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SUMMARY

In this paper, a novel algorithm is formulated and implemen-
ted for optimum path planning of parallel manipulators. A
multi-objective optimisation problem has been formulated
for an efficient numerical solution procedure through
kinematic and dynamic features of manipulator operation.
Computational economy has been obtained by properly using
a genetic algorithm to search an optimal solution for path
spline-functions. Numerical characteristics of the numerical
solving procedure have been outlined through a numerical
example applied to Cassino Parallel Manipulator (CaPaMan)
both for path planning and design purposes.

KEYWORDS: Robotics; Path Planning; Parallel Manipulat-
ors; Simulation.

1. Introduction

In the last two decades, parallel architectures have been
extensively studied because they show advantages such as
higher stiffness and accuracy positioning with respect to
serial architectures, and they can operate at high velocities
and accelerations as mentioned for example in [1]. These
characteristics suggest their use in many applications, for
example in assembly and disassembly processes, packing,
tool and object handling, milling machines and motion
simulation. Thus, several new parallel mechanisms have been
conceived, designed and built together with a development
of theoretical and practical investigations like those that are
presented in refs. [1–13].

Cassino Parallel Manipulator (CaPaMan) is a parallel
manipulator, having three degrees of freedom (dof), which
has been conceived at the Laboratory of Robotics and
Mechatronics (LARM) at Cassino, Italy.13 Performance and
suitable formulation for kinematics, statics and dynamics
have been investigated and results are reported in refs. [14–
22]. A prototype has been built, and a successful application
of CaPaMan as an earthquake simulator, which can reproduce
a really happened earthquake is reported in refs. [23–25].

In many industrial applications, the movements of robot
manipulators are planned manually in an ad hoc manner so
that they do not usually perform tasks with optimal paths.
Generally, this method for path planning cannot give the best

paths or/and the maximum permissible speeds at all points
along programmed paths. Nevertheless, when repetitive pro-
cesses are prescribed, it is possible to develop a methodology
to move a robot manipulator along a specified optimum path.
This can be achieved through a formulation of a suitable
optimisation problem. Considerable research activity has
been carried out in order to obtain optimal paths with serial
robots, and the corresponding literature is very rich. For
example, in ref. [26], Lin et al. have proposed a procedure
to determine a cubic polynomial joint trajectory through an
algorithm for minimizing the traveling time subject to phys-
ical constraints on joint velocities, accelerations and jerks.
In ref. [27], Shin and Mckayhave presented a solution to the
problem of minimizing the power consumption of moving
a serial robotic manipulator along a specified end-effector
path subject to input torque/force constraints, by taking into
account the dynamics of the manipulator. Other optimum
path planning methods can be found in refs. [28–36].

A clear tendency exists in looking at models in nature to
represent processes that can be called “intelligent.” There
is strong evidence that natural processes related to human
beings are very well developed, and they can be adapted to
the engineering world by bringing in surprising results in
a lot of applications. Among the computational paradigms
that have been derived by looking at models in nature very
interesting are simulated annealing, artificial neural networks
and evolutionary computation. In the family of the so-called
evolutionary computation methods, that include a growing
number of paradigms and methods, genetic algorithms are
considered to be the most promising. Genetic algorithms
(G.A.) are computational search methods that are based
on the mechanisms of natural evolution and genetics. In
G.A., a population of possible solutions for a problem
evolves in agreement with probabilistic operators that can
be formulated as biological metaphors, so that, in general,
individuals represent better solutions as the evolutionary
process continues.37

In this paper,1 a general formulation has been proposed
for optimum path planning for parallel manipulators by

1 A preliminary version of this paper has been presented as
paper no. 28 at MUSME 2005, IFToMM-FeIbIM International
Symposium on Multibody Systems and Mechatronics held on 6–
9 March 2005 in Uberlandia, Brazil.
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taking into account mechanical energy of the actuators
and total travelling time for a formulation of a multi-
objective function. Feasible trajectories have been defined
by using spline functions that can be obtained through off-
line computation. The nature of the proposed optimisation
problem is such that in general, several local minima exist and
can be observed throughout a numerical procedure. A G.A. is
a probabilistic search algorithm capable of finding the global
minimum amongst many local minima, particularly in the
case where traditional techniques fail. For this reason, a G.A.
has been used for solving the numerical optimisation problem
for the optimal path of parallel manipulators containing
contradictory optimality criteria. The proposed procedure
has been applied to CaPaMan as a practical example, also
in order to further improve its dynamic performance by
reducing its power consumption through a minimisation
of the needed actuator energy and total travelling time in
trajectory motion. A numerical example of the optimum
path planning for CaPaMan is reported in order to show
the numerical efficiency and feasibility of the proposed
procedure.

2. CaPaMan Prototype

CaPaMan architecture has been conceived at LARM
Laboratory of Robotics and Mechatronics in Cassino, where
a prototype has been built for experimental activity since
1996.13

A schematic representation of the CaPaMan manipulator
is shown in Fig. 1, where the fixed platform is FP and
the moving platform is MP. MP is connected to FP
through three identical leg mechanisms and is driven by
the corresponding articulation points H1, H2 and H3. An
articulated parallelogram AP, a prismatic joint SJ and a
connecting bar CB compose each leg mechanism. AP’s
coupler carries the SJ, and CB transmits the motion from AP
to MP through SJ; CB is connected to the MP by a spherical
joint BJ, which is installed on MP. CB may translate along
the prismatic guide of SJ keeping its vertical posture, and BJ

Fig. 1. Kinematic chain and design parameters of CaPaMan.

Fig. 2. Prototype of CaPaMan with accelerometers and a dynamic
torsionmeter at LARM in Cassino.

Table I. Sizes and motion parameters of the built prototype of
CaPaMan, Figs.1 and 2.

ak = ck bk = dk Hk rP = rf αk sk

[mm] [mm] [mm] [mm] [deg] [mm]

200 80 100 109.5 45; 135 −50; 50

allows MP to rotate in the space. Each plane, which contains
AP, is rotated of π /3 with respect to the neighbor one. Figure 2
shows a built prototype whose main design parameters are
listed in Table I.

Particularly, design parameters of the kth leg are identified
through: ak , which is the length of the frame link; bk , which
is the length of the input crank; ck , which is the length of the
coupler link; dk , which is the length of the follower crank; and
hk , which is the length of the connecting bar. The kinematic
variables are: αk , which is the input crank angle; and sk , which
is the stroke of the prismatic joint. Finally, the size of MP and
FP are given by rp and rf , respectively, H is the center point
of MP, O is the center point of FP, Hk is the center point of the
kth BJ, and Ok is the middle point of the frame link ak (Fig. 1).
The motion of MP with respect to FP can be described by
considering a world frame O-XYZ, which is fixed to FP, and
a moving frame H-XpYpZp, which is fixed to MP.

The symmetry characteristics of CaPaMan architecture
have been useful to formulate analytical dynamic equations
to compute the input torques, which are necessary for a
given motion trajectory of the movable platform as reported
in refs. [16–18]. Assumptions have been made in order to
simplify the equations such as the effects of link elasticity,
and viscous damping of the joints have been neglected; links
are assumed to be rigid bodies, and the joints are frictionless
and have no clearance. In addition, only the inertial effects
of the movable platform has been considered since the legs
of parallel architectures are lighter than the movable plate.
Successively, the inertial effects of the legs and prismatic
joint have been superposed.

By neglecting the friction on prismatic and spherical joints,
the only forces that are applied to the rods CB by the mobile
platform are those, which are contained in the plane of
the articulated parallelogram, i.e. Fky and Fkz as shown in
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Fig. 3. Forces acting on the mobile platform of CaPaMan.

Fig. 3. The Fkx component determines the sliding of the
prismatic joint along sk coordinate. Thus, the components of
the resultant force F and torque N can be computed as
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when the values δ1 = 0; δ2 = 2π/3; δ3 = 4π/3 are considered.
Equations (1) and (2) can be solved in a closed form to

obtain an explicit expression for forces Fky and Fkz. Referring
to Fig. 2 and once the reaction forces in the spherical joints Hk

are computed, the torque τPk(k = 1, 2, 3) on the input crank
shaft of each articulated parallelogram can be obtained by
considering only the inertial effects of the movable platform

Fig. 4. Inertia forces arising on each articulated parallelogram of
CaPaMan legs.

in the form

τPk = Fkz bk

2
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)

×
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)
sin αk (3)

where bk , ck and hk are the geometrical dimensions shown
in Fig. 1; Fky and Fkz are the reaction forces in the spherical
joints Hk .

The contribution of the legs to the inverse dynamics of the
CaPaMan can be determined by a kinematic analysis of the
articulated parallelograms. The centres of mass of the links
can be identified as shown in Fig. 4.

A kinetostatic analysis and superposition principle can be
used for computing separately the inertial and gravitational
effects of the links bk , ck and dk , and then they can be
combined to give the input torque τMk as

τMk = 2lbkFinbksin(αk − βk + π) + F23kb sin(αk + π − γk)

+ b

[
mbkcos αk + mck

2

sin 2αk

sin αk

]
g (4)

The angle βk in Eq. (4) defines the direction of the
acceleration of the mass centre of the kth link with respect
to the horizontal axis as shown in Fig. 4. It is assumed to be
positive counterclockwise. Similarly, the angle γk in Eq. (4)
defines the direction of the reaction force vector acting on the
ground pivot of link dk , and it is also assumed to be positive
counterclockwise. The terms lbk , F23k and γk in Eq. (4) can
be written as

lbk = b

2
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γk = tg−1

{[
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)]

/ [
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2

]}

where IGbk is the inertia matrix with respect to link center of
mass Gbk; Finbk, Finck and Findk are the inertia forces of each
link of the articulated parallelograms. Details of derivations
of the terms in Eq. (5) are reported in refs. [16, 17].

The superposition principle can be used again in order to
obtain the total torque τk on the input shaft of the articulated
parallelogram as the sum of the torques computed in Eqs. (3)
and (4) in the form

τk = τPk + τMk (6)

3. Formulation for Optimal Path Planning

The path planning task for a manipulator with n dof can be
described using m knots in the trajectory of each kth joint of
a manipulator. The prescribed task can be given by the initial
and final points P0 and Pm of the trajectory. The movement of
the manipulator can be obtained by the simultaneous motion
of the n joints in order to perform the prescribed task.

Among the many available criteria, one can assume the
energy aspect as one of the most significant performance
in order to optimize the manipulator operation, since the
energy formulation can consider simultaneously dynamic
and kinematic characteristics of the performing motion.
It should also be considered that a maximisation of
the operation speed of a manipulator corresponds to a
minimisation of the total travelling time. Thus, minimum
mechanical energy of actuators and minimum total travelling
time can be considered together in a multi-objective function.

In a multi-criteria optimisation, one deals with a design
variable vector x, which satisfies all the constraints and makes
the scalar performance index as small as possible. This index
is calculated by taking into account each component of an
objective function vector f(x). An important feature of such
multi-criteria optimisation problem is that the optimizer has
to deal with conflicting objectives. A possible approach to
this problem is the so-called compromise programming. This
approach does not provide unique solution to the problem but
a set of solutions named as Pareto-optima set.38 Weighting
objectives is one of the most usual and simple alternative
approaches for multi-objective optimisation problems. In this
case, the objective function f can be determined by the linear
combination of the r criteria f1, . . . , fr , together with the
corresponding weighting factors w1, . . . , wr in the form

f (x) =
r∑

i=1

wifi(x) (7)

Usually, weighting factors are assumed with the conditions
0 ≤ wi ≤ 1 and

∑r
i=1 wi = 1. Then, it is possible to generate

the Pareto-optima set for the original problem by varying the
weights wi in the objective function.

An optimality criterion concerning the energy aspects of
the path motion can be conveniently expressed in terms of the
work that is needed by the actuators. In particular, the work by
the actuators is needed for increasing the kinetic energy of the
system in a first phase from a rest condition to actuators states
at which each actuator is running at maximum velocity. In a
second phase bringing the system back to a rest condition, the
kinetic energy will be decreased to zero through the actions of
actuators and brakes. The potential energy of the system will
contribute to size the necessary work by the actuators, and
friction effects in the joints can be assumed as negligible as
compared to the actions of actuators and brakes. In addition,
it is to note that because of motion capability of CaPaMan,
its centre of mass will move with a short path with less then
30 mm in vertical direction. Therefore, the potential energy
change can be considered negligible if it is compared with the
kinetic energy that is due to a desired fast CaPaMan motion.

Thus, we have considered convenient to use the work Wact

done by the actuators in the first phase of the path motion as
an optimality criterion for optimal path generation as given
by the expression

Wact =
3∑

k=1

[∫ tk

0
τkα̇k dt

]
(8)

in which τk is the kth actuator torque; αk dot is the kth shaft
angular velocity of the actuator; and tk is the time coordinate
value delimiting the first phase of path motion with increasing
speed of the kth actuator.

Therefore, trying to minimize the ratio Wact/Wact0 with
Wact0 as a prescribed value, has the aim to size at the minimum
level the design dimensions and operation actions of the
actuators in generating a path between two given extreme
positions. The prescribed value Wact0 has been chosen as
referring to the power of a commercial actuator that has been
considered suitable for CaPaMan operation.

Indeed, in general, once the actuator work is minimized,
the energy aspects of the system operation will be optimized
consequently.

A scalar objective function can be proposed in order
to consider minimum actuator work Wact and minimum
travelling time T t simultaneously in the form

min f = w1
Wact

Wact0
+ w2

T t

T t0
(9)

subject to

αb
k ≤ αk(t) ≤ αu

k , (k = 1, 2, 3) (10)

T tb ≤ T t ≤ T tu (11)

where b and u stand for lower and upper values of the
variables within their feasible ranges, respectively; αk is the
kth joint variable; t is the time variable in the interval [0, T t]
for the path between Po and Pm. T t is the total travelling time
at the end point Pm when t = 0 is assumed at the initial point
P0; T t0 is total travelling time for the initial guess solution.

It is worth noting that the proposed multi-objective
function in Eq. (9) is composed of two competitive terms.
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Fig. 5. Flowchart for procedures in genetic algorithms.

In general, the first term w1(Wact/Wact0) decreases when
the total travelling time T t increases while the second term
w2(T t/T t0) does the opposite. Therefore, the optimisation
process does not converge to the minimum permitted motion
time T tb. The proposed formulation in Eqs. (8–11) requires
the computation and consideration of the manipulator
kinematics and dynamics. Torque computation has been
formulated in Section II, and motion kinematics will be
addressed in Section IV by using suitable algorithms for
path planning.

Genetic algorithms (G.A.) were introduced by Holland in
ref. [39], and they can be understood as being the processes
for directed random search according to the abovementioned
definition. The main characteristics of the G.A. technique
are presented in the flowchart of Fig. 5. G.A. operate on a
population of points not concentrating all the search effort
on only one point as conventional methods do. Moreover,
G.A. operate in a space of coded solutions, and not in
the search space directly. They do not require derivation
or any other function knowledge in order to be operated.
They need the value of the objective function for each
individual of the population only. They use probabilistic
transitions and not deterministic ones. Thus, an optimisation
procedure improves solutions until an optimal one is found
similarly to the evolution process in a search along successive
generations.

4. Formulation for Trajectory Modelling

In order to determine joint trajectories, one can use the
given initial and final points P0 and Pm in the Cartesian
coordinates. These given points can be transformed into
the joint coordinates by solving the inverse kinematics.
Then, cubic polynomial can be chosen to describe the
joint trajectories since Proportional Derivative control law
is generally used for manipulator actuators in industrial
robots. B-splines are often used as interpolating functions to
represent a trajectory of mechanical systems. An important
characteristic is that they allow to control the degree of
continuity between two adjacent segments. This fact is

important because smooth transition is required for path
planning in many applications such as in robotics. Another
important characteristic of the cubic B-splines is that they
satisfy the convex hull property, which allows the refinement
of a trajectory. Thus, referring to the three legs of CaPaMan,
each trajectory function αk(t) can be modelled by a uniform
cubic B-Spline in the form

αk(t) =
m∑

i=0

pk
i B

k
i,d (t), (m ≥ 3, k = 1, 2, 3) (12)

where pk
i (with i = 0, . . . , m) are the m + 1 control

parameters of the knot points corresponding to the trajectory
function αk(t); Bi,d are the functions that can be defined by
using the Cox de Boor recurrence formulas,40 with d = 3 for
cubic spline, in the form

Bi,1(t) =
{

1, if ti ≤ t ≤ ti+1

0, if ti > t or t > ti+1

Bi,d (t) = t − ti

ti+d−1 − ti
Bi,d−1(t) (13)

+ ti+d − t

ti+d − ti+1
Bi+1,d−1(t), ∀t.

Since αk(t) is a cubic, its j th derivatives with respect to t

can be straightforward computed as

djαk(t)

dtj
=

m∑
i=0

pk
i

djBk
i,d (t)

dtj
. (14)

Thus, the optimisation design variables for path planning
are the control parameters pi

k of each joint trajectory together
with the total time T t of path travelling. The initial cubic
B-spline control points can be obtained by a guess fitting
a cubic polynomial between the initial and final points of
each trajectory. Thus, for the CaPaMan case with n = 3
input actuators, the total number of design variables for path
planning is (n × m) + 1.

5. Numerical Example of Optimal Path Planning

The Matlab code Genetic Algorithms Optimisation Toolbox
(GAOT)41 has been used to find an optimum path through
G.A. A general analysis code has been developed by
involving a dynamical model and a trajectory planning of
a robot. Then, it has been implemented into the proposed
solving procedure according to the flowchart in the Fig. 6.

Fig. 6. Flowchart of the proposed numerical procedure for optimum
path planning of CaPaMan parallel manipulator.
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Fig. 7. Numerical results for the case of Table II for w1 = 0.2 and
w2 = 0.8 in the form of a 3D plot of the position of the centre of
the movable plate of CaPaMan as function of time.

In particular, a dimensional data, dynamic characteristics
and motion parameters have been used for computing
the kinematics and dynamics of the system. The dynamic
model has been used for computing the mechanical energy
that is needed for the motion. The proposed optimisation

procedure requires inputs in the form of control points,
genetic algorithm data and computed mechanical energy. If
the total energy and the travelling time are not optimal under
given constraints, the procedure searches for a different path.
If the total energy and travelling time are optimal, then the
procedure stops and gives as output the identified optimal
path.

A numerical example referring to CaPaMan is reported by
assuming a starting position given by α1 = 60◦, α2 = 50◦,
α3 = 80◦ and a final position given by α1 = 90◦, α2 = 120◦,
α3 = 100◦. Dimensional data of CaPaMan are reported in
Table I. The robot is considered as starting at rest and
coming to a full stop at the end of the trajectory. Thus,
α̇k(0) = α̇k(T t) = 0 for all the joint trajectories. Singularities
of CaPaMan have been investigated in ref. [19]. In particular,
CaPaMan has only one singular configuration within its
working range, and it is given by the three input shafts at 90◦
position (vertical configuration). This configuration has been
avoided in the path planning by adding a proper inequality
constraint. Moreover, additional inequality constraints have
been implemented for limiting the motion of each input crank
of CaPaMan to its feasible working range that is from 45◦ to
135◦ (Table II).

Fig. 8. Time evolution of the input crank angles for initial guess (continuous line) and optimal solution (dotted line) for the numerical
example with CaPaMan in Fig. 7. (a) Leg mechanism 1. (b) Leg mechanism 2. (c) Leg mechanism 3.
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Table II. Optimum values as obtained from the optimisation
process with w1 = 0.2 and w2 = 0.8.

Objective Work by
function actuators Travelling time

f Wact [Joule] T t [second]

Initial guess value 1.00 4.11 2.0
Optimum value 0.63 3.90 1.1
Performance 37% 5.1% 45%

improvement

A suitable number of control points is needed to obtain
a proper B-spline. The higher is the number of control
points, the more complex is the profile that can be obtained.
But, any increase in the number of control points produces
also an increase in the computational costs. The number
of control points has been chosen as equal to 8 for the
reported case of study while the time interval has been
divided into N = 32 steps. It is worth noting that the number
of control points and steps within the time interval have been
chosen after simulation trials as a good compromise between
accuracy and computational efficiency. Thus, the number
of the design variable is (n × m) + 1 = 25 where n = 3
is the number of actuators for CaPaMan and m = 8 is the
chosen number of control points. In addition, the following
parameters have been used for the G.A. as suggested by

authors’ experience: 200 individuals in the population; 300
generations; binary strings for representation of individuals;
roulette wheel selection with elitism. Crossover and mutation
probabilities have been chosen as equal to 0.60 and 0.02,
respectively. These values have been chosen in order to
achieve a good compromise between accuracy of results and
computational costs.

A numerical case of study is reported as referred to
CaPaMan, Fig. 1 and Table I, with the afore mentioned
path data. The initial guess and optimal values are compared
in Table II that shows a significant improvement of the
performance index for the optimal trajectory in Fig. 7. This
result is obtained using GAOT code in a Pentium 4 Computer
with a computational time of less than 10 min. Moreover,
for this application, the weighting coefficients have been
assumed as w1 = 0.2 and w2 = 0.8 in order to give more
emphasis to the minimisation of the total travelling time as
required in several practical applications.

Figure 7 shows a 3D plot of the initial guess and optimal
path of the centre of the movable plate of CaPaMan. In
particular, the guess path between the given points Po and
Pm has been chosen as a cubic spline with three intermediate
knots that are arranged in such a way so as to set the
initial and final accelerations to zero. It can be observed
that the computed optimal trajectory is smooth and fulfills
the given constraints for the initial and final points of the
path.

Fig. 9. Time evolution of the input crank angular velocities for initial guess (continuous line) and optimal solution (dotted line) for the
numerical example with CaPaMan in Fig. 7. (a) Leg mechanism 1. (b) Leg mechanism 2. (c) Leg mechanism 3.
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Fig. 10. Time evolution of the input crank angular accelerations for initial guess (continuous line) and optimal solution (dotted line) for
the numerical example with CaPaMan in Fig. 7. (a) Leg mechanism 1. (b) Leg mechanism 2. (c) Leg mechanism 3.

Fig. 11. Time evolution of the actuator torques on input cranks for initial guess (continuous line) and optimal solution (dotted line) for the
numerical example with CaPaMan in Fig. 7. (a) Leg mechanism 1. (b) Leg mechanism 2. (c) Leg mechanism 3.
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Fig. 12. Evolution of the objective function for the case of Fig. 7 as function of the number of iterations. (a) Full plot. (b) Zoomed view
from 0 to 1000 iterations.

Fig. 13. Evolution of the total manipulation energy for the case of Fig. 7 as function of the number of iterations. (a) Full plot. (b) Zoomed
view from 0 to 1000 iterations.

Figure 8 shows the initial guess and optimal trajectories of
the input crank angles. It can be observed that although the
total travelling time has been strongly reduced, the optimal
curves are smooth.

Figure 9 shows the initial guess and optimum value of
angular velocity for the input cranks. It is worth noting that
the maximum values of angles’ velocity in the optimum
case are almost twice the maximum values velocity in the
initial guess. Thus, using the optimal solution, desired motion
of CaPaMan could be achieved almost in half time with
respect to the initial solution. Namely, the final position is
reached in 1.1 s in the optimum solution and in 2 s in the
initial guess case, as also reported in Table II. Moreover, the
maximum values of angular velocity for the input cranks in
the optimum solution are 2.3 rad/s at the most [see Fig. 9(b)],
and this value is still within the feasible working ranges
for the actuators of CaPaMan. Similar considerations can
be deduced for acceleration plots in Fig. 10. In fact, the
maximum value of acceleration for the optimum solution

is limited to 10 rad/s2 as shown in Fig. 10(b). Moreover,
the crank angle accelerations for the optimum solution in
Fig. 10 have a feasible smooth profile too. In addition, both
velocities and accelerations do not show high frequency
oscillations that can be dangerous for durability of actuator
operation.

Figure 11 shows a comparison of initial guess and optimal
actuator torque on the input shafts. It can be observed
in Fig. 11 that the optimal torque has a smooth shape,
oscillations of torque are limited, and a feasible maximum
value of the torque is obtained as equal to 0.5 Nm [see
Fig. 11(b)]. Moreover, the maximum values of the torque
that are required for the optimum solution do not increase
significantly with respect to initial guess.

Figure 12 shows the evolution of the objective function
f as function of the number of iterations. In particular, the
objective function f converges to a value of 0.63 from an
initial value of 1.00 after less than 800 iterations with a
performance improvement of 37% as reported in Table II.
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Moreover, Fig. 13 shows the evolution of the energy
as function of the number of iterations. In particular, the
needed energy E decreases from 4.11 to 3.90 Nm/s2 with
performance improvement of 5.1% as also reported in
Table II. Thus, an improvement of all the components of
the objective function f has been achieved as summarized in
Table II.

It is important to remind that a random optimisation
has been used for the proposed case of study. The initial
population has been considerably evolved, and after several
generations, the population has converged to an optimal
solution. However, in the case of conflicting objectives,
usually, the set of optimal solutions contains more than one
solution. Thus, the optimum result represents a compromise
solution among the functions that contribute to the multi-
objective function given by Eq. (9). Of course, in the case
the user changes the weighting coefficients, different results
will be obtained.

6. Conclusions

A general optimum path planning procedure has been
proposed as applied specifically to parallel manipulators
by using suitable formulation for kinematics and dynamics
of path motion. In particular, optimality criteria have been
identified in work by actuators and travelling time of
the manipulator trajectory. A numerical case of study is
illustrated by referring to the parallel manipulator named
as CaPaMan. The results of the optimum procedure show
the engineering feasibility of the proposed formulation in
order to improve the dynamics performance of a parallel
manipulator and to reduce power consumption in a path
planning application.
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