
J. Plasma Phys. (2018), vol. 84, 745840502 c© Cambridge University Press 2018
doi:10.1017/S002237781800096X

1

Semi-analytical inspection of the quasi-linear
absorption of lower hybrid wave in presence of

α-particles in tokamak reactor

A. Cardinali1,†, C. Castaldo1 and R. Ricci1

1ENEA, Fusion and Nuclear Safety Department, C. R. Frascati, Via E. Fermi 45,
00044 Frascati (Roma), Italy

(Received 12 March 2018; revised 23 August 2018; accepted 24 August 2018)

In a reactor plasma like demonstration power station (DEMO), when using the radio
frequency (RF) for heating or current drive in the lower hybrid (LH) frequency
range (Franke et al., Fusion Engng Des., vol. 96–97, 2015, p. 46; Cardinali et al.,
Plasma Phys. Control. Fusion, vol. 59, 2017, 074002), a large fraction of the ion
population (the continuously born α-particle, and/or the neutral beam injection
(NBI) injected ions) is characterized by a non-thermal distribution function. The
interaction (propagation and absorption) of the LH wave must be reformulated by
considering the quasi-linear approach for each species separately. The collisional
slowing down of such an ion population in a background of an electron and
ion plasma is balanced by a quasi-linear diffusion in velocity space due to the
propagating electromagnetic wave. In this paper, both propagations are considered by
including the ion distribution function, solution of the Fokker–Planck equation, which
describes the collisional dynamics of the α-particles including the effects of frictional
slowing down, energy diffusion and pitch-angle scattering. Analytical solutions of the
Fokker–Planck equation for the distribution function of α-particles with a background
of ions and electrons at steady state are included in the calculation of the dielectric
tensor. In the LH frequency domain, ray tracing (including quasi-linear damping),
can be analytically solved by iterating with the Fokker–Planck solution, and the
interaction of the LH wave with α-particles, thermal ions and electrons can be
accounted self-consistently and the current drive efficiency can be evaluated in this
more general scenario.

Key words: fusion energy, plasma heating, plasma physics, plasma wave physics, theory and
numerical simulation

1. Introduction
An analysis of the quasi-linear absorption of the lower hybrid wave (LHW) (mainly

in tokamak reactors) is developed starting from a simplified quasi-analytical model to
elucidate some features of the absorption that are found in a complete two-dimensional
(2-D) approach. The 2-D numerical approach is essentially based on the simultaneous
solution of the ray tracing (two-dimensional in space) and the Fokker–Planck equation
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for the electron species (two dimensions in velocity space). One of the characteristics
of the quasi-linear absorption is the main role played by the wave spectrum coupled
to the plasma at the edge, which in some conditions can lead to a more efficient
penetration of the LH wave in the plasma core (on the outer half-radius) with respect
to the less optimistic expectation based on the linear absorption of the wave in
tokamak hot plasma reactors (electron Landau damping) (Cardinali et al. 2015, 2017;
Amicucci et al. 2016).

For many years, starting with Fisch (Fisch 1978, 1979), the LH wave has
represented the best manner to induce the non-inductive current drive in a tokamak
plasma both in the full current drive approach (replacement of the inductive current
of the transformer with the current generated by the LH wave) and in current
profile control (off axis), in order to improve the bootstrap localization, suppress
the tearing mode and change the q (safety factor) profile in the so called advanced
tokamak operation (in this context see for example the paper by Bonoli et al.
(2000)). In a tokamak reactor this last point seems to be unavoidable to control
the stability of the plasma and to allow operations in steady state conditions. In
a reactor, moreover, the problem that concerns the physics of the radio frequency
(RF)-plasma interaction is different with respect to the laboratory tokamak. Until now
the interaction between the LHW and the plasma was characterized by the difficulty
of justifying the experimental results in the frame of the linear or quasi-linear theory.
The increase of the parallel wavenumber via the multi-pass approach (Bonoli &
Englade 1986) or some nonlinear interaction between the wave and the plasma at
the edge (with consequent modification of the spectrum radiated by the antenna),
has been invoked to justify the experimental results (Porkolab 1977; Cesario &
Cardinali 1989). In a reactor, owing to the very high electron temperature at the
plasma separatrix, the LH wave strongly interacts with the plasma periphery and a
strong Landau damping can reduce the power available for efficient current drive
in the outer part of the plasma radius. It has been shown (Cardinali et al. 2015,
2017; Amicucci et al. 2016), that operating on the wave spectrum (by reducing
its width), and applying correctly quasi-linear theory, the wave can reach more
internal regions and deposit its energy in the outer half-radius of the plasma column.
Nevertheless, in a reactor, the presence of α-particles everywhere in the plasma
with a radial density profile which can be established (Waltz & Bass 2014) could
prevents the LH wave interacting correctly with the electrons in the zone where,
without the presence of the α population, the interaction is likely expected. The
α-particles are characterized by a distribution function called ‘slowing down’ which
is very different with from the usual Maxwellian that characterizes the background
plasma (electrons and ions). Obviously the α-particle after a sufficient time owing
to the collisions with the background electrons and ions (deuterium and tritium in a
reactor) thermalizes, but at the steady state, most of the α-particles are included in
an energy range which goes from the energy 3.5 MeV up to the so-called critical
energy ≈1 MeV. Previous studies related to the interaction between LHW and α

particles in international thermonuclear experimental reactor (ITER) via a complex
numerical tool have been reported (Imbeaux, Peysson & Eriksson 2003; Schneider
et al. 2009). In this paper we derive the dispersion relation in the electrostatic limit
(Hermitian and anti-Hermitian part of the dielectric function) of the lower hybrid
wave when dealing with a slowing down distribution function for the α-particles, and
compare the quasi-linear damping of the wave on the thermal electrons and ions with
the damping on this non-thermal ion population. In fact, unlike what happens in a
laboratory plasma, in a reactor, the thermal ions are also able to absorb energy from
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the wave and hence disturb the current drive efficiency. The density of α-particles
at the steady state in a tokamak reactor can be evaluated (Zweben et al. 1988) by
considering the following formula nα ∼ S · τ , where S is the reaction rate and τ is
the slowing down time (the characteristic time in which the α-particles thermalize).
Considering that S scales like S ∼ n2T2

i and τ ∼ T3/2
e n−1 we have that nα scales

like nα ∼ nT2
i T3/2

e . In order to inspect the basic mechanism of the propagation and
absorption of the LH wave in the reactor plasma environment and unveiling the
physics of the wave–plasma interaction, analytical calculation of the propagation
and quasi-linear damping of the LH in a simplified approach is the framework for
a more sophisticated numerical code in which these effects are considered without
approximation. The approximations we will use in our analytical approach rely on
(i) 1-D quasi-linear Fokker–Planck solution for the α, ion and electron distribution
function, (ii) electrostatic limit of the LH dispersion relation and (iii) 1-D ray-tracing
analytical solution. In § 2 a simplified set of ray-tracing equations (in a toroidal
geometry) for the wave phase and power damping along the trajectory is derived and
solved when taking into account for the power-damping rate the imaginary part of the
dielectric function for a general particle distribution function. In § 3 the Fokker–Planck
equation for α-particles, thermal ions and electrons in the presence of a quasi-linear
diffusion term (only for electrons and ions), due to the electric field of the LHW, is
derived and solved, and the various examples of the (non-Maxwellian) damping rate
are discussed. The combined solution of the ray-tracing and Fokker–Planck equations
allows us to get the quasi-linear deposition profiles of the LH power over the various
species. Application of this scheme to the plasma parameters of the demonstration
power station (DEMO) reactor (given in § 4) enables us to establish if the power
coupled by the antenna at the plasma edge is able to reach the internal layers of
the plasma (beyond the pedestal) where it is absorbed by the electron species and
will generate current in layers that are relevant for plasma stabilization and advanced
scenarios. Different advanced scenarios range from (i) plasmas that sustain a central
region with a flat current density profile (zero magnetic shear), capable of stationary
operation at high plasma pressure, to (ii) discharges with an off axis maximum
of the current density profile (reversed magnetic shear in the core), able to form
internal transport barriers and to increase the confinement of the plasma. Finally in
§ 5 conclusions are given.

2. Analytical solution of the ray-tracing and power-damping rate equations
In the Eikonal approximation of the wave equation for the lower hybrid frequency

domain, widely investigated in the past (Bernstein 1975; Brambilla & Cardinali 1982,
and more recently by Peysson, Decker & Morini (2012) for combined LHW and
electron cyclotron resonance heating (ECRH) schemes), the characteristics of the
wave propagation are related essentially to the real part of the dielectric function
ε= 1+

∑
s=i,e,α χs (in the electrostatic approximation) while the dissipation is related

to the imaginary part, having supposed that χ Im
s � χRe

s , and χs is the susceptibility of
the species ‘s’. The use of the longitudinal approximation is well justified for the LH
wave, and this approximation makes the analytical calculations much easier without
taking anything away from physics. This is true in our case because we are dealing
with the propagation of the LH wave at the first pass in a high density plasma i.e.
n⊥ � n‖ � S, and we are guessing that the power spectrum is imposed at the first
closed magnetic surface without being interested in calculating the wave coupling
for which the electromagnetic model shows to be essential for a correct description
of the process. In space, the LH wave propagation is thus ruled by the so-called
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ray-tracing equations, i.e. a coupled set of ordinary differential equations for space
and the wave vector:

ṙ = vg =−
∂εRe/∂k
∂εRe/∂ω

; k̇=
∂εRe/∂r
∂εRe/∂ω

, (2.1a,b)

(where k is the wavevector and ω is the wave frequency) whose solution ‘traces’
a line in the physical space confining the plasma (in our case the tokamak is well
described by a toroidal geometry). The dissipation of the wave can be calculated by
adding the equations for the damping rate along the trajectory,

Ṗj = 2
(

εIm

∂εRe/∂ω

)
Pj, (2.2)

where Pj is the normalized power associated with the jth component of the power
spectrum (see below), and γ =−εIm/(∂εRe/∂ω) is the damping factor; εRe and εIm are
the real and imaginary parts, respectively, of the complex dielectric function whose
general formulae (in terms of the equilibrium distribution function) can be easily
found in several text-books related to plasma physics (see for example Swanson (2003,
p. 154) and/or Brambilla (1998, p. 324) for magnetized and unmagnetized (isotropic)
cases. Obviously, when the wave does not affect the plasma, the Fokker–Planck
equation for the distribution function gives, at the equilibrium, the Maxwellian
solution (at least for background electrons and ions, and the slowing down solution
for the α-particles), the dielectric function (and the related dispersion relation) in the
cold plasma limit becomes

ε= εRe
=
ω2

pe

ω2

k2
⊥

k2
+

ω2
pe

ω2 −Ω2
ce

k2
‖

k2
+
ω2

pi

ω2

k2
⊥

k2
+

ω2
pi

ω2 −Ω2
ci

k2
‖

k2
= 0. (2.3)

The real part of the dielectric function in the limit of a cold plasma is used in
the ray-tracing equations above: equations (2.1). By making this approximation
(cold plasma) we are supposing that the temperature effects are not essential in
describing the propagation characteristics of the LH wave. Concerning the absorption,
when solving (2.2), we must use the formulae which give εIm, which depends
on the distribution function. This means that simultaneously with the system of
equations (2.1)–(2.2) we are obliged to solve also the Fokker–Planck equation
(for each species composing the plasma) to correctly account for the so-called
quasi-linear damping of the LH wave. Calculation of the imaginary part of the
dielectric function becomes straightforward in the simple case of linear damping,
when dealing with a Maxwellian distribution function, while for the quasilinear
damping the solution of the Fokker–Planck equation is required (see formulae for
electrons (magnetized) ions and alpha particles (unmagnetized) in § 3). Equation (2.2)
can be integrated together with ray trajectories (2.1), and the linear or quasi-linear
damping of the wave can be accounted for. In (2.2) Pj is the power associated with
the jth ray composing the power spectrum radiated by the antenna, to reconstruct
the global power we must integrate (2.2) for several rays and the following holds:∫
+∞

−∞
dn‖ P̂(n‖, r) =

∑N
j=1 P̂j = Ptotal/P0 = 1. Assuming that the physics of the wave

propagation is essentially ruled by the background plasma of electrons and ion, and
that the α-particles distribution does not affect too much the real part of the dielectric
function (owing to the very low fraction of α particles present in the plasma at
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the steady state 61 %) we are able to perform the integration of the ray-tracing
equations (2.1), using a toroidal geometry (ψ, θ, φ) and the conjugate wave vector
(kψ ,mθ , nφ). To obtain a suitable analytical solution (Cardinali et al. 2007) we can
make the hypothesis that the density is flat and the variation of the confined magnetic
field can be neglected (cylindrical limit). This last hypothesis is reasonable because
as is well known, the propagation of the LHW in a reactor plasma is a first pass
propagation and the absorption of the power in any case concerns only the outer
half-radius of the plasma. By using these approximations the ray-tracing equations
can be written and solved by quadrature. Far from singularity, cutoffs and reflections
(good approximations for LH propagation in a tokamak reactor), and considering
nφ = const. (constant of motion), removing the equation for kψ by using the dispersion

relation (2.3) kψ =
√
−k2

χ − (εzz/εxx)k2
‖ and using r= a

√
ψ/ψ0 (ψ is the poloidal flux

function, and a is the plasma radius) for the independent variable we have

dθ ∼−
√
|εzz|

qaR0
dr ⇒ θ(r)= θ0 −

√
|εzz|

qaR0
(r− a)

dφ =−
√
|εzz|

R
dr ⇒ φ ∼ φ0 −

√
|εzz|

R0
(r− a)+O(ε)

dmθ ∼−

√
|εzz|nφr sin θ

R3
0

dr ⇒ mθ =mθ0 −

√
|εzz|nφ
R3

0

∫ r

a
r sin θ(r) dr

dt∼−
√
|εzz|

(
ω2

pi

ω3

)(
mθ

R0q (r)
+

nφ
R0

)
dr

⇒ t=−
∫ r

a
dr
√
|εzz|

(
ω2

pi

ω3

)(
mθ

R0q(r)
+

nφ
R0

)
.



(2.4)

In solving (2.4) we have also used the approximation εzz ∼ −(ω
2
pe/ω

2)εxx ∼ 1 and
the definition of kχ ∼ mθ/r − nφr/R2

0q(r), and k‖ ∼ mθ/R0q(r) + nφ/R0, and q(r) =
(r/R0)(B0/Bθ(r)) the safety factor.

Equation (2.2) can be re-written as

dPj =−Pj

(
εIm

√
|εzz|k‖

)
dr=−Pjγ (r) dr (2.5)

and it must be supplemented by the equation for εIm.
The solution of (2.5) requires the computation of the damping rate associated with

a single ray that contributes to the power spectrum. If we are interested to the linear
damping rate the solution of (2.5) is immediate and it reduces to a simple quadrature
by inserting the definition of εIm that for background electrons and ions is:

εIm
e = χ

Im
e =−

√
π

2
ω2

pe

k2v2
the

(
ω

k‖vthe

)
e−ω

2/2k2
‖
v2

the

εIm
i = χ

Im
i =−

√
π

2
ω2

pi

k2v2
thi

(
ω

k⊥vthi

)3

e−ω
2/2k2

⊥
v2

thi .

 (2.6)

The damping rate, in the quasi-linear approximation, instead, depends on the
distribution function as resulting from the plasma–wave interaction, and concerning
the α-particle population, on the distribution function called ‘slowing down’ which
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characterizes the α-particle dynamics. In turn the distribution function is the outcome
of the integration of the quasi-linear Fokker–Planck equation and depends on the
wave power itself via the quasi-linear diffusion coefficient. In the § 3 the general
form of the dielectric function (real and imaginary part) is deduced for a general
distribution function and in the case of magnetized electrons and un-magnetized ions
(thermal and α-particle ions).

3. Solution of 1-D quasi-linear Fokker–Planck equation for the α, bulk ion (i) and
electron (e) distribution functions
In order to specify the dielectric function, written in terms of a general distribution

function, we must solve the steady state quasi-linear Fokker–Planck equation for the α,
ion and electron populations forming a plasma at thermonuclear conditions and that
accounts for wave–plasma interaction. The wave in fact interacting with the plasma
tends to distort the distribution function, causing deviating from the Maxwellian (at
the equilibrium) and generating, for example, a flat tail in a certain velocity range
as in the case of electron–wave interaction or forming a plasma characterized by an
effective temperature much higher than the nominal reference temperature as in the
case of the ion–wave interaction. In the case of the α population, we limit ourselves,
in the present analysis, to considering only the slowing down distribution function
omitting, in the Fokker–Planck equation, the quasi-linear term. A parametric study of
the Fokker–Planck equation in the presence of a quasi-linear term, was given, in a very
simplified form, in Barbato & Santini (1991), Barbato & Saveliev (2004), and we will
come back on this problem in a subsequent paper. In the following analysis we treat
the problem of deriving the distribution function by starting from the α-particles.

3.1. Slowing down α-particle distribution function
The 2-D Fokker–Planck equation without the quasi-linear term (a much simpler 1-D
solution with the inclusion of the quasi-linear terms can be found in Fisch & Rax
(1992)) for the α-particles can be written as

∂fα
∂t
+

1
v2

∂(v2Sv)
∂v

−
1
v

∂(Sµ
√

1−µ2)

∂µ
=

n2
e〈σv〉

4
δ(v − vbirth)δ(µ−µ0)

4πv2
−

fα
τα
, (3.1)

where the collisional operator is

Sv =
∑
s=i,e

Sα,sv =−
Γ α,s

2
Φ(u)

(
1
v

∂fα
∂v
+

mα

v2
thsms

fα

)
Sµ =

∑
s=i,e

Sα,sµ =
Γ α,s(1−µ2)1/2

4v2
[2erf(u)−Φ(u)]

∂fα
∂µ

 (3.2)

and Γ α,s
= 4πnsq2

αq2
s lnΛα,s/m2

α, ln Λα,s is the Coulomb logarithm,
Φ(u) = [erf(u)− uerf′(u)/u2

], u = v/
√

2vths is the normalized (to the thermal
velocity of species s vths =

√
κTs/ms) velocity, Sα = (n2

e〈σv〉)/4, is the reaction
rate for D-T reaction and the reactivity 〈σv〉 can be approximated by 〈σv〉 ≈
1.1×10−18T2

keV cm3 s−1. The parameter τα is a parameter representing the confinement
time of the α particles, which can be represented as a simple function of the energy
τα ∝ E−l, and δ(v − vbirth)δ(µ−µ0) are the Dirac delta functions. At the steady state
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Quasi-linear absorption of LHW 7

FIGURE 1. Distribution function f0α(v, µ) versus energy (in keV) at various pitch angles
−1 6µ= cos θ 6 0. The black curve refers to the isotropic case f0α(v).

and considering the α-particles to be well confined (τα→∞), and vthi� v� vthe the
solution is the well-known ‘slowing down’ that can be written as (Graffey 1976)

fα(v, µ) =
nαC

(v3 + v3
c )

∞∑
n=0

(
2n+ 1

2

)
Pn(µ)Pn(µ0)

×

[
v3

v3
birth

(
v3

birth + v
3
c

v3 + v3
c

)](n(n+1)/6)Z2

H(vbirth − v), (3.3)

where

vc = vthe
3

√
3
√

π

4
me

mα

∑
i

Z2
i

ni

ne

mα

mi

lnΛα,i

lnΛα,e
(3.4)

is the critical velocity, the constant C = 3/(2π ln((v3
birth + v

3
c )/v

3
c )), vbirth =

√
2Eα/mα

is the velocity of the generated α particles, with Eα = 3.5 MeV, H(vbirth − v) is the
Heaviside step function, Pn the Legendre function of order n and

Z2 =
∑

i

Z2
i

Z1

ni

ne

lnΛα,i

lnΛα,e

Z1 =
∑

i

Z2
i

ni

ne

mα

mi

lnΛα,i

lnΛα,e
.

 (3.5)

A plot of the function f0α(v, µ) equation (3.3) versus the energy is given in figure 1
when considering the DEMO option 1 (pulsed regime) plasma parameters (Zohm et al.
2013; Giruzzi et al. 2015): dimensions R0 = 6, 7 m; a= 2 m, density n0 = 1020 m−3
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FIGURE 2. Damping function εIm
α versus the normalized plasma radius for three values of

α-particle concentration (red square curve 0.5 %, blue bullet curve 1 %, green square 2 %).

(flat profile), temperature Te0= 24 keV, DT = 50 %–50 % and 1 % of α-particles at the
steady state. It is easy now to reconstruct the imaginary part of the dielectric function
by using the Sokhotski–Plemelj formula

εIm
α = χ Im

α =−2π2 4πq2
α

mαk2

∫
+1

−1
dµ
∫
∞

0
dvv2

k ·
∂f0α(v)

∂v
ω− k · v

=
2Cπ2ω2

pα

k2v2
birth

v̂res

[
1

v̂3
res + v̂

3
c

−
1

1+ v̂3
c

]
, (3.6)

where we have used the slowing down distribution function averaged on the pitch
angle (black curve of figure 1), and the resonant velocity v̂res=ω/kvbirth (‘hat’ means
normalization over the α birth velocity) Owing to the small fraction of α-particles
in the plasma composition, the real part of the susceptibility does not contribute too
much to the dispersion relation, and it can be neglected. The imaginary part, which
affects the damping of the wave, on the contrary, can be relevant. Note that in the
case of α-particles we have neglected the quasi-linear effect in the solution of the
Fokker–Planck equation. This is equivalent to assuming that the wave does not affect
significantly the distribution of the α-particles. In figure 2 a plot of the damping
function strength εIm

α (3.6) versus the normalized plasma radius is shown at different
α-particle concentrations (a) nα/ne = 0.5 %, (b) nα/ne = 1 %, (c) nα/ne = 2 %, (Waltz
& Bass 2014) for the plasma parameters of figure 1, LH frequency fLH = 5 GHz and
k‖ = (ω/c)n‖ = 1.89 cm−1. In figures 3 and 4 the damping rate (γ =−εIm/

√
|εzz|k‖),

and the power deposition profiles (in W m−3) are depicted for the same plasma
parameters and same values of the concentration of α as in the previous figures.
Regarding the figure, it can be seen that when increasing the α-concentration the
damping rate increases and the absorption can be relevant also in more peripheral
zones (Wong & Ono 1984).
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Quasi-linear absorption of LHW 9

FIGURE 3. Power-damping rate (γ =−εIm/
√
|εzz|k‖), as a function of the normalized

plasma radius for the same values of the concentration of α-particles as in the previous
figures.

FIGURE 4. Power deposition profiles in W m−3 as a function of the plasma radius for
the same values of the concentration of α-particles as in the previous figures.

3.2. Electron distribution function quasi-linear solution

The one-dimensional distribution function in the case of electrons under the influence
of the wave electric field is written (Fisch 1978):
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fe(u)=Ce exp
(
−

∫
u

1+D(u)u3
du
)
, (3.7)

where u = v‖/vthe, Ce is a constant which can be evaluated by imposing n0 =∫
+∞

−∞
fe(v) dv and D(u) is the ratio between the quasi-linear and collisional diffusion

coefficient. From this definition we have:

D(v‖)=
D‖‖(v‖)
νeev

2
the
=

2π

(2+ Zi)νeev
2
the

(
e

me

)2 ∫ +∞
−∞

dk‖|E‖(k‖)|2δ(ω− k‖v‖) (3.8)

and νee
= 4πnee4λee/m2

ev
3
the, vthe=

√
κTe/me and λee= 24− ln(n1/2

e T−1
e ) are respectively

the e–e collision frequency, the thermal velocity and the Coulomb logarithm and Zi is
the ion charge state. In a tokamak reactor, owing to the very high electron temperature
the absorption of the power must happen at the first pass in the external zone of
the plasma (between the scrape-off layer and the pedestal), for this reason we are
confident that the propagation of the wave in this zone must be localized in the so-
called resonance cones (Bellan & Porkolab 1975), using the Poynting theorem we
calculate the electric field, which appears in (3.8) in terms of the power which flows
from the antenna to the plasma, in formula we have

|E‖(n‖)|2 =
8π

c
Pd0g(n‖)
|n‖|
√
−εzzεxx

, (3.9)

where Pd0 is the area-power density, g(n‖) is the function which takes into account
the power spectrum shape, n‖ the parallel wavenumber (n‖ = (c/ω)k‖) and εzz = 1−
ω2

pe/ω
2
−ω2

pi/ω
2
∼ −ω2

pe/ω
2 and εxx = 1 − ω2

pe/(ω
2
−Ω2

ce)−ω
2
pi/(ω

2
−Ω2

ci)∼ 1 are the
elements of the cold plasma dielectric tensor and are defined in § 2. Assuming, for
the sake of simplicity, that the function g(n‖)= rect(n‖ − n‖p/1n‖), (centred at n‖p and
duration 1n‖) in the interval n‖1 6 n‖ 6 n‖2 such that n‖p = n‖2 + n‖1/2 (considering
n‖p is the peak value (in this case the mean value) of the spectrum) we obtain an
expression for the quasi-linear diffusion coefficient in terms of the normalized (to the
electron thermal velocity) parallel velocity u= v‖/vthe:

D(u)=
8π

c
2π

(2+ Zi)νeev
2
the

(
e

me

)2 Pd0

ω
√
−εzzεxx

rect(u− up)

1u
=D0erect(u− up), (3.10)

where

D0e =
16π2

c(2+ Zi)νeev
2
the

(
e

me

)2 Pd0

1uω
√
−εzzεxx

(3.11)

and the function rect(u) is included between u1 = c(n‖2vthe)
−1 and u2 = c(n‖1vthe)

−1,
whose duration is 1u = (c/vthe)(1n‖/n‖1n‖2), and up = c(n‖2 + n‖1)/2vthen‖1n‖2. The
distribution function can be obtained by quadrature of the integral in (3.7)

fe(u)=Ce exp
(
−

∫
u

1+D(u)u3
du
)

=Ce exp

−
ln(D2/3

0e u2
−D1/3

0e u+ 1)− 2 ln(D1/3
0e u+ 1)+ 2

√
3 arctn

(
2D1/3

0e u− 1
√

3

)
6D2/3

0e

 .

(3.12)
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Quasi-linear absorption of LHW 11

The 2-D distribution function for the electrons can be written as

Fe(v⊥, v‖)= e−(v
2
⊥
/2v2

the)fe(u)=Cee−(v
2
⊥
/2v2

the) exp
(
−

∫
u

1+D(u)u3
du
)
, (3.13)

where we have assumed a Maxwellian distribution for the perpendicular velocity and
the constant Ce can be obtained by the normalization of the distribution function on
the velocity space

Ce =
n0

2πv3
theI(±∞)

, (3.14)

where I(±∞)=
∫
+∞

−∞
du e−

∫
(u/(1+D(u)u3)) du.

For our purpose of application of the LHW for current drive, the imaginary part of
the dielectric function is

εIm
e = χ

Im
e = 2π2ω

2
pe

k2

∂fe(v‖)

∂v‖

∣∣∣∣
v‖=ω/k‖

=−
π

I(±∞)

ω2
pe

k2v2
the

×


u

exp

−
ln(D2/3

0e u2
−D1/3

0e u+ 1)− 2 ln(D1/3
0e u+ 1)+ 2

√
3arctn

(
2D1/3

0e u−1
√

3

)
6D2/3

0e


1+D0erect(u− up)u3


u=ω/vthek‖

.

(3.15)

As is possible to see in (3.15) εIm depends on Pd0 via the quasi-linear diffusion
coefficient equation (3.11) that appears in the distribution function. When solving
the dynamical equations (2.2) which are essentially nonlinear, the integration must
be performed very carefully as will be explained below. To deduce some feature of
the quasi-linear approach with respect to the linear one we can consider (2.2) by
considering D0e� 1, the damping rate becomes

εIm
e ∼ −

π

I(±∞)

ω2
pe

k2


(

c
vthen‖

)
1

D0erect(n‖ − n‖p)
1

2
√

2

(
c

vthen‖

)3


∼ Λ(r)

1n‖
Pd0rect(n‖ − n‖p)

, (3.16)

where

Λ(r)=−
23/2π

I(±∞)

ω2
pe

k2

ω
√
−εzzεxx(

c
vthen‖

)2 16π2

c(2+ Zi)νeev
2
the

(
e

me

)2 (3.17)
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12 A. Cardinali, C. Castaldo and R. Ricci

FIGURE 5. Damping rate versus the normalized radial variable for DEMO plasma
parameters as in figure 1 and plasma current I=18 MA, magnetic field on axis B0=6.8 T
for two different flat spectra (a) wide 1n‖ = 1 (pale blue line) and (b) narrow 1n‖ = 0.6
(red line), with n‖p = 1.8 (peak value).

and we have singled out the dependence of εIm on the width of the spectrum and the
power density. In this limit (2.2) can be formally integrated and we have

Pj = Pj0 exp
(
−

∫ a

r
dr

Λ(r)
√
|εzz|n‖

(
1n‖

Pd0rect(n‖ − n‖p)

))
. (3.18)

It is worth noting that the higher the power density coupled to the plasma, the lower
the integrand in (3.18) and consequently the power tends to penetrate more deeply
into the plasma. The contrary holds for the width of the spectrum. Narrower power
spectra have the tendency to penetrate better into the plasma and deposit energy in a
more central region (Cardinali et al. 2017). In figure 5 we show the damping rate for
DEMO plasma parameters as in figures 1 and 2 and plasma current I = 18 MA, the
magnetic field on axis B0=6.8 T for two different spectra (a) wide 1n‖=n‖2−n‖1=1
(red circles) with the minimum and maximum values of the spectrum n‖1= 1.3–n‖2=
2.3 and (b) narrow 1n‖ = 0.6 (black circles), with n‖1 = 1.5–n‖2 = 2.1; and n‖p = 1.8,
and the related Maxwellian damping (green and pale blue lines). The plot clearly
shows the behaviour expected by formula (3.18). In figure 6 the power deposition
profiles related to the damping rate of figure 5 are shown versus the normalized radial
variable x.

3.3. Ion distribution function: quasi-linear solution
To evaluate the ion distribution function under the action of the LH wave, we follow
the derivation of Brambilla & Chen (1983), where the 1-D quasi-linear Fokker–Planck
equation (at the steady state) for the ion distribution function in the perpendicular
direction is solved considering the ion–ion collision frequency. This equation can
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Quasi-linear absorption of LHW 13

FIGURE 6. Power deposition profiles in W m−3 (related to the quasi-linear damping rate
of figure 5 case 1n‖ = 0.6) versus the normalized radial variable. The same plot shows
the power deposition profile for Maxwellian (linear) damping (red line).

be derived by considering the high velocity limit v� vths for the ion–ion collisions
operator while disregarding the ion–electron collisions. We have:

1
fi(w)

∂fi(w)
∂w
=−

2
mi

ms
w

(1+ 2
√

2w3D(w))
, (3.19)

where D(w)=D⊥⊥(w)/ν i,sv2
ths, w= v⊥/

√
2vthi, the subscript ‘i’ refers to the test ions

while ‘s’ refers to the background species which in the reactor can be either deuterium
and tritium, and

ν is
=

4πnsZ2
i Z2

s e4λis

m2
i v

3
thi

λis = 23− ln

ZiZs

(
mi

mp
+

ms

mp

)
mi

mp
Ts +

ms

mp
Ti

(
niZ2

i + nsZ2
s

Ti + Ts

)1/2




(3.20)

are respectively the ion collision frequency and the Coulomb logarithm. The quasi-
linear diffusion coefficient is constructed by following the argument outlined in Karney
(1979). In our case, in the limit of zero parallel velocity, the quasi-linear diffusion
coefficient can be written as

D⊥⊥(v⊥)=
∑

n

π

2
q2

s

m2
s

∫
+∞

−∞

dk‖ E2
⊥
(k‖)

n2

λ2
J2

n(λ)δ(ω− nΩcs) (3.21)
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14 A. Cardinali, C. Castaldo and R. Ricci

with λ = k⊥v⊥/Ωci = nk⊥v⊥/ω, for v⊥ > ω/k⊥, where n is fixed by the resonance
conditions and n� 1, we have

D⊥⊥(v⊥) =
π

2
q2

s

ωm2
s

∫
+∞

−∞

dk‖ E2
⊥
(k‖)

J2
n

(
n

k⊥v⊥
ω

)
(

k⊥v⊥
ω

)2

≈ π
q2

s

ωm2
s

∫
+∞

−∞

dk‖ E2
⊥
(k‖)

(
ω

k⊥v⊥

)3

 |ζ |1/2√
1−

(
ω

k⊥v⊥

)2


×

{
Ai(n2/3ζ )

n1/3
+

e−(2/3)nζ 3/2

1+ n1/6|ζ |1/4
O(n−4/3)

}2

, (3.22)

where we have developed for large argument and harmonic number n(k⊥v⊥/ω)� 1,
and

|ζ |1/2 =

3
2

√(k⊥v⊥
ω

)2

− 1− arccos
(

ω

k⊥v⊥

)1/3

. (3.23)

For large D(w)w3
� 1 we can assume D(w)w3

= const., shaped as D0irect(k⊥ − k⊥p).
This rectangular interval in k⊥ can be easily calculated by using the cold electrostatic
dispersion relation (2.3), and the following relation that is easily obtained

k⊥1 =

√
−
εzz

εxx
k‖1 6 k⊥p 6 k⊥2 =

√
−
εzz

εxx
k‖2 (3.24)

and

D0i ≈
π

4
√

2ν i,sv2
ths

q2
s

ωm2
s

∫
+∞

−∞

dk‖ E2
⊥
(k‖)

(
ω

vthsk⊥(k‖)

)3

, (3.25)

where by means of the Poynting theorem

|E⊥(k‖)|2 =
8π

c
Pd0g(k‖)
|n‖|εxx

√
−εzz

εxx
(3.26)

and g(k‖), as in the case of electrons, is a function which represents the power
spectrum. Equation (3.19) can be integrated

fi(w)=Ci exp

−∫ w

0
dw

2
mi

ms
w

(1+ 2
√

2D0i)

=Ci exp
(
−

mi

ms

w2

(1+ 2
√

2D0i)

)
. (3.27)
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This distribution function, as has been remarked in Brambilla & Chen (1983),
describes a Maxwellian with an effective ion temperature given by

Ti−eff = Ti
ms(1+ 2

√
2D0i)

mi
(3.28)

where vthieff =
√
κTi−eff/mic is the thermal velocity corresponding to the effective

temperature above. Note that this distribution function describes the interaction
RF-ions in the velocity range v⊥/vths > ω/vthsk⊥2(k‖), where k⊥2(k‖) is the higher
value of the perpendicular wavenumber which corresponds to the higher k‖ excited
by the power spectrum. The effect is to create a tail in the distribution function that
extends up to very high velocities. For velocities such that v⊥/vths < ω/vthsk⊥2(k‖),
the distribution function is the usual Maxwellian. The constant Ci can be calculated
by normalizing both of the ion distribution functions. A plot of the distribution
function (3.27), at various radial positions and under the action of the LH power
in the DEMO plasma (same plasma parameters as in the previous figures) is given
in figures 7(a) and 7(b), where in (a), in the calculation of the velocity range
v⊥/vths > ω/vthsk⊥2(k‖), the value of the central density is n0e = 1020 m−3, and in
(b) n0e = 2 × 1020 m−3. It is evident from these figures that a noticeable interaction
between the wave and the plasma will produce some quasi-linear effects only for a
central density greater than 2 × 1014 cm−3. Below this threshold the wave–plasma
interaction occurs in a zone at very high energy where the ion density is extremely
low. By using the second of (2.6) we are able to calculate the damping function for
the bulk ion species in the tail

εIm
i =−2π2Ci

(
vthieff

vthi

)
ω2

pi

k2v2
thi

(
ω3

v3
thieff k

3
⊥

)
. (3.29)

In figure 8 is plotted the strength of the damping function, equation (3.29), as a
function of ω/vthsk⊥ at various radial positions for k⊥(x, k‖peak) which corresponds to
the k‖ peak of the power spectrum and for central density (a) blue line n0= 1020 m−3,
(b) red line n0=1.5×1020 m−3, (c) green line n0=2×1020 m−3. With k⊥∼ (ωpe/ω)k‖
the results clearly show that the higher the density and/or the higher the parallel
wavenumber, the higher the value of k⊥. This means that the tail in the distribution
function will be formed at lower velocities v⊥ > ω/k⊥2 ∼ ω

2/ωpek‖2 and more ions
will be extracted from the bulk. Consequently the strength of the imaginary part of
the dielectric function equation (3.29) will increase on increasing the central density.
In figure 9 the power density profiles is plotted versus the normalized plasma radius
corresponding to the damping function of figure 8. An appreciable power deposition
on the ion species is seen only for densities grater than 1.75× 1020 m−3.

4. Numerical results of the ray-tracing and power transport equations and
determination of the quasi-linear power deposition profiles for α-particles,
ions and electrons
Solution of (2.5) (the power transport equation) can be obtained by quadrature

considering the position and wave vector determined by the analytical formulae
obtained in (2.4) and the damping rate expression given in (3.6)–(3.15) and (3.29)
for α-particles, electrons and ions respectively. The equation to be solved is

dPj =−Pj

(
εIm

√
|εzz|k‖

)
dr=−Pj

(
εIm

e + ε
Im
i + ε

Im
α

√
|εzz|k‖

)
dr. (4.1)
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16 A. Cardinali, C. Castaldo and R. Ricci

(a) (b)

FIGURE 7. (a) Distribution function Log(fi) versus the energy in eV for DEMO plasma
parameters with a central density n0 = 1020 m−3; (b) same plot as (a) but with n0 = 2×
1020 m−3.

FIGURE 8. Plot of the strength of the imaginary part of the dielectric function (logarithm)
as a function of the normalized radial variable and for four different values of the central
density: (i) blue n0 = 1020 m−3; (ii) red n0 = 1.5 × 1020 m−3; (iii) pale blue n0 = 1.5 ×
1020 m−3 and (iv) green n0 = 2× 1020 m−3.

In principle εIm depends on Pj via the quasi-linear diffusion coefficient that is present
in the distribution function at least for ions and electrons, and the solution of (4.1),
which is essentially nonlinear, must be performed very carefully, as will be explained
below. The numerical algorithm is based on an iterative procedure. We start from the
first closed magnetic surface of the plasma column r = a, and assign there all the
initial conditions compatible with the antenna design for the ray tracing. We divide
the plasma in several magnetic surfaces, when the trajectory reaches the second
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FIGURE 9. Power deposition profiles in W m−3 versus the normalized plasma radius for
the bulk ions of the DEMO plasma parameters as in figure 8 and the same density range.

magnetic surface we calculate the quasi-linear diffusion coefficient, the distribution
function, the quasi-linear damping and the residual power on that surface. Power
density and current drive can be also accounted for locally on this magnetic surface:
JCD = qe

∫
dv fe(v), and Pd =

∫
dv D‖‖(∂fe/∂v‖). Using the new conditions on the

second surface we go towards the third magnetic surface and repeat the treatment
until all of the power is depleted. In this manner, we are able to reconstruct the
power deposition and current driven profiles by taking into account the dissipation of
the power on all of the species of the plasma. The plasma we have considered in the
calculation is the plasma foreseen for the DEMO pulsed regime in a flat configuration
(H-mode) (Zohm et al. 2013; Giruzzi et al. 2015). The parameters we have used are
the same used to produce the previous figures and are summarized here: dimensions
a= 2.25 m and R0= 9 m; central density is n0= 0.9× 1020 m−3, central electron and
ion temperatures Te/i= 24 keV (the profiles are shown in figure 10(a) for the density
and figure 10(b) for the temperature), plasma current I = 18 MA; magnetic field on
axis B0 = 6.8 T; frequency fLH = 5 GHz and k‖p = (ω/c)n‖p = 1.89 cm−1 and two
different Gaussian spectra P(n‖) = P0e−(n‖−n‖p)2/2σ 2 (a) wide σ = 0.5 and (b) narrow
σ = 0.1, directivity 60 % and coupled power around 50 MW.

We have, moreover, considered in the plasma three different concentrations of α-
particles (i) 0.5 %, (ii) 1 %, and (iii) 2 %. In figure 11 we show the power density
profile (and the related damping rate) versus x = r/a when coupling approximately
30 MW of the LH power, in the absence of α-particles and the thermal ion effects.
The curve labelled with (a) corresponds to the narrow spectrum and (b) to the broad.
It is easy, also in this realistic case (Gaussian spectrum), to recognize the effect of
the spectrum extension on the penetration of the wave deposition, as stated in formula
(3.18). In figure 12 the same plot as figure 11 is presented for a spectrum extension
σ =0.1, and two different coupled (absorbed) powers (a) P=55 MW, (b) P=35 MW.
Also in this case the behaviour of formula (3.18) can be recovered. The electrons are
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(a) (b)

FIGURE 10. (a) Density profile versus x= r/a in cm−3; (b) temperature profile versus
x= r/a in eV.

FIGURE 11. Power density profile (and the related damping rate) versus x = r/a when
coupling approximately 30MW of the LH power, in the absence of α-particles and thermal
ion effects. The curve labelled with (a) corresponds to the narrow spectrum and (b) to the
broad spectrum.

extremely efficient in absorbing the wave power in the outer half-radius (rpeak/a)∼ 0.9
when using the wide power spectrum (b) while the deposition becomes more central
(rpeak/a)∼ 0.5 when using the narrow power spectrum (a). The same happens when
increasing the coupled power. The presence of α-particles and the bulk ions can alter
the wave absorption on the electron species and reduce consequently the current drive
efficiency.

In figure 13(a,b) the power deposition profiles (a), and the power and current driven
(b) when electrons alone and electrons + α particles (fraction 2 %) are acting on the
wave, and when a ‘narrow’ (σ = 0.1) power spectrum is coupled to the plasma, are
shown. As it is possible to see for this specific DEMO scenario, the large fraction of α
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FIGURE 12. Same plot as figure 11 for a spectrum extension σ = 0.1, and two different
coupled (absorbed) powers (a) P= 55 MW, (b) P= 35 MW.

particles can disturb the penetration of the wave up to internal layers (peak around
r/a ∼ 0.5) (as in the case of only electrons) moving the peak of the deposition to
around r/a ∼ 0.9. Then same plot depicts also the power which is going on the α
particles not useful for current drive (CD). In figure 13(b) the power and current drive
are plotted versus x= r/a for the same condition as figure 13(a). It is possible to see
that the presence of α particles produces a reduction of the power available for the
CD with consequent reduction of the lower hybrid current drive (LHCD) efficiency
of approximately 40 %. In the set of figures 14(a,b) and 15(a,b) the same calculation
as done for figure 13(a,b) has been repeated but respectively for α-particles with a
concentration of 1 % (figure 14) and 0.5 % (figure 15). For these concentrations the
presence of α-particles affects the deposition profile of the LH on the electrons and
consequently the current drive is much weaker than before. In the case of 1 % of α-
particles the deposition of the wave is broader and spans a radius of between 0.6–
0.9, the efficiency is reduced by almost 20 %. In the more realistic case of 0.05 %
α-particle concentration (figure 15) it is possible to see that the phenomenon is largely
reduced. The CD efficiency reduction is around 5 %. It is worth noting that we are
assuming that the slowing down of the α-particle distribution extends to high energy
also in the external layers. These highly energetic particles, in principle, could be lost
and do not contribute to the wave damping, for this reason our evaluation may be an
overestimate.

In figure 16 the same plot is presented when the power spectrum is broader
(σ = 0.5) for two α-particle concentrations (a) 0.05 %, and (b) 0.2 % as compared
to the electrons alone (22 MW of total absorbed power). In this case, owing to the
fact that the broader spectrum is depositing power in a more external layer (near the
separatrix x∼ 0.97), the presence of α-particles does not affect so much the deposition
of the wave. In fact, the deposition layer of α-particles for α-concentrations of 2 %
and 0.5 % maximizes at a radius x < 0.9, as can be seen in the previous figures
(figure 13a, and figure 15a). In this case the deposition layer remains unaffected by
the α-damping and the reduction of the efficiency is very low 61 %. In figure 17
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(a) (b)

FIGURE 13. (a) Power density profile versus x= r/a when coupling 25 MW of the LH
power: (i) in absence of α-particles, only electrons (blue continuous curve), (ii) when
α-particles (fraction 2 %) and electrons are acting on the wave (black continuous curve)
and (iii) as compared to the absorption profile of α-particles (2 %) (red dashed curve).
(b) Absorbed power (in Watt) and current driven (in Ampere) for the same case as
figure 13(a).

(a) (b)

FIGURE 14. (a) Power density profile versus x = r/a when coupling 25 MW of the
LH power when α-particles (fraction 1 %) and electrons are acting on the wave (blue
continuous curve) as compared to the absorption profile of α-particles (1 %) (red dashed
curve). (b) Absorbed power (in Watt) and current driven (in Ampere) for the same case
as (a).

the total absorbed power and generated current are plotted versus x for the same
concentrations of α-particles as figure 16.

The main purpose of this investigation was to establish how the LH wave in a
reactor plasma loses energy on the ion species composing the plasma and above all
in the presence of a relevant α-particle population. The main goal of the LH is to
release power on the electron population and drive current in a layer that in a reactor
is located in the outer half-radius, without being disturbed by the presence of spurious
absorption by the ion population. This task (as shown in previous work Cardinali et al.
(2017)) is accomplished by tuning the power spectrum width radiated by the antenna.
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(a) (b)

FIGURE 15. (a) Power density profile versus x = r/a when coupling 25 MW of the
LH power when α-particles (fraction 0.5 %) and electrons are acting on the wave (blue
curve) as compared to the absorption profile of α-particles (0.5 %) (red dashed curve). (b)
Absorbed power (in Watt) and current driven (in Ampere) for the same case as (a).

FIGURE 16. Power density profile versus x= r/a when coupling 22 MW of the LH power:
(i) when α-particles and electrons are acting on the wave with two different concentrations
(a) 0.5 % (red continuous curve), (b) 2 % (blue dotted curve).

In the figures above it is shown that when the current drive is localized around the
pedestal, the α-particles absorb a minimum of power from the wave thus leaving the
efficiency of the CD almost unaffected. In the case of more central penetration (narrow
spectrum) a higher fraction of the LH power is diverted to the α-particles, depending
on the fraction of α-particles in layers more internal than the pedestal layer. For an
α-particle fraction >2 % the loss of efficiency of the CD can be relevant, >40 %,
however, when the fraction of α-particles is between 0.5 and 1 % (which would be
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FIGURE 17. Absorbed power (in Watt) and current driven (in Ampere) for the same case
as figure 16.

the most realistic evaluation) the power diverted to α-particles does not affect strongly
the efficiency of the CD and the deposition of the LHW power. As stated before, we
remark here that we are assuming that the slowing down of the α-particle distribution
extends to high energy also in the external layers. These highly energetic particles,
in principle, could be lost and do not contribute to the wave damping therefore this
evaluation can be overestimated. Moreover the thermal ion dynamics does not affect
at all the absorption of the wave by electrons and the CD because its dynamics is
essentially located near the plasma centre not reached by the LH wave (first pass
absorption).

5. Conclusions
A semi-analytical study of the quasi-linear power damping of the LHW in a

tokamak reactor (in particular we have used the design parameters of the DEMO
pulsed regime), has shown that plasma ions and α-particles absorb LH power in the
zone of the inner half-radius, and do not prevent the wave releasing power to the
electron population and producing the current drive effect in the external part of
the plasma radius (around the pedestal). When the penetration of the LH wave is
made more central (by acting on the width of the power spectrum) a competition
(in damping) with the α-particles can lead to a slight modification of the power
deposition on the electron species but this is not so important as to reduce the
LHCD efficiency to a remarkable extent. The quasi-linear ion absorption, although
not so relevant, occurs in the central zone of the plasma near the magnetic axis
only when the density is sufficiently high that the condition ω/k⊥vthi 6 3 is satisfied.
In conclusion, on the basis of the present analysis, we can confirm that a natural
presence of α-particles included at 0.5 %–1 % everywhere in the plasma does not
affect an eventual use of a LH wave system for inducing the current drive and
oriented to the control of the plasma profiles in a tokamak reactor like DEMO.
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