional region. This may be understood
by the fact that we use the right normalization factor, i.e. (σT)max , to normalize the
r.m.s. temperature profile, as (σT)max is a measure of the degree of fluctuations for
the corresponding Ra. This also suggests that the ‘fluctuating quantities’ are more
universal than the mean quantities in turbulent thermal convection. This feature agrees
well with the results obtained in a cubic cell (Wang & Xia 2003).

When looking more carefully at the profiles plotted in different scales, two other
remarkable features are worthy to note. The first is the increase of the temperature
fluctuations σT within the thermal BL. As shown in figure 7(b), the z dependence of
σT/ (σT)max is linear before σT reaches its maximum. The solid line in figure 7(b) is
the linear fit to the profiles for z . δσ . Together with the results for the 〈T〉 profiles,
we conclude that near the plate both the mean and r.m.s. values of the temperature
increase linearly with z. It can also be seen from figure 7(b) that the vertical-axis
intercept of the fitting line is non-zero. The non-zero value of σT as z→ 0, although
not large but nonetheless beyond our experimental uncertainty, reflects the non-zero
temperature fluctuations in the plate.

The second feature is about the decay of the temperature fluctuations σT inside
the mixing zone. Figure 7(c,d) plot the same data of the normalized temperature
r.m.s. σT/ (σT)max versus the normalized vertical distance z/δσ from the bottom plate
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FIGURE 8. (Colour online) Profiles of the skewness ST (a) and the flatness FT (b) of
temperature. Here the vertical distance z has been normalized by the cell height H.

for z > δσ on log–log and semi-log scales, respectively. The solid line in figure 7(d)
is the best logarithmic fit to the corresponding portion of the profiles. One sees that
no discernible scaling range can be identified from the log–log plot (figure 7c), while
a logarithmic function σT ∼ ln z is observed to provide the best description of the
data within the fitting region 1.2 . ln(z/δσ ) . 3.2 when they are plotted on semi-log
scale (figure 7d). Hence, our experiment supports the logarithmic variation of the
r.m.s. temperature profile, at least for the present parameter ranges. To compare with
previous measurements, we also plotted (not shown here), on a semi-log scale, σT ,
normalized by the temperature difference 4 across the cell, as a function of z/H. The
slope α′ for the logarithmic profile obtained from that plot is found to change from
−0.024 to −0.015, which is comparable with those found by Sun et al. (2008) in a
relatively low Ra range (−0.025 . α′ .−0.017).

We would like to stress that σT experiences a sharp transition at z = δσ , which
suggests that δσ is a natural scale to describe (small-scale) properties associated with
plumes. Therefore, in the remainder of this paper, we use δσ , rather than δth, to
normalize the vertical distance z from the bottom plate.

Continuing to the profiles of the high-order moments of temperature. The skewness,
the third-order moment, is a global measure of the asymmetry of the sampled-data
(such as temperature in the present case) distribution around its mean value and the
flatness, the fourth-order moment, characteristically describes whether the sampled-
data distribution is peaked or flat relative to a Gaussian distribution. Here, the
skewness and the flatness of temperature are given, respectively, by

ST = 〈(T − 〈T〉)3〉/σ 3
T and FT = 〈(T − 〈T〉)4〉/σ 4

T . (3.1)

By definition, the skewness of a symmetric distributed quantity is zero and the
flatness of a Gaussian-distributed quantity is three. Figure 8(a,b) show, respectively,
the skewness ST and the flatness FT of temperature versus the vertical distance z. Here
z has been normalized by the cell height H and our profiles cover half height of the
convection cell, i.e. from the bottom plate to the cell centre. The figure reveals three
distinct regions for both ST and FT in the convection cell. First is the region inside the
thermal BL, in which both ST and FT change very little with position. The value of
ST is small and positive and that of FT is slightly smaller than three, which confirm
quantitatively the fact, observed from the time series and the p.d.f.s of temperature in
§ 3.1, that within the thermal BL the temperature is nearly Gaussian distributed, but a
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FIGURE 9. (Colour online) Profiles of the skewness ST (a) and the flatness FT (b) of
temperature. Here the vertical distance z has been normalized by the thermal BL thickness δσ .

little bit skewed toward high temperature values. Second is the central core region in
which the turbulent flow is approximately locally homogeneous and isotropic (Zhou,
Sun & Xia 2008; Zhou et al. 2011a) and the temperature distribution is symmetric and
has two exponential tails. Hence, ST is close to zero, while FT seems to be around
the value of six, which is the characteristic value of the flatness for a exponentially
distributed quantity. In the intermediate region ST and FT first increase at increasing
z. After reaching the maximum, both quantities drop towards the cell centre. This
hill-like portions of the skewness and flatness profiles signify that the turbulent flow in
such region is highly anisotropic. This is due to the presence of hot plumes that ascend
from the heating plate. Therefore, this region corresponds to the so-called mixing zone
(Castaing et al. 1989) and the temperature skewness and flatness profiles in figure 8
can provide a quantitative way to characterize the mixing zone. It is of great interest to
note that the mixing zone found here is roughly the same as that determined based on
the skewness of ‘plus’ and ‘minus’ temperature increments (Zhou & Xia 2002). Note
also that the similar changes in ST and FT have been observed in recent experimental
(He & Tong 2009) and numerical (Emran & Schumacher 2008) studies.

To study the universal properties of high-order moments of temperature, we use the
r.m.s. thermal BL thickness δσ , instead of the cell height H, to normalize the skewness
and flatness profiles. Figure 9 shows five typical profiles of ST and FT versus z/δσ .
Compared with the scaled mean-temperature profiles in figure 5, the skewness and
flatness profiles are seen to be somewhat scattered. This is because, being high-order
quantities, the skewness and the flatness require longer time average than the mean
value for the same level of statistical accuracy. Nevertheless, one sees that over a wide
range of Ra and near the thermal BL both ST and FT profiles can collapse onto a
single curve irrespective of Ra, again suggesting that the ‘high-order quantities’ are
more universal than the mean quantities in turbulent thermal convection. Note that
the profiles of the temperature skewness and flatness presented here also reveal some
different features when compared with those found in air-filled cells (Maystrenko et al.
2007; du Puits et al. 2007b), where the temperature skewness is found to vanish at
z≈ δth and there exists a ‘dip’ region on the flatness profiles in which the temperature
flatness drops slightly below FT = 3. These differences could be the large difference in
Prandtl number in the two experiments: in air, Pr = 0.7, which is approximately six
times smaller than that in our system. Another possible reason for this difference is
that the high-order temperature profiles in the working fluid of a mixture like air may
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FIGURE 10. (Colour online) P.d.f.s of the scaled temperature (T − 〈T〉)/σT measured at four
different vertical distances z . δσ from the bottom plate for Ra = 3.2 × 1011. The black solid
curve indicates a Gaussian distribution of variance of one.

exhibit different behaviours from those in a pure working fluid such as water as used
in our measurements (Ahlers et al. 2009).

3.3. Self-similar regime within the thermal BL
The temperature skewness and flatness profiles in figure 9 show that within the range
z . δσ both ST and FT are nearly invariant irrespective of the measuring position.
This feature implies self-similar properties for temperature within such range. To test
this, we plot in figure 10 the p.d.f.s of temperature obtained at four different vertical
distances z . δσ from the bottom plate for Ra = 3.2 × 1011. Here, the fluctuating
temperature (T − 〈T〉) has been normalized by its standard deviation σT . One sees that
after normalization all of these p.d.f.s collapse on top of each other, except a little
scatter near the tails which is probably due to the limited statistics. When compared
with the Gaussian distribution (the black solid line in figure 10), a small deviation
can be observed, i.e. the p.d.f.s are slightly skewed toward right or higher temperature
values. This small deviation from the Gaussian distribution would lead to a positive
temperature skewness and to a temperature flatness that is slightly smaller than three.
Taken together, the p.d.f.s in figure 10 illustrate that near the plate or inside the
thermal BL (for z . δσ ) there exists a self-similar regime, within which the fluctuating
temperature obeys an universal distribution that is slightly deviated from the Gaussian
one. We further found that this self-similar regime holds for all investigated values of
Ra.

3.4. Properties of the temperature time derivative profiles
We turn next to the profiles of the temperature time derivative. In the calculation of
the derivative we have adopted dTi = Ti − Ti−1 using the discrete time series Ti to
characterize ∂T/∂t (Belmonte & Libchaber 1996; Sun & Xia 2007) and hence the
r.m.s., skewness and flatness of the temperature derivative can be calculated as

σ ′T = 〈dT2
i 〉1/2, (3.2a)

S′T = 〈dT3
i 〉/σ ′3T , (3.2b)

F′T = 〈dT4
i 〉/σ ′4T . (3.2c)
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FIGURE 11. (Colour online) (a) Profiles of the temperature r.m.s. σT and the r.m.s. of
the temperature derivative σ ′T for Ra = 3.2 × 1010. (b) Profiles of σ ′T/ (σ

′
T)max versus the

normalized vertical distance z/δ′σ for Ra= 2.6×1010 (circles), 4.0×1010 (squares), 9.8×1010

(up-triangles), 3.2 × 1011 (down-triangles) and 6.4 × 1011 (diamonds). The dashed line is a
linear fit: σ ′T/ (σ

′
T)max = (1.47± 0.03)z/δ′σ .

Figure 11(a) shows a typical profile of σ ′T versus the normalized distance from
the bottom plate z/H in a semi-log plot at Ra = 3.2 × 1010. For comparison, we
also plot in the figure the profile of the temperature r.m.s. σT measured at the same
Ra. It is seen that σ ′T shares the similar shape as σT , i.e. σ ′T first increases near the
plate and then decreases after reaching its maximum. This feature is consistent with
those found in a cubic cell filled with pressurized gas by Belmonte & Libchaber
(1996). However, because of the limited spatial resolution, their data could not reveal
whether the maximum of σ ′T occurs inside or outside the thermal BL (Belmonte &
Libchaber 1996). In the present study, the high-spatial-resolution measurements allow
us to examine this more exactly. Here, we define the length scale δ′σ as the vertical
distance from the plate at which the maximum of σ ′T occurs and our results shows
that the relationship δ′σ > δth > δσ (see table 2) holds for all Ra, suggesting that the
maximum of σ ′T occurs outside the thermal BL which may be due to the emissions of
plumes from the BLs.

To compare the σ ′T profiles obtained at different Ra, we plot in figure 11(b) σ ′T
normalized by its maximum value (σ ′T)max versus z scaled by δ′σ in a semi-log plot.
One sees that for the range z/δ′σ < 0.5 the profiles are independent of Ra and can
be well described by a linear relation between σ ′T and z (see the dashed line in
figure 11b). We further note that the range z/δ′σ < 0.5 is roughly the same as the
self-similar regime of the thermal BL as discussed in § 3.3. For z/δ′σ > 1 the profiles
are found to vary with Ra, i.e. they cannot be scaled onto a single curve. This is
in contrast to the profiles of the temperature r.m.s. σT where the shape universality
with respect to different Ra holds over the whole range of z investigated, from the
BL to the convective central core. This difference might be explained by the increased
calculation error due to the evaluation of the time derivatives.

Figure 12(a) shows three typical profiles of the skewness of the temperature
derivative. Here, the vertical distance has been normalized by the r.m.s. thermal BL
thickness δσ . It is found that all of these profiles follow a similar shape, i.e. S′T is
positive and keeps nearly constant near the plate and then increases to form a small
and somewhat broad peak; and after reaching its maximum (S′T)max around z = δσ , it
decreases to the value S′T < 0 in the bulk regime. Nevertheless, we find that the S′T
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FIGURE 12. (Colour online) Profiles of the skewness S′T (a) and the flatness F′T (b) of the
temperature derivative for three different Ra.

No. Ra Nu δth
(mm)

δσ
(mm)

δ′σ
(mm)

1 2.64× 1010 210.0 1.80 1.14 2.17
2 4.00× 1010 232.2 1.47 0.97 2.03
3 6.28× 1010 254.5 1.21 0.79 1.70
4 9.75× 1010 300.4 1.16 0.75 1.26
5 1.38× 1011 317.7 1.02 0.68 1.13
6 1.89× 1011 346.2 0.98 0.61 1.10
7 2.34× 1011 383.7 0.84 0.54 1.12
8 2.85× 1011 413.8 0.79 0.53 1.10
9 3.24× 1011 433.3 0.72 0.48 0.83

10 4.38× 1011 481.0 0.68 0.46 0.72
11 6.41× 1011 506.7 0.59 0.41 0.66

TABLE 2. Measured values of Nu, of the thermal BL thickness δth and δσ , and of the
length scale δ′σ at various Ra.

profiles for different Ra cannot be brought to collapse onto each other, in contrast to
the universal shape of ST within the thermal BL. We also note that the magnitude of
S′T near the thermal BL is of order one, the same size as that found by Belmonte &
Libchaber (1996), but decreases at increasing Ra. The details about the Ra dependence
of S′T will be discussed in § 3.5.

The flatness profiles of the temperature derivative for three different Ra are plotted
in figure 12(b). Although the data look somewhat scattered, all of these profiles follow
a certain trend. Inside the thermal BL and near the plate, F′T remains nearly a constant
value, which is of the order of 10 and is much larger than the characteristic value of
3 for data with a Gaussian distribution. The large deviation of F′T from the Gaussian
value reflects the well-known property of small-scale persistence of intermittency,
which is believed to originate from the sharp fronts of thermal plumes in the present
case. When z is increased toward the bulk region, F′T increases from of the order of
10 near the thermal BL to of the order of 100 in the mixing zone. The increased
magnitude of F′T implies the enhanced small-scale intermittency, which may be due to
the mixing, merging and clustering of thermal plumes.
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FIGURE 13. (Colour online) (a) Normalized thermal BL thicknesses δth/H and δσ/H
and normalized length scale δ′σ/H versus Ra. The three solid lines are power-law
fits: δth/H = (6.85 ± 0.70)Ra−0.33±0.03 (line through the circles, shown in red online),
δσ/H = (2.86 ± 0.30)Ra−0.31±0.03 (line through the squares, shown in blue online) and
δ′σ/H = (25 ± 3)Ra−0.38±0.05 (line through the diamonds, shown in green online) to the
respective data. (b) The pointwise Nusselt number Nuth and Nuσ determined from the
thermal BL thickness using (3.4) and the measured Nu versus Ra. The three solid lines
are power-law fits: Nuth = (0.07 ± 0.01)Ra0.33±0.03 (line through the circles, shown in red
online), Nuσ = (0.17 ± 0.02)Ra0.31±0.03 (line through the squares, shown in blue online)
and Nu = (0.19 ± 0.02)Ra0.29±0.03 (line through the triangles, shown in green online) to the
respective data.

3.5. Ra dependence of the thermal BL properties

In this subsection, we discuss the scaling properties of the thermal BL thickness with
the Rayleigh number Ra and compare results based on the two different definitions
as discussed in § 1.1. Figure 13(a) shows the Ra dependence of the thermal BL
thicknesses normalized by the cell height H. The circles represent δth/H and the
squares represent δσ/H. Also shown as the diamonds in the figure is the normalized
length scale δ′σ/H. The three solid lines represent the best power-law fits to the
corresponding data and give

δth/H = (6.85± 0.70)Ra−0.33±0.03, (3.3a)

δσ/H = (2.86± 0.30)Ra−0.31±0.03, (3.3b)

δ′σ/H = (25± 3)Ra−0.38±0.05. (3.3c)

It is seen that within experimental uncertainties the two BL thicknesses δth and δσ
defined differently have essentially the same scaling behaviour with respect to Ra but
their magnitudes differ by roughly a factor of two, with δth being the larger. While
the length scale δ′σ exhibits a little steeper decaying exponent. The present Ra-scaling
exponent of −0.33 ± 0.03 of the thermal BL thickness is in excellent agreement with
our previous measurements in a rectangular cell over a relatively lower Ra range
(Sun et al. 2008) and is comparable with the results of earlier experiments performed
in cubic cells (Belmonte et al. 1993, 1994; Lui & Xia 1998) and in cylindrical
cells (Wang & Xia 2003) (see table 1) and is also consistent with some numerical
studies (Verzicco & Camussi 2003; Verzicco & Sreenivasan 2008; Wagner, Shishkina
& Wagner 2012).
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With the measured thermal BL thickness, one can define the pointwise Nusselt
numbers Nuth and Nuσ as (Belmonte et al. 1994)

Nuth = H

2δth
and Nuσ = H

2δσ
. (3.4)

As the thermal BL thickness would impose on and limit the amount of the global
heat transport across the cell, the total heat flux of the system may be expected
to have the same Ra dependence as that of the thermal BL thickness. It has been
shown by early experiments in gas (Belmonte et al. 1994) that Nuth measured at the
centre of the top plate can indeed characterize the total heat flux Nu, i.e. Nuth has
the same scaling exponent with Ra and approximately the same magnitude as Nu.
However, later measurements in water (Lui & Xia 1998) suggested that the thermal
BL thickness measured at the centre of the plate is not sufficient to characterize the
global heat flux in a quantitative way and hence pointed out that caution must be taken
when generalizing the obtained results to the whole cell from the measured scaling
properties for local quantities.

Figure 13(b) shows the Ra dependence of Nuth and Nuσ converted, respectively,
from the measured δth and δσ using (3.4). Also shown in the figure is the global heat
flux Nu obtained by assuming a negligible heat leakage through the sidewalls and the
bottom plate of the convection cell. The three solid lines in the figure represent the
best power-law fits to the corresponding data and give

Nuth = (0.07± 0.01)Ra0.33±0.03, (3.5a)
Nuσ = (0.17± 0.02)Ra0.31±0.03, (3.5b)
Nu= (0.19± 0.02)Ra0.29±0.03. (3.5c)

It is seen that within experimental uncertainty Nuth, Nuσ and Nu have similar scaling
behaviours with Ra but their magnitudes differ from each other, with Nuth and Nuσ
being larger than Nu. These features agree well with those found in a water-filled
cylindrical cell (Lui & Xia 1998) and imply that the distribution of the thermal BL
thickness is not uniform over the plate, such as a ‘V’-shaped layer found in cylindrical
cell (Lui & Xia 1998), and the system has a thinner layer at the centre of the plate.
Note also that Nuth is much closer to the measured Nu than Nuσ . This is because the
global heat transport is limited by thermal conductivity of the BL which is determined
by the slope of the mean temperature at the top and bottom plates, rather than by
thermal fluctuations.

We next examine the Ra dependence of (σT)max for the temperature r.m.s. profiles
and of (σ ′T)max for the r.m.s. profiles of the temperature derivative measured along the
central axis of the cell. Figure 14(a) shows (σT)max normalized by the temperature
difference 1 versus Ra. The solid line in the figure represents the best power-law fit to
the data and gives

(σT)max /1= (3.7± 0.4)Ra−0.15±0.02. (3.6)

Note that the scaling exponent of (σT)max /1 with Ra obtained here is in a good
agreement with that found by Wang & Xia (2003) in a cubic cell, but is approximately
half the size of that found by Shang, Tong & Xia (2008) at a fixed measuring point
near the bottom plate of a cylindrical cell. It is also of great interest to note that our
present exponent is the same as that of the fluctuating temperature r.m.s. measured at
the cell centre (Castaing et al. 1989; Sun & Xia 2007), but is a little smaller than the
theoretical value predicted for the plume-dominated region (such as the region near the
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FIGURE 14. (Colour online) Normalized maximum value (σT)max /1 of the temperature
r.m.s. profile (a) and (σ ′T)max /1 of the r.m.s. profile of the temperature derivative (b)
versus Ra. The solid lines are power-law fits: (σT)max /1 = (3.7 ± 0.4)Ra−0.15±0.02 (a) and
(σ ′T)max /1= (7.2± 0.7)× 10−8Ra0.51±0.02 (b).

plate) and based on the recent scenario of the GL theory (Grossmann & Lohse 2004),
where the scaling exponent of the plume-induced thermal fluctuations is found to vary
between −0.11 and −0.09 for all given Pr .

The maximum of the normalized r.m.s. of the temperature derivative (σ ′T)max /1 is
shown as a function of Ra in figure 14(b). It is seen that the (σ ′T)max /1 versus Ra
relationship has a transition at Ra ' 2 × 1011. When Ra is below this transition point,
(σ ′T)max /1 increases as Ra increases and the relation between the two quantities can
be well described by a power function,

(σ ′T)max /1= (7.2± 0.7)× 10−8Ra0.51±0.02, (3.7)

whereas (σ ′T)max /1 may be regarded as constant within experimental uncertainties
when Ra is above this transition point.

Note that the ratio between σT and 〈(∂T/∂t)2〉1/2 is a sort of thermal Taylor
microtime (Tennekes & Lumley 1972), which can be used to characterize the
dynamics of the temperature fluctuations and studied via the dimensionless quantity
Q,

Q= H2

κ

〈(∂T/∂t)2〉1/2
σT

∼ (σ
′
T)max

(σT)max
. (3.8)

With the fitting (3.6) and (3.7), we have

Q∼
{
Ra0.66±0.04 for Ra< 2× 1011,

Ra0.15±0.02 for Ra> 2× 1011.
(3.9)

For Ra < 2 × 1011, our measured scaling exponent of Q versus Ra is in excellent
agreement with the value 0.68 ± 0.03 obtained by Belmonte & Libchaber (1996) and
is comparable with the result of 0.60 ± 0.06 found by Procaccia et al. (1991), while
for Ra > 2 × 1011, the exponent is much smaller than the value 0.47 ± 0.07 measured
in low-temperature helium gas (Procaccia et al. 1991). A similar transition for the
relation between Q and Ra has also been observed by Procaccia et al. (1991). These
authors argued that the transition is due to the decrease of a sort of inner scale, above
which thermal plumes would exhibit some fractal properties. However, Grossmann &
Lohse (1993) have argued that these changes are due to the limited thermal response
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FIGURE 15. (Colour online) The Ra dependence of the maximum skewness (S′T)max of
the temperature derivative in a semi-log plot. The solid line is a logarithmic fit: (S′T)max =
(−0.89 ± 0.05)log10Ra + (11.7 ± 1.0). The extrapolation of experimental data suggests that
there exists a certain transition at Ra∼ 1013.

time of the probe BL fluid. For the present case, we note that the sampling frequency
may have an impact on the transitions of (σ ′T)max and Q, as 15 Hz may not be
sufficient to resolve properly the time-derivative properties, especially for the high-Ra
data. Indeed, Zhou & Xia (2001) has found that the cut-off frequency of temperature
is higher than 20 Hz for Ra= 1.3× 1011.

We finally examine the relation between S′T and Ra. It has been shown in
figure 12(a) that inside the thermal BL S′T is positive and decreases as Ra is increased.
This relation can be well illustrated in figure 15, where the maximum skewness
(S′T)max for the temperature derivative profiles is plotted as a function of Ra in a
semi-log scale. It is seen that (S′T)max drops at increasing Ra and the relation can be
described well by a logarithmic function:

(S′T)max = (−0.89± 0.05)log10Ra(11.7± 1.0). (3.10)

It should be noted that the extrapolation of the fitting line crosses S′T = 0 at Ra∼1013.
This suggests that there exists a certain transition for turbulent RB convection. We
further note that this critical Ra is consistent with that found by Sun et al. (2008), who
adopted two independent criterions to show that a BL transition from being laminar to
being turbulent is expected to occur at Ra' 2× 1013.

4. Summary and conclusion
In conclusion, we have made a systematic study of the thermal BL properties in

a water-filled rectangular cell by performing high-spatial-resolution measurements of
temperature near the bottom plate, along the vertical axis that passes through the
centre of the plate, with the Prandtl number Pr fixed at 4.3 and the Rayleigh number
varying from 2 × 1010 to 7 × 1011. The system of the turbulent RB convection can
be divided into several regimes, such as the BLs, the mixing zone and the region of
convective central core (Castaing et al. 1989). Among these regimes, the BLs, in spite
of the small volume fraction they occupy, play a crucial role in the determination of
the dynamics of the system, especially the turbulent heat transfer and temperature and
velocity statistics. In the present study, from the measured temperature and temperature
derivative profiles, we obtain the following physical picture about the thermal BL
properties in turbulent RB convection.

First, the distance δσ from the plate to the maximal temperature r.m.s. position
is a natural length scale for characterizing the statistical properties of thermal BL
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quantities, as the r.m.s., skewness and flatness of the temperature field are all sharply
different below and above this length scale, i.e. below δσ , σT increases linearly with
the vertical distance z from the plate and ST is close to zero and FT is close to three
and both quantities remains nearly constant, whereas above δσ the decay of σT obeys a
logarithmic behaviour and ST and FT both exhibit a hill-like structure.

Second, there is a self-similar regime near the plate and inside the thermal BL
(z . δσ ). Within the regime, the mean temperature 〈T〉, the fluctuating temperature
r.m.s. σT and the r.m.s. of the temperature derivative σ ′T all obey a linear dependence
on the vertical distance z from the plate. In addition, the temperature fluctuations,
due to the influence of hot plumes, are skewed a little towards higher temperature
values and follow a universal distribution, which differs slightly from the Gaussian
distribution. This universal distribution can be manifested by constant values of the
high-order moments of temperature, such as the skewness and flatness studied in § 3.2.

Third, most profiles studied in the present work, when properly scaled, are found to
exhibit certain invariance with respect to Ra or show similar features within and near
the thermal BL, further signifying the universality of the BLs. Moreover, it is observed
that the profiles of the second moment of temperature possess a higher level of
universality in comparison with the mean temperature profiles. For the third and fourth
moments, scatter due to limited data statistics makes this trend less certain. If this
observation can be confirmed in future studies, it then suggests that the ‘high-order
quantities’ are more universal than the mean quantities in turbulent thermal convection.

Finally, the extrapolation of the measured derivative skewness suggests that there
exists a certain transition at Ra∼ 1013.
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