
TLP 5 (4 & 5): 533–565, 2005. C© 2005 Cambridge University Press

doi:10.1017/S1471068405002358 Printed in the United Kingdom

533

FLUX: A logic programming method
for reasoning agents

MICHAEL THIELSCHER

Dresden University of Technology, 01062 Dresden, Germany

(e-mail: mit@inf.tu-dresden.de)

submitted 31 August 2002; revised 7 November 2003, 23 April 2004; accepted 9 August 2004

Abstract

FLUX is a programming method for the design of agents that reason logically about their

actions and sensor information in the presence of incomplete knowledge. The core of FLUX

is a system of Constraint Handling Rules, which enables agents to maintain an internal

model of their environment by which they control their own behavior. The general action

representation formalism of the fluent calculus provides the formal semantics for the constraint

solver. FLUX exhibits excellent computational behavior due to both a carefully restricted

expressiveness and the inference paradigm of progression.

KEYWORDS: agents, cognitive robotics, artificial intelligence

1 Introduction

One of the most challenging and promising goals of Artificial Intelligence research

is the design of autonomous agents, including robots, that explore partially known

environments and that are able to act sensibly under incomplete information. To

attain this goal, the paradigm of Cognitive Robotics (Lespérance et al. 1994) is to

endow agents with the high-level cognitive capability of reasoning. Exploring their

environment, agents need to reason when they interpret sensor information, mem-

orize it, and draw inferences from combined sensor data. Acting under incomplete

information, agents employ their reasoning facilities for selecting the right actions.

To this end, intelligent agents form a mental model of their environment, which

they constantly update to reflect the changes they have effected and the sensor

information they have acquired.

Having agents maintain an internal world model is necessary if we want them

to choose their actions not only on the basis of the current status of their sensors

but also on the basis of what they have previously observed or done. Moreover,

the ability to reason about sensor information is necessary if properties of the

environment can only be observed indirectly and require the agent to combine

observations made at different stages.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

534 M. Thielscher

While standard programming languages such as Java do not provide general

reasoning facilities for agents, logic programming (LP) constitutes the ideal paradigm

for designing agents that are capable of reasoning about their actions (Shanahan

1997). Examples of existing LP-systems that have been developed from general action

theories are GOLOG (Levesque et al. 1997; Reiter 2001a), based on the situation

calculus (McCarthy 1963), or the robot control language developed in (Shanahan and

Witkowski 2000), based on event calculus (Kowalski and Sergot 1986). However,

a disadvantage of both these systems is that knowledge of the current state is

represented indirectly via the initial conditions and the actions which the agent has

performed up to now. As a consequence, each time a condition is evaluated in an

agent program the entire history of actions is involved in the computation. This

requires ever increasing computational effort as the agent proceeds, so that this

concept does not scale up well to long-term agent control.

Having an explicit state representation as a fundamental concept, the fluent

calculus (Thielscher 1999) offers an alternative theory as the formal underpinnings

for a high-level agent programming method. In this paper, we present the logic

programming method FLUX (for: Fluent Executor) for the design of intelligent

agents that reason about their actions using the fluent calculus. A constraint logic

program, FLUX comprises a method for encoding incomplete states along with a

technique of updating these states according to a declarative specification of the

elementary actions and sensing capabilities of an agent. Atomic state knowledge is

encoded in a list with a tail variable, which signifies the incompleteness of the state.

Negative and disjunctive state knowledge is encoded by constraints . We present

a set of Constraint Handling Rules (CHRs) (Frühwirth 1998) for combining and

simplifying these constraints. In turn, these rules reduce to standard finite domain

constraints when handling variable arguments of individual state components.

Appealing to their declarative interpretation, our CHRs are verified against the

foundational axioms of the fluent calculus.

With its powerful constraint solver, the underlying FLUX kernel provides general

reasoning facilities, so that the agent programmer can focus on specifying the

application domain and designing the high-level behavior. Allowing for concise

programs and supporting modularity, our method promises to be eminently suitable

for programming complex strategies for artificial agents. Thanks to a restricted

expressiveness and a sound but incomplete inference engine, reasoning in FLUX

is linear in the size of the internal state representation. FLUX therefore exhibits

excellent computational behavior. Thanks to the progression principle, FLUX scales

up particularly well to long-term control.

The paper is organized as follows: In Section 2, we recapitulate the basic notions

and notations of the fluent calculus as the underlying theory for an LP-based

approach to reasoning about actions. In Section 3, we present a set of CHRs for

constraints expressing negative and disjunctive state knowledge. We prove their

correctness wrt. the foundational axioms of the fluent calculus. In Section 4, the

constraint solver is embedded into a logic program for reasoning about actions,

which, too, is verified against the underlying semantics of the fluent calculus. In

Section 5, we integrate state knowledge and sensing into FLUX. An example of a

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 535

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

Fig. 1. Layout of a sample office floor and a scenario in which four offices are occupied. In

the right hand side, the locations are depicted in which the robot senses light.

FLUX agent program is given in Section 6, in which we also present the results

of experiments showing the computational merits of our approach. We conclude in

Section 7.

The constraint solver, the general FLUX system, and the example agent program

are available for download at our web site www.fluxagent.org.

2 Reasoning about states and sensor input with the fluent calculus

Throughout the paper, we will use the following example of an agent in a dynamic

environment. Consider a cleaning robot which, in the evening, has to empty the

waste bins in the hallway and rooms of the floor of an office building. The robot

shall not, however, disturb anyone working in late. It is equipped with a light

sensor which is activated whenever the robot is adjacent to a room that is occupied,

without indicating which direction the light comes from. An instance of this problem

is depicted in Figure 1. The robot can perform three basic actions, namely, cleaning

the current location, turning clockwise by 90 degrees, and moving forward in the

current direction to the adjacent cell. Our task is to program the “cleanbot” to

empty as many bins as possible without risking to burst into an occupied office. This

problem illustrates two challenges raised by incomplete state knowledge: Agents

have to act cautiously, and they need to interpret and logically combine sensor

information acquired over time.

The fluent calculus is an axiomatic theory of actions that provides the formal

underpinnings for agents to reason about their actions (Thielscher 1999). Formally,

it is a many-sorted predicate logic language which includes the two standard sorts of

a fluent (i.e., an atomic state property) and a state. For the cleaning robot domain,

for example, we will use these four fluents (i.e., mappings into the sort fluent):

At(x, y), representing that the robot is at (x, y); Facing(d), representing that the

robot faces direction d ∈ {1, . . . , 4} (denoting, respectively, north, east, south, and

west); Cleaned (x, y), representing that the waste bin at (x, y) has been emptied;

and Occupied (x, y), representing that (x, y) is occupied. We make the standard

assumption of uniqueness-of-names, UNA[At ,Facing ,Cleaned ,Occupied]. 1

1 Following Baker (1989), UNA[h1, . . . , hn]
def
=

∧
i<j hi(�x) �= hj (�y) ∧

∧
i[hi(�x) = hi(�y) ⊃�x =�y] .

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

536 M. Thielscher

States are built up from fluents (as atomic states) and their conjunction, using

the binary function ◦ : state × state �→ state along with the constant ∅ : state

denoting the empty state. For example, the term At(1, 1) ◦ (Facing(1) ◦ z) represents

a state in which the robot is in square (1, 1) facing north while other fluents may

hold, too, summarized in the variable sub-state z . 2

A fundamental notion is that of a fluent f to hold in a state z . For notational

convenience, the macro Holds(f, z) serves as an abbreviation for an equational

formula which says that z can be decomposed into f and some state z′:

Holds(f, z)
def
= (∃z′) z = f ◦ z′ (1)

This definition is accompanied by the following foundational axioms of the fluent

calculus, which ensure that a state can be identified with the fluents that hold in it.

Definition 1

Assume a signature which includes the sorts fluent and state such that fluent is

a sub-sort of state, along with the functions ◦, ∅ of sorts as above. The foundational

axioms Σstate of the fluent calculus are:

1. Associativity and commutativity,

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)

z1 ◦ z2 = z2 ◦ z1
(2)

2. Empty state axiom,

¬Holds(f, ∅) (3)

3. Irreducibility and decomposition,

Holds(f1, f) ⊃ f1 = f (4)

Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨Holds(f, z2) (5)

4. State equivalence and existence of states,

(∀f) (Holds(f, z1) ≡ Holds(f, z2)) ⊃ z1 = z2 (6)

(∀P)(∃z)(∀f) (Holds(f, z) ≡ P (f)) (7)

where P is a second-order predicate variable of sort fluent.

Axioms (2)–(5) essentially characterize “◦” as the union operation with ∅ as the

empty set of fluents. Associativity allows us to omit parentheses in nested applications

of “◦”. Axiom (6) says that two states are equal if they contain the same fluents,

and second-order axiom (7) guarantees the existence of a state for any combination

of fluents.3

2 A word on the notation: Predicate and function symbols start with a capital letter while variables
are denoted by lowercase letters, possibly with sub- or superscripts. Function “◦” is written in
infix notation. Throughout the paper, free variables in formulas are assumed universally quantified.
Variables of sorts fluent and state shall be denoted, respectively, by the letters f and z .

3 A remark for readers who are familiar with early papers on the fluent calculus: The original solution
to the frame problem in this calculus required function “◦” to be non-idempotent (Hölldobler and
Schneeberger 1990), so that, e.g., Occupied (2, 3) �= Occupied (2, 3) ◦Occupied (2, 3). Since this is against

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 537

The foundational axioms of the fluent calculus can be used to draw conclusions

from incomplete state specifications and acquired sensor information. Consider, e.g.,

the definition of what it means for our cleaning robot to sense light at a location

(x, y) in some state z:

Light(x, y, z) ≡
Holds(Occupied (x + 1, y), z) ∨Holds(Occupied (x, y + 1), z)

∨Holds(Occupied (x− 1, y), z) ∨Holds(Occupied (x, y − 1), z)

(8)

Suppose that at the beginning the only given unoccupied locations are: the home

square of the robot (axiom (10) below), the squares in the hallway (axiom (11)

below) and any location outside the boundaries of the office floor (axioms (12),(13)

below). Suppose further that the robot already went to clean (1, 1), (1, 2), and (1, 3),

sensing light in the last square only (cf. Figure 1). Thus the current state, ζ , satisfies

ζ = At(1, 3) ◦ Facing(1) ◦ Cleaned (1, 1) ◦ Cleaned (1, 2) ◦ Cleaned (1, 3) ◦ z (9)

for some z , along with the following axioms:

¬Holds(Occupied (1, 1), z) (10)

¬Holds(Occupied (1, 2), z) ∧ . . . ∧ ¬Holds(Occupied (4, 5), z) (11)

(∀x) (¬Holds(Occupied (x, 0), z) ∧ ¬Holds(Occupied (x, 6), z)) (12)

(∀y) (¬Holds(Occupied (0, y), z) ∧ ¬Holds(Occupied (6, y), z)) (13)

¬Light(1, 2, ζ) (14)

Light(1, 3, ζ) (15)

From (14) and (8) it follows ¬Holds(Occupied (1, 3), ζ). With regard to (9), the

foundational axioms of decomposition (5) and irreducibility (4) along with the

axiom of uniqueness-of-names imply

¬Holds(Occupied (1, 3), z)

On the other hand, (15) and (8) imply

Holds(Occupied (2, 3), ζ) ∨Holds(Occupied (1, 4), ζ)

∨Holds(Occupied (0, 3), ζ) ∨Holds(Occupied (1, 2), ζ)

Again with regard to (9), the foundational axioms of decomposition and irreducibility

along with the axiom of uniqueness-of-names imply

Holds(Occupied (2, 3), z) ∨Holds(Occupied (1, 4), z)

∨Holds(Occupied (0, 3), z) ∨Holds(Occupied (1, 2), z)

From (13) and (11) it follows that

Holds(Occupied (2, 3), z) ∨ Holds(Occupied (1, 4), z) (16)

the intuition of “◦” as a reified logical conjunction, the new axiomatization, first used in Thielscher
(2001), is no longer based on non-idempotence. In fact, foundational axiom (6) along with (5) and
associativity implies that z ◦ z = z for any z .

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

538 M. Thielscher

This disjunction cannot be reduced further, that is, at this stage the robot cannot

decide whether the light in (1, 3) comes from office (2, 3) or (1, 4) (or both, for

that matter). Suppose, therefore, the cautious cleanbot goes back, turns east, and

continues with cleaning (2, 2), which is a hallway location and therefore cannot be

occupied according to (11). Sensing no light there (cf. Figure 1), the new state is

ζ ′ = At(2, 2) ◦ Facing(2) ◦
Cleaned (1, 1) ◦ Cleaned (1, 2) ◦ Cleaned (1, 3) ◦ Cleaned (2, 2) ◦ z

for some z that satisfies (10)–(13) and (16). We also know that ¬Light(2, 2, ζ ′).

From (8), ¬Holds(Occupied (2, 3), ζ ′); hence, decomposition and irreducibility along

with the axiom of uniqueness-of-names imply ¬Holds(Occupied (2, 3), z); hence,

from (16) it follows Holds(Occupied (1, 4), z), that is, now the robot can conclude

that (1, 4) is occupied.

3 A constraint solver for the fluent calculus

The axiomatic fluent calculus provides the formal underpinnings for an LP-based ap-

proach to reasoning about incomplete state specifications. To begin with, incomplete

states are encoded by open-ended lists of fluents (possibly containing variables):

Z = [F1,...,Fk | _]

It is assumed that the arguments of fluents are encoded by integers or symbolic

constants, which enables the use of a standard arithmetic solver for constraints on

partially known arguments. Negative and disjunctive state knowledge is expressed

by the following state constraints:

constraint semantics

not_holds(F,Z) ¬Holds(f, z)

not_holds_all(F,Z) (∀�x)¬Holds(f, z) , �x variables in f

or_holds([F1,...,Fn],Z)
∨n

i=1 Holds(fi, z)

These state constraints have been carefully designed so as to be sufficiently expressive

while allowing for efficient constraint solving. An auxiliary constraint, written

duplicate free(Z), is used to stipulate that a list of fluents contains no multiple

occurrences. As an example, the following clause encodes the specification of state ζ

of Section 2 (cf. axioms (9)–(15)):

zeta(Zeta) :-

Zeta = [at(1,3),facing(1),cleaned(1,1),cleaned(1,2),cleaned(1,3) | Z],

not_holds(occupied(1,1), Z),

not_holds(occupied(1,2), Z), ..., not_holds(occupied(4,5), Z),

not_holds_all(occupied(_,0), Z), not_holds_all(occupied(_,6), Z),

not_holds_all(occupied(0,_), Z), not_holds_all(occupied(6,_), Z),

duplicate_free(Zeta),

light(1, 2, false, Zeta), light(1, 3, true, Zeta).

The auxiliary predicate Light(x, y, p, z) defines under what circumstances there is

light (p = True) or no light (p = False) in state z at square (x, y) (cf. axiom (8)).

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 539

light(X, Y, Percept, Z) :-

XE #= X+1, XW #= X-1, YN #= Y+1, YS #= Y-1,

(Percept = false,

not_holds(occupied(XE,Y), Z), not_holds(occupied(X,YN), Z),

not_holds(occupied(XW,Y), Z), not_holds(occupied(X,YS), Z)

; Percept = true, or_holds([occupied(XE,Y),occupied(X,YN),

occupied(XW,Y),occupied(X,YS)], Z)).

Here and in the following, we use the standard constraint language of finite domains

(e.g., see Hentenryck 1989), which includes arithmetic constraints over the integers

and symbolic constants, using the equality, inequality, and ordering predicates #=,

#\=, #<, #> along with the arithmetic functions +, -, *; range constraints (written

X::a..b); and logical combinations using #/\ and #\/ for conjunction and

disjunction, respectively.

The state constraints are processed using Constraint Handling Rules (Frühwirth

1998). The general form of these rules is

H1,...,Hm <=> G1,...,Gk | B1,...,Bn.

where the head H1, . . . , Hm is a sequence of constraints (m � 1); the guard G1, . . . , Gk

is a sequence of Prolog literals (k � 0); and the body B1, . . . , Bn is a sequence of

constraints or Prolog literals (n � 0). An empty guard is omitted; the empty body

is denoted by True . The declarative interpretation of such a rule is given by the

formula

(∀�x) (G1 ∧ . . . ∧ Gk ⊃ [H1 ∧ . . . ∧Hm ≡ (∃�y) (B1 ∧ . . . ∧ Bn)])

where �x are the variables in both guard and head and �y are the variables which

additionally occur in the body. The procedural interpretation of a CHR is given by

a transition in a constraint store: If the head can be matched against elements of

the constraint store and the guard can be derived, then the constraints which match

the head are replaced by the body.

3.1 Handling negation

Figure 2 depicts the first part of the constraint solver, which contains the CHRs

and auxiliary clauses for the two negation constraints and the constraint on multiple

occurrences. In the following, these rules are proved correct wrt. the foundational

axioms of the fluent calculus.

To begin with, consider the auxiliary clauses, which define a finite domain

constraint that expresses the inequality of two fluent terms. By OrNeq , inequality

of two fluents with arguments ArgX = [X1, . . . , Xn] and ArgY = [Y1, . . . , Yn] is

decomposed into the arithmetic constraint X1 �= Y1 ∨ . . . ∨ Xn �= Yn. Two cases are

distinguished, depending on whether the variables in the first term are existentially or

universally quantified. In the latter case, a simplified disjunction is generated, where

the variables of the first fluent are discarded while possibly giving rise to dependencies

among the arguments of the second fluent. Thus neq all(f(, a,), f(U, V, W)) reduces

to a �= V, and neq all(f(X, X, X), f(U, V, W)) reduces to U �= V ∨ V �= W. To formally

capture the universal quantification, we define the notion of a schematic fluent

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

540 M. Thielscher

not_holds(_,[]) <=> true. %1

not_holds(F,[F1|Z]) <=> neq(F,F1), not_holds(F,Z). %2

not_holds_all(_,[]) <=> true. %3

not_holds_all(F,[F1|Z]) <=> neq_all(F,F1), not_holds_all(F,Z). %4

not_holds_all(F,Z) \ not_holds(G,Z) <=> instance(G,F) | true. %5

not_holds_all(F,Z) \ not_holds_all(G,Z) <=> instance(G,F) | true. %6

duplicate_free([]) <=> true. %7

duplicate_free([F|Z]) <=> not_holds(F,Z), duplicate_free(Z). %8

neq(F,F1) :- or_neq(exists,F,F1).

neq_all(F,F1) :- or_neq(forall,F,F1).

or_neq(Q,Fx,Fy) :- Fx =.. [F|ArgX], Fy =.. [G|ArgY],

(F=G -> or_neq(Q,ArgX,ArgY,D), call(D) ; true).

or_neq(_,[],[],(0#\=0)).

or_neq(Q,[X|X1],[Y|Y1],D) :-

or_neq(Q,X1,Y1,D1),

(Q=forall, var(X) -> (binding(X,X1,Y1,YE) -> D=((Y#\=YE)#\/D1)

; D=D1)

; D=((X#\=Y)#\/D1)).

binding(X,[X1|ArgX],[Y1|ArgY],Y) :- X==X1 -> Y=Y1

; binding(X,ArgX,ArgY,Y).

Fig. 2. Constraint Handling Rules for the negation constraints and multiple occurrences of

fluents. The notation H1 \ H2 <=> G | B is an abbreviation for H1,H2 <=> G | H1,B.

f = h(�x,�r) where �x denotes the variable arguments in f and �r the non-variable

arguments. The following observation implies the correctness of the constraints

generated by the auxiliary clauses.

Observation 1

Consider a set F of functions into sort fluent, a fluent f1 = g(r1, . . . , rm), a

schematic fluent f2 = g(x1, . . . , xk, rk+1, . . . , rm), and a fluent f = h(t1, . . . , tn). Let

Neq(f1, f)
def
= f1 �= f and NeqAll (f2, f)

def
= (∀x1, . . . , xk) f2 �= f , then

1. if g �= h, then UNA[F] |= Neq(f1, f) and UNA[F] |= NeqAll (f2, f);

2. if g = h, then m = n, and UNA[F] entails

Neq(f1, f) ≡ r1 �= t1 ∨ . . . ∨ rm �= tn ∨ 0 �= 0

NeqAll (f2, f) ≡ [
∨

i �=j
xi =xj

ti �= tj] ∨ rk+1 �= tk+1 ∨ . . . ∨ rm �= tn ∨ 0 �= 0

CHRs 1–4 in Figure 2, by which negation constraints are propagated, are then

justified—on the basis of their declarative interpretation—by the foundational

axioms of the fluent calculus.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 541

Proposition 1

Foundational axioms Σstate entail

1. ¬Holds(f, ∅); and

2. ¬Holds(f, f1 ◦ z) ≡ f �= f1 ∧ ¬Holds(f, z).

Likewise, if f = g(�x,�r) is a schematic fluent, then Σstate entails

3. (∀�x)¬Holds(f, ∅); and

4. (∀�x)¬Holds(f, f1 ◦ z) ≡ (∀�x) f �= f1 ∧ (∀�x)¬Holds(f, z).

Proof

Claim 1 follows by the empty state axiom. For claim 2 we prove that Holds(f, f1 ◦z)
iff f = f1 ∨ Holds(f, z). The “⇒” direction follows by the foundational axioms

of decomposition and irreducibility. For the “⇐” direction, suppose f = f1, then

f1 ◦ z = f ◦ z , hence Holds(f, f1 ◦ z). Likewise, suppose Holds(f, z), then z = f ◦ z′
for some z′ , hence f1 ◦ z = f1 ◦ f ◦ z′ , hence Holds(f, f1 ◦ z). The proof of 3 and 4

is similar. �

CHRs 5 and 6, by which subsumed negative constraints are removed, are correct

since (∀�x)¬Holds(f1, z) implies both ¬Holds(f2, z) and (∀�y)¬Holds(f2, z), where

f1 is a schematic fluent and f2 is a fluent such that f1θ = f2 for some θ. Finally,

CHRs 7 and 8 for the auxiliary constraint on multiple occurrences are correct

since the empty list contains no duplicate elements and a non-empty list contains

no duplicates iff the head does not occur in the tail and the tail itself is free of

duplicates.

3.2 Handling disjunction

Figure 3 depicts the second part of the constraint solver, which contains the CHRs

and auxiliary clauses for disjunctive state knowledge. The solver employs an extended

notion of a disjunctive clause, where each disjunction may include atoms of the form

Eq(�x,�y) in addition to fluents. The meaning of such a general disjunctive constraint

OrHolds([δ1, . . . , δk], z) is

k∨
i=1

{
Holds(f, z) if δi is fluent f

�x =�y if δi is Eq(�x,�y)
(17)

This generalization is needed for propagating disjunctions with variables through

compound states. Consider, as an example, OrHolds([F(x), F(1)], [F(y)|z]). This

constraint will be rewritten to OrHolds([Eq([1], [y]), F(1),Eq([x], [y]), F(x)], z), in

accordance with the fact that Σstate ∪UNA[F] entails

Holds(F(x), F(y) ◦ z) ∨ Holds(F(1), F(y) ◦ z)
≡

x = y ∨ Holds(F(x), z) ∨ 1 = y ∨ Holds(F(1), z)

which follows by the foundational axioms of irreducibility and decomposition.

CHR 9 in Figure 3 simplifies a singleton disjunction according to (17). CHR 10

reduces a pure equational disjunction to a finite domain constraint. Its correctness

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

542 M. Thielscher

or_holds([F],Z) <=> F\=eq(_,_) | holds(F,Z). %9

or_holds(V,Z) <=> \+(member(F,V),F\=eq(_,_)) | or_and_eq(V,D), %10

call(D).

or_holds(V,[]) <=> member(F,V,W), F\=eq(_,_) | or_holds(W,[]). %11

or_holds(V,Z) <=> member(eq(X,Y),V), %12

or_neq(exists,X,Y,D), \+ call(D) | true.

or_holds(V,Z) <=> member(eq(X,Y),V,W), %13

\+ (and_eq(X,Y,D), call(D)) | or_holds(W,Z).

not_holds(F,Z) \ or_holds(V,Z) <=> member(G,V,W), %14

F==G | or_holds(W,Z).

not_holds_all(F,Z) \ or_holds(V,Z) <=> member(G,V,W), %15

instance(G,F) | or_holds(W,Z).

or_holds(V,[F|Z]) <=> or_holds(V,[],[F|Z]). %16

or_holds([F1|V],W,[F|Z]) <=> F1==F -> true ; %17

F1\=F -> or_holds(V,[F1|W],[F|Z]) ;

F1=..[_|ArgX], F=..[_|ArgY],

or_holds(V,[eq(ArgX,ArgY),F1|W],[F|Z]).

or_holds([],W,[_|Z]) <=> or_holds(W,Z). %18

and_eq([],[],(0#=0)).

and_eq([X|X1],[Y|Y1],D) :- and_eq(X1,Y1,D1), D=((X#=Y)#/\D1).

or_and_eq([],(0#\=0)).

or_and_eq([eq(X,Y)|Eq],(D1#\/D2)) :- or_and_eq(Eq,D1), and_eq(X,Y,D2).

member(X,[X|T],T).

member(X,[H|T],[H|T1]) :- member(X,T,T1).

Fig. 3. Constraint Handling Rules for the disjunctive constraint.

follows directly from (17), too. CHR 11 simplifies a disjunction applied to the empty

state. It is justified by the empty state axiom, which entails

[Holds(f, ∅) ∨Ψ] ≡ Ψ

for any formula Ψ. CHRs 12 and 13 deal with disjunctions which include an equality

which is either true under any variable assignment, or false. If the former, then the

entire disjunction is true. If, on the other hand, the equality is necessarily false, then

it is removed from the disjunction. Correctness follows from

�x =�y ⊃ [(�x =�y ∨Ψ) ≡ �] and �x �=�y ⊃ [(�x =�y ∨Ψ) ≡ Ψ]

The next two CHRs are unit resolution steps: Rule 14 says that if a fluent f does

not hold, then any disjunction that contains an equal fluent g can be reduced

by g . Rule 15 generalizes this to universally quantified negation constraints. The

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 543

two CHRs are justified, respectively, by

¬Holds(f, z) ⊃ [(Holds(f, z) ∨Ψ) ≡ Ψ]

(∀�x)¬Holds(f, z) ⊃ [(Holds(g, z) ∨Ψ) ≡ Ψ] if fθ = g for some θ

where �x are the variables in f .

The last group of CHRs, 16–18, encode the propagation of a disjunction through

a compound state. Informally speaking, each element in the disjunct is compared

to the head of the state and, if the two are unifiable, the respective equational

constraint is introduced into the disjunction. Specifically, with the help of the

auxiliary ternary constraint OrHolds(v, w, [f|z]), a disjunction is divided into two

parts. List v contains the fluents that have not yet been evaluated against the

head f of the state. List w contains those fluents that have been evaluated. Thus

the meaning of a ternary expression OrHolds(∆1,∆2, [f|z]) is

OrHolds(∆1, [f|z]) ∨ OrHolds(∆2, z) (18)

In the special case that disjunction ∆1 contains a fluent f1 which is identical to

the head f of the state, disjunction (18) is necessarily true and, hence, is resolved

to True by CHR 17. Otherwise, any fluent f1 in ∆1 which does not unify with f

is propagated without inducing an equality. Any fluent f1 which does unify with f

extends the disjunction by the equality of the arguments of f1 and f . Recall, for

example, the constraint OrHolds([F(x), F(1)], [F(y)|z]) mentioned earlier, which is

propagated thus:

OrHolds([F(x), F(1)], [F(y)|z])
%16−→ OrHolds([F(x), F(1)], [], [F(y)|z])
%17−→ OrHolds([F(1)], [Eq([x], [y]), F(x)], [F(y)|z])
%17−→ OrHolds([], [Eq([1], [y]), F(1),Eq([x], [y]), F(x)], [F(y)|z])
%18−→ OrHolds([Eq([1], [y]), F(1),Eq([x], [y]), F(x)], z)

The three rules for propagating a disjunction are justified by the following

proposition, where item 1 is for CHR 16, items 2–4 are for the three cases considered

in CHR 17, and item 5 is for CHR 18.

Proposition 2

Consider a fluent calculus signature with a set F of functions into sort fluent.

Foundational axioms Σstate and uniqueness-of-names UNA[F] entail each of the

following, where Ψ1 is of the form OrHolds(∆, [f|z]) and Ψ2 is of the form

OrHolds(∆, z):

1. Ψ1 ≡ [Ψ1 ∨ OrHolds([], z)];

2. [Holds(f, f ◦ z) ∨Ψ1] ∨Ψ2 ≡ �;

3. f1 �= f ⊃ ([Holds(f1, f ◦ z) ∨Ψ1] ∨Ψ2 ≡ Ψ1 ∨ [Holds(f1, z) ∨Ψ2]);

4. [Holds(F(�x), F(�y) ◦ z) ∨Ψ1] ∨Ψ2 ≡ Ψ1 ∨ [�x =�y ∨Holds(F(�x), z) ∨Ψ2];

5. [OrHolds([], [f|z]) ∨ Ψ2] ≡ Ψ2.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

544 M. Thielscher

Proof

Claims 1 and 5 are obvious. Claim 2 follows by the definition of Holds . Claims 3

and 4 follow from the foundational axioms of decomposition and irreducibility

along with UNA[F]. �

3.3 Using the constraint solver

The constraint solver constitutes a system for automated reasoning about incomplete

states and sensor information. As an example, evaluating the specification from the

beginning of Section 3 results in

?- zeta(Zeta).

Zeta=[at(1,3),facing(1),cleaned(1,1),cleaned(1,2),cleaned(1,3) | Z]

Constraints:

or_holds([occupied(1,4),occupied(2,3)], Z)

...

Light at (1, 3) thus implies that (1, 4) or (2, 3) is occupied, but it does not follow

which of the two. Adding the information that there is no light in (2, 2), the system

is able to infer that (1, 4) must be occupied:

?- zeta(Zeta), light(2, 2, false, Zeta).

Zeta=[at(1,3),facing(1),cleaned(1,1),cleaned(1,2),cleaned(1,3),

occupied(1,4) | Z]

Constraints:

not_holds(occupied(2,3), Z)

...

Although the CHRs in the FLUX constraint system are correct, they may not

enable agents to draw all conclusions that follow logically from a state specification

if the underlying arithmetic solver trades full inference capabilities for efficiency.

In standard implementations this is indeed the case, because a conjunction or

a disjunction is simplified only if one of its equations or disequations is either

necessarily true or necessarily false. As a crucial advantage of these concessions we

have designed an efficient inference system: The computational effort of evaluating

a new constraint is linear in the size of the constraint store.

4 Inferring state update in FLUX

In this section, we embed our constraint solver into a logic program for reasoning

about the effects of actions based on the fluent calculus. Generalizing previous

approaches (Hölldobler and Schneeberger 1990; Bibel 1986), the fluent calculus

provides a solution to the fundamental frame problem in the presence of incomplete

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 545

holds(F,[F|_]).

holds(F,Z) :- nonvar(Z), Z=[F1|Z1], F\==F1, holds(F,Z1).

holds(F,[F|Z],Z).

holds(F,Z,[F1|Zp]) :- nonvar(Z), Z=[F1|Z1], F\==F1, holds(F,Z1,Zp).

minus(Z,[],Z).

minus(Z,[F|Fs],Zp) :- (\+ not_holds(F,Z) -> holds(F,Z,Z1) ;

\+ holds(F,Z) -> Z1 = Z ;

cancel(F,Z,Z1), not_holds(F,Z1)),

minus(Z1,Fs,Zp).

plus(Z,[],Z).

plus(Z,[F|Fs],Zp) :- (\+ holds(F,Z) -> Z1=[F|Z] ;

\+ not_holds(F,Z) -> Z1=Z ;

cancel(F,Z,Z2), Z1=[F|Z2], not_holds(F,Z2)),

plus(Z1,Fs,Zp).

update(Z1,ThetaP,ThetaN,Z2) :- minus(Z1,ThetaN,Z), plus(Z,ThetaP,Z2).

Fig. 4. The foundational clauses for reasoning about actions. Auxiliary predicate Cancel is

defined in Figure 5.

states (Thielscher 1999). The key is a rigorously axiomatic characterization of

addition and removal of (finitely many) fluents from incompletely specified states.

The following inductive definition introduces the macro equation z1 − ϑ− = z2

with the intended meaning that state z2 is state z1 minus the fluents in the finite

state ϑ−:

z1 − ∅ = z2
def
= z2 = z1

z1 − f = z2
def
= (z2 = z1 ∨ z2 ◦ f = z1) ∧ ¬Holds(f, z2)

z1 − (f1 ◦ f2 ◦ . . . ◦ fn) = z2
def
= (∃z) (z1 − f1 = z ∧ z − (f2 ◦ . . . ◦ fn) = z2)

The crucial item is the second one, which defines removal of a single fluent f using

a case distinction: Either z1− f equals z1 (which applies in case ¬Holds(f, z1)), or

z1 − f plus f equals z1 (which applies in case Holds(f, z1)).

A further macro z2 = (z1 − ϑ−) + ϑ+ means that state z2 is state z1 minus the

fluents in ϑ− plus the fluents in ϑ+:

z2 = (z1 − ϑ−) + ϑ+ def
= (∃z) (z1 − ϑ− = z ∧ z2 = z ◦ ϑ+) (19)

where both ϑ+, ϑ− are finitely many fluent terms connected by “◦”.
Figure 4 depicts a set of clauses which encode the solution to the frame problem

on the basis of the constraint solver for the fluent calculus. The program culminates

in the predicate Update(z1, ϑ
+, ϑ−, z2), by which an incomplete state z1 is updated

to z2 by positive and negative effects ϑ+ and ϑ− , respectively, according to

macro (19). The first two clauses in Figure 4 encode macro (1). Correctness of this

definition follows from the foundational axioms of decomposition and irreducibility.

The ternary Holds(f, z, z′) means Holds(f, z)∧z′ = z−f . The following proposition

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

546 M. Thielscher

implies that the corresponding clauses are correct wrt. the macro definition of fluent

removal, under the assumption that lists of fluents are free of duplicates.

Proposition 3

Axioms Σstate ∪ {z = f1 ◦ z1 ∧ ¬Holds(f1, z1)} entail

Holds(f, z) ∧ z′ = z − f ≡
f = f1 ∧ z′ = z1

∨ (∃z′′) (f �= f1 ∧Holds(f, z1) ∧ z′′ = z1 − f ∧ z′ = f1 ◦ z′′)

Proof

We distinguish two cases.

Suppose f = f1, then Holds(f, z) since z = f1 ◦ z1. If z′ = z − f , then z′ =

(f1 ◦ z1) − f1 since z = f1 ◦ z1; hence, z′ = z1 since ¬Holds(f1, z1). Conversely, if

z′ = z1, then z′ = (f1 ◦ z1)− f1 = z − f .

Suppose f �= f1. If Holds(f, z) and z′ = z − f , then Holds(f, z1) and z′ =

(f1 ◦ z1) − f; hence, there is some z′′ such that z′′ = z1 − f and z′ = f1 ◦ z′′ .
Conversely, if Holds(f, z1) ∧ z′′ = z1 − f ∧ z′ = f1 ◦ z′′ , then Holds(f, f1 ◦ z1) and

z′ = (f1 ◦ z1)− f; hence, Holds(f, z) ∧ z′ = z − f . �

Removal and addition of finitely many fluents is defined recursively in Figure 4.

The recursive clause for Minus says that if ¬Holds(f, z) is unsatisfiable (that is,

f is known to hold in z), then subtraction of f is given by the definition of the

ternary Holds predicate. Otherwise, if Holds(f, z) is unsatisfiable (that is, f is

known to be false in z), then z − f equals z . If, however, the status of the fluent

is not entailed by the state specification at hand for z , then partial information

of f in Φ(z) may not transfer to the resulting state z − f and, hence, needs to be

cancelled. Consider, for example, the partial state specification

Holds(F(y), z) ∧ [Holds(F(A), z) ∨Holds(F(B), z)] (20)

This formula does not entail Holds(F(A), z) nor ¬Holds(F(A), z). So what can be

inferred about the state z−F(A)? Macro expansion of “−” implies that Σstate and

{(20)} ∪ {z1 = z − F(A)} entail ¬Holds(F(A), z1). But it does not follow whether

F(y) holds in z1, nor whether F(B) does, because

[y = A ⊃ ¬Holds(F(y), z1)] ∧
[y �= A ⊃ Holds(F(y), z1)] ∧
[¬Holds(F(B), z) ⊃ ¬Holds(F(B), z1)] ∧
[Holds(F(B), z) ⊃ Holds(F(B), z1)]

For this reason, all partial information concerning f in the current state z is

cancelled in the clause for Minus prior to asserting that f does not hold in the

resulting state. The definition of cancellation of a fluent f is given in Figure 5 as

an extension of our system of CHRs. In the base case, all negative and disjunctive

state information affected by f is resolved via the constraint Cancel (f, z). The

latter in turn is resolved by the auxiliary constraint Cancelled (f, z), indicating that

z contains no (more) state knowledge which is affected by f . In the recursive clause

for Cancel (f, z1, z2), each atomic, positive state information that unifies with f is

cancelled.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 547

cancel(F,Z1,Z2) :-

var(Z1) -> cancel(F,Z1), cancelled(F,Z1), Z2=Z1

;

Z1=[G|Z], (F\=G -> cancel(F,Z,Z3), Z2=[G|Z3]

;

cancel(F,Z,Z2)).

cancel(F,Z) \ not_holds(G,Z) <=> \+ F\=G | true.

cancel(F,Z) \ not_holds_all(G,Z) <=> \+ F\=G | true.

cancel(F,Z) \ or_holds(V,Z) <=> member(G,V), \+ F\=G | true.

cancel(F,Z), cancelled(F,Z) <=> true.

Fig. 5. Auxiliary clauses and CHRs for cancelling partial information about a fluent.

In a similar fashion, the recursive clause for Plus in Figure 4 says that if

Holds(f, z) is unsatisfiable (that is, f is known to be false in z), then f is

added to z; otherwise, if ¬Holds(f, z) is unsatisfiable (that is, f is known to hold

in z), then z + f equals z . If the status of the fluent is not entailed by the state

specification at hand for z , then all partial information about f in z is cancelled

prior to adding f to the state and asserting that f does not hold in the tail.

The definitions for Minus and Plus imply that a fluent to be removed or added

does not hold or hold, respectively, in the resulting state. Moreover, cancellation

does not affect the parts of the state specification which do not unify with the

fluent in question. Hence, these parts continue to hold in the state resulting from

the update. The correctness of this encoding of update follows from the macros for

“−” and “+”, which imply that a fluent holds in the updated state just in case it

either holds in the original state and is not subtracted, or it is added.

5 Reasoning about actions

In this section, we extend our basic programming system so as to enable agents to

reason about what they know and to infer the results of actions involving sensor

information. Reasoning about knowledge is necessary for agents with incomplete

information, as they need to select actions according to what they know of the state

of the environment. The formal concept of state knowledge also allows to specify

the effects of sensing actions, which, rather than affecting the state itself, provide the

agent with more information about it.

5.1 Knowledge and sensing in the fluent calculus

Adopted from the situation calculus (McCarthy 1963), the two standard sorts action

and sit (i.e., situations) are used in the fluent calculus to represent, respectively,

actions and sequences of actions. Action sequences are rooted in an initial situation,

usually denoted by the constant S0 : sit. The pre-defined function Do : action ×
sit �→ sit maps an action and a situation into the situation after the action. The

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

548 M. Thielscher

function symbol State : sit �→ state is unique to the fluent calculus and links the

two key notions of a state and a situation: State(s) denotes the state in situation s.

Inspired by a model of knowledge in the situation calculus (Moore 1985; Scherl

and Levesque 2003), the predicate KState : sit × state has been introduced in

(Thielscher 2000). An instance KState(s, z) means that, according to the knowledge

of the agent, z is a possible state in situation s. As an example, recall the initial state

of our cleaning robot as depicted in Figure 1. For the sake of argument, suppose

that the robot is told it would perceive light in (1, 3). The initial knowledge of the

cleanbot can then be specified by the following axiom, which defines the knowledge

state in situation S0:

(∀z0) (KState(S0, z0) ≡
(∃z) (z0 = At(1, 1) ◦ Facing(1) ◦ z ∧

(∀x, y)¬Holds(At(x, y), z) ∧ (∀d)¬Holds(Facing(d), z) ∧
¬Holds(Occupied (1, 1), z) ∧
¬Holds(Occupied (1, 2), z) ∧ . . . ∧ ¬Holds(Occupied (4, 5), z) ∧
(∀x) (¬Holds(Occupied (x, 0), z) ∧ ¬Holds(Occupied (x, 6), z)) ∧
(∀y) (¬Holds(Occupied (0, y), z) ∧ ¬Holds(Occupied (6, y), z)) ∧
Light(1, 3, z0)))

(21)

That is to say, initially possible are all states in which the robot is at a unique

position, viz. (1, 1), facing a unique direction, viz. north (1), and neither (1, 1) nor

any square in the hallway or outside the boundaries can be occupied. The possible

states are further constrained by the knowledge that there is light at (1, 3). On

the other hand, the agent has no further prior knowledge as to which offices are

occupied or if any location is cleaned.

A universal property of knowledge is that it is correct. To this end, a simple

foundational axiom stipulates that the actual state is always among the possible

ones:

Definition 2

The foundational axioms of the fluent calculus for knowledge are Σstate as in Defini-

tion 1 (cf. Section 2) augmented by

(∀s) KState(s, State(s))

Based on the notion of possible states, a fluent is known to hold in a situation (or

not to hold) just in case it is true (false, respectively) in all possible states in that

situation: 4

Knows(f, s)
def
= (∀z) (KState(s, z) ⊃ Holds(f, z))

Knows(¬f, s) def
= (∀z) (KState(s, z) ⊃ ¬Holds(f, z))

(22)

For example, the axiomatization of the initial knowledge, (21), entails that the

cleanbot knows it is at (1, 1) not facing east, that is,

Σstate ∪ {(21)} |= Knows(At(1, 1), S0) ∧Knows(¬Facing(2), S0)

4 For the sake of simplicity, we only consider knowledge of fluent literals in this paper; see Thielscher
(2000) for the generic extension to knowledge of formulas.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 549

On the other hand, the cleanbot does not know that office (1, 4) is occupied:

Σstate ∪ {(21)} |= ¬Knows(Occupied (1, 4), S0)

This is so because there is a possible state z0 which satisfies the right hand side of

the equivalence in (21) and in which Occupied (1, 4) does not hold.

A supplementary macro defines knowledge of a value of a fluent. An agent has

this knowledge just in case a particular instance of the fluent in question is known:

KnowsVal (�x, f, s)
def
= (∃�x) Knows((∃�x1) f, s) (23)

where �x1 are the variables in f besides �x, and Knows((∃�x1) f, s) stands for the

formula (∀z) (KState(s, z) ⊃ (∃�x1) Holds(f, z)). For example, the axiomatization of

the initial knowledge entails that the cleanbot knows which direction it faces,

Σstate ∪ {(21)} |= KnowsVal (d,Facing(d), S0)

On the other hand, although it knows that some office must be occupied, i.e.,

Σstate ∪ {(21)} |= Knows((∃x, y) Occupied (x, y), S0)

the cleanbot does not know which one,

Σstate ∪ {(21)} |= ¬KnowsVal ((x, y),Occupied (x, y), S0)

This is so because there exists a possible state z0 which satisfies the right hand side

of the equivalence in (21) and in which Occupied (1, 4) is the only positive instance

of this fluent; and there also exists a possible state in which a different one, viz.

Occupied (2, 3), is the only positive instance of this fluent.

While the definitions of knowledge by macros (22) and (23) are similar to the

approach in the situation calculus (Scherl and Levesque 2003), a crucial difference

is that the latter defines knowledge in terms of possible situations . To this end,

the binary relation K(s, s′) is used with the intuitive meaning that as far as the

agent knows in situation s, it could as well be in situation s′ . This allows for a

nested definition of Knows , which provides a form of introspection that is not

supported in the fluent calculus. On the other hand, the full expressiveness of

modal logic is computationally demanding. The notion of possible states allows for

a straightforward and – based on the results of the previous sections – tractable

implementation of knowledge, which is crucial for practical purposes. We refer to

Thielscher (2000) for a more detailed comparison between the two approaches.

5.2 Inferring knowledge in FLUX

The concept of knowing properties of the state is essential for the evaluation

of conditions in agent programs under incomplete information. By definition, a

property is known just in case it is true in all possible states. From a computational

perspective, it is of course impractical to evaluate a condition by literally checking

every possible state, since there is usually quite a number, often even infinitely many

of them. Fortunately, our constraint solver provides a feasible alternative. Instead of

verifying that all states satisfy a property, we can just as well prove that the negation

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

550 M. Thielscher

knows(F, Z) :- \+ not_holds(F, Z).

knows_not(F, Z) :- \+ holds(F, Z).

knows_val(X, F, Z) :- k_holds(F, Z), \+ nonground(X).

k_holds(F, Z) :- nonvar(Z), Z = [F1|Z1],

(instance(F1, F), F = F1 ; k_holds(F, Z1)).

Fig. 6. Knowledge in FLUX.

of the property is unsatisfiable under a given knowledge state. This suggests an

elegant way of encoding knowledge in FLUX using the principle of negation-as-

failure. To begin with, a knowledge state KState(σ, z) ≡ Φ(z) is identified with the

(incomplete) state specification Φ(z). Then a fluent f is known in situation σ iff

the axiom set {Φ(z),¬Holds(f, z)} is unsatisfiable. Likewise, f is known to be false

in situation σ iff {Φ(z),Holds(f, z)} is unsatisfiable.

Theorem 1

Let KState(σ, z) ≡ Φ(z) be a knowledge state and f a fluent, then

{KState(σ, z) ≡ Φ(z)} |= Knows(f, σ) iff {Φ(z),¬Holds(f, z)} |= ⊥

and

{KState(σ, z) ≡ Φ(z)} |= Knows(¬f, σ) iff {Φ(z),Holds(f, z)} |= ⊥

Proof

{KState(σ, z) ≡ Φ(z)} |= Knows(f, σ)

iff {KState(σ, z) ≡ Φ(z)} |= (∀z) (KState(σ, z) ⊃ Holds(f, z))

iff |= (∀z) (Φ(z) ⊃ Holds(f, z))

iff |= ¬(∃z) (Φ(z) ∧ ¬Holds(f, z))

iff {Φ(z),¬Holds(f, z)} |= ⊥

The proof of the second part is similar. �

This result is a formal justification of concluding knowledge of f if the constraint

solver derives an inconsistency upon asserting state constraint ¬Holds(f, z) under

state specification Φ(z). Figure 6 shows how this is realized in FLUX by clauses

for Knows(f, s) and Knows(¬f, s) as well as for knowing a value of a fluent. More

complex knowledge expressions, such as disjunctive knowledge, can be defined and

encoded in a similar fashion. The clausal definition of KnowsVal (�x, f, z) uses the

auxiliary predicate KHolds(f, z), which matches the fluent expression f against all

fluents that positively occur in state z . If so doing grounds all variables in �x, then

a value for these variables is known.

Recall, for example, the FLUX state specification at the beginning of Section 3,

encoding state specification (9)–(15). We can use FLUX to show that the robot

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 551

knows that room (1, 3) is not occupied, while it does not know that office (1, 4) is

free, nor that it is not so:

?- zeta(Zeta),

knows_not(occupied(1,3), Zeta),

\+ knows(occupied(1,4), Zeta),

\+ knows_not(occupied(1,4), Zeta).

yes.

As an example for the FLUX definition of knowing a value, consider this incomplete

state specification:

init(Z0) :-

Z0=[at(X,2),facing(2)|Z], X#=1 #\/ X#=2, duplicate_free(Z0).

The corresponding axiom in fluent calculus is

KState(S0, z0) ≡ (∃x, z) (z0 = At(x, 2) ◦ Facing(2) ◦ z ∧ [x = 1 ∨ x = 2])

It follows that KnowsVal (d,Facing(d), S0) while ¬KnowsVal ((x, y),At(x, y), S0) but

KnowsVal (y,At(x, y), S0):

?- init(Z0),

knows_val([D], facing(D), Z0),

\+ knows_val([X,Y], at(X,Y), Z0),

knows_val([Y], at(_,Y), Z0).

D = 2

Y = 2

In theory, agents using the fluent calculus are logically omniscient. Therefore, the

general problem of inferring knowledge under incomplete states is computationally

demanding, if not undecidable in the first-order case. This is so because full theorem

proving is required to this end. The careful design of the state constraints supported in

FLUX and the incomplete constraint solver, however, make the task computationally

feasible. Since deciding unsatisfiability of a set of constraints is linear in the size of

the constraint store, inferring knowledge in FLUX is linear in the size of the state

description.

5.3 Knowledge update

The frame problem for knowledge is solved in the fluent calculus by axiomatizing

the relation between the possible states before and after an action (Thielscher 2000).

The effect of A(�x), be it a sensing action or not, on the knowledge of the agent is

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

552 M. Thielscher

specified by a so-called knowledge update axiom , 5

Knows(Poss(A(�x)), s) ⊃
(∃�y)(∀z′) [KState(Do(A(�x), s), z′) ≡

(∃z)(KState(s, z) ∧Ψ(z′, z) ∧Π(�y, z′,Do(A(�x), s)))]

(24)

where Ψ specifies the physical state update while Π restricts the possible states

so as to agree with the actual state State(Do(A(�x), s)) on the sensed properties and

values �y .

As an example, let the three actions of the cleaning robot be denoted by

Clean : action empty waste bin at current location

Turn : action turn clockwise by 90◦

Go : action move forward to adjacent square

The action preconditions can be axiomatized as

Poss(Clean , z) ≡ �
Poss(Turn , z) ≡ �

Poss(Go, z) ≡ (∀d, x, y) (Holds(At(x, y), z) ∧Holds(Facing(d), z)

⊃ (∃x′, y′) Adjacent (x, y, d, x′, y′))

(25)

in conjunction with the auxiliary axiom

Adjacent (x, y, d, x′, y′) ≡ 1 � d � 4 ∧ 1 � x, x′, y, y′ � 5 ∧
[d = 1 ∧ x′ = x ∧ y′ = y + 1 ∨
d = 2 ∧ x′ = x + 1 ∧ y′ = y ∨
d = 3 ∧ x′ = x ∧ y′ = y − 1 ∨
d = 4 ∧ x′ = x− 1 ∧ y′ = y]

(26)

That is to say, going forward requires the robot not to face the wall of the building

while emptying a waste bin and making a quarter turn clockwise is always possible.

The actions Clean and Turn of our cleanbot involve no sensing. The physical

effects of these actions are specified by the following knowledge update axioms:

Knows(Poss(Clean), s) ⊃
[KState(Do(Clean , s), z′) ≡

(∃z) (KState(s, z) ∧
(∃x, y) (Holds(At(x, y), z) ∧ z′ = z + Cleaned (x, y)))]

Knows(Poss(Turn), s) ⊃
[KState(Do(Turn , s), z′) ≡

(∃z) (KState(s, z) ∧
(∃d) (Holds(Facing(d), z) ∧

z′ = z − Facing(d) + Facing(dmod 4 + 1)))]

(27)

Thus z′ is a possible state after cleaning or turning, respectively, just in case z′ is

the result of cleaning or turning in one of the previously possible states z .

5 Below, the standard predicate Poss : action × state denotes that an action is possible in a state.
Macro Knows(Poss(a), s) stands for the formula (∀z) (KState(s, z) ⊃ Poss(a, z)) .

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 553

The following knowledge update axiom for Go combines the physical effect of

going forward with information about whether light is sensed at the new location:

Knows(Poss(Go), s) ⊃
[KState(Do(Go, s), z′) ≡

(∃z) (KState(s, z) ∧
(∃d, x, y, x′, y′) (Holds(At(x, y), z)∧

Holds(Facing(d), z)∧
Adjacent (x, y, d, x′, y′)∧
z′ = z − At(x, y) + At(x′, y′))) ∧

[ΠLight (z
′) ≡ ΠLight (State(Do(Go, s)))]]

(28)

where the sensed property indicates whether or not the robot perceives a light at its

current location:

ΠLight (z)
def
= (∃x, y) (Holds(At(x, y), z) ∧ Light(x, y, z)) (29)

Thus axiom (28) says that z′ is a possible state after going forward if z′ is the

result of doing this action in some previously possible state and there is light at the

current location in z′ just in case it is so in the actual state State(Do(Go, s)).

As an example of sensing a fluent value rather than a proposition, consider the

specification of a location sensor. As a pure sensing action, self-location has no

physical effect. In general, this is indicated in a knowledge update axiom by the

sub-formula (∃z) (KState(s, z) ∧ z′ = z) describing the (empty) physical effect. For

the sake of compactness, this sub-formula has been simplified to KState(s, z′) in the

following axiom:

Knows(Poss(SenseLoc), s) ⊃
(∃x, y)(∀z′) (KState(Do(SenseLoc, s), z′) ≡

KState(s, z′) ∧Holds(At(x, y), z′)

(30)

Put in words, there exist coordinates x, y such that the robot is at (x, y) in all

possible states of the successor situation. (The foundational axiom for knowledge of

Definition 2 (Section 5.1) then implies that (x, y) must also be the actual location

of the robot.)

5.4 Inferring knowledge update in FLUX

Updating the knowledge state of a FLUX agent involves two steps, the physical

effect and the sensing result of an action. Since knowledge states are identified with

(incomplete) FLUX states as discussed in Section 5.2, knowledge update according

to the physical effect amounts to updating a FLUX state specification in the way

discussed in Section 4. Having inferred the physical effect of an action, agents

need to evaluate possible sensing results as part of the update. To this end, the

sensing outcome of an action is encoded by a (possibly empty) list of individual

sensing results . The result of sensing a proposition is either of the constants True

or False . The result of sensing a value is a ground term of the respective sort.

For example, the sensing result for knowledge update axiom (28) is encoded by [π]

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

554 M. Thielscher

poss(clean, _).

poss(turn, _).

poss(go, Z) :-

knows_val([X,Y], at(X,Y), Z),

knows_val([D], facing(D), Z),

adjacent(X, Y, D, _, _),

state_update(Z1, clean, Z2, []) :-

holds(at(X,Y), Z1),

update(Z1, [cleaned(X,Y)], [], Z2).

state_update(Z1, turn, Z2, []) :-

holds(facing(D), Z1),

(D#<4 #/\ D1#=D+1) #\/ (D#=4 #/\ D1#=1),

update(Z1, [facing(D1)], [facing(D)], Z2).

state_update(Z1, go, Z2, [Light]) :-

holds(at(X,Y), Z1),

holds(facing(D), Z1),

adjacent(X, Y, D, X1, Y1),

update(Z1, [at(X1,Y1)], [at(X,Y)], Z2),

light(X1, Y1, Light, Z2).

adjacent(X, Y, D, X1, Y1) :-

[X,Y,X1,Y1] :: 1..5, D :: 1..4,

(D#=1) #/\ (X1#=X) #/\ (Y1#=Y+1) % north

#\/

(D#=2) #/\ (X1#=X+1) #/\ (Y1#=Y) % east

#\/

(D#=3) #/\ (X1#=X) #/\ (Y1#=Y-1) % south

#\/

(D#=4) #/\ (X1#=X-1) #/\ (Y1#=Y). % west

Fig. 7. FLUX encoding of the precondition and update axioms for the cleanbot.

where π ∈ {True,False}, depending on whether light is actually sensed at the new

location. The sensing result for knowledge update axiom (30), on the other hand,

should be encoded by [x, y] where x, y : �.

Based on the notion of sensing results, knowledge update axioms are encoded

in FLUX as definitions of the predicate StateUpdate(z1, A(�x), z2, y) describing the

update of state z1 to z2 according to the physical effects of action A(�x) and the

sensing result y . As an example, Figure 7 depicts a FLUX encoding of the action

precondition and knowledge update axioms for the cleaning robot domain. Neither

Clean nor Turn provides any sensor data. The sensing result for action Go is

evaluated with the help of the auxiliary predicate Light as defined in Section 3.

Consider, for example, the initial FLUX state for the cleaning robot shown in

Figure 8. Suppose that when going north twice, the robot senses no light after

the first action but after the second one. With the following query the cleanbot

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 555

init(Z0) :-

Z0 = [at(1,1),facing(1) | Z],

not_holds(occupied(1,1), Z),

not_holds(occupied(2,1), Z), % hallway

..., not_holds(occupied(4,5), Z), %

consistent(Z0).

consistent(Z) :-

holds(at(X,Y), Z, Z1), [X,Y] :: 1..5, not_holds_all(at(_,_), Z1),

holds(facing(D), Z, Z2), [D] :: 1..4, not_holds_all(facing(_), Z2),

not_holds_all(occupied(_,0), Z),

not_holds_all(occupied(_,6), Z),

not_holds_all(occupied(0,_), Z),

not_holds_all(occupied(6,_), Z),

duplicate_free(Z).

Fig. 8. Initial state specification for the cleanbot domain. The clause for Consistent(z) speci-

fies general domain constraints, such as uniqueness of the robot’s position and orientation.

computes the knowledge update for this sequence of actions and the given sensing

results:

?- init(Z0), state_update(Z0, go, Z1, [false]),

state_update(Z1, go, Z2, [true]).

Z0 = [at(1,1),facing(1) | Z]

Z1 = [at(1,2),facing(1) | Z]

Z2 = [at(1,3),facing(1) | Z]

Constraints:

not_holds(occupied(1,3), Z)

or_holds([occupied(2,3),occupied(1,4)], Z)

...

Thus the agent has evaluated the acquired sensor data and inferred its actual position

according to the physical effects of Go .

As an example for inferring the update when sensing a value of a fluent, consider

the following FLUX clause, which encodes knowledge update axiom (30) for action

SenseLoc:

state_update(Z, sense_loc, Z, [X,Y]) :- holds(at(X,Y), Z).

That is, no physical effect affects the state but the sensed value is incorporated into

the specification. Suppose, for instance, the agent is uncertain as to whether it moved

north or east from its initial location (1, 1), while the subsequent position tracking

reveals that it is at (1, 2):

init(Z0) :- Z0 = [at(1,1),facing(D) | _], D#=1 #\/ D#=2,

consistent(Z0).

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

556 M. Thielscher

?- init(Z0), state_update(Z0, go, Z1, [false]),

state_update(Z1, sense_loc, Z2, [1,2]).

Z0 = [at(1,1),facing(1) | Z]

Z1 = [at(1,2),facing(1) | Z]

Z2 = [at(1,2),facing(1) | Z]

Constraints:

not_holds(occupied(1,3), Z)

...

Thus the agent has inferred its actual position and, hence, concluded that it is

actually facing north. Incidentally, knowing the location also allows to infer that

office (1, 3) is not occupied, which follows from the observation that no light is

sensed after the Go action.

5.5 Defining knowledge update for actions with conditional effects

FLUX agents rely on knowledge update axioms in order to maintain their internal

model of the environment. As this model is usually incomplete, the update axioms

need to be carefully encoded in FLUX so as to always lead to a correct resulting

knowledge state. In particular, when specifying an action with conditional effects

the programmer needs to define the correct update for any possible knowledge the

agent may have concerning the fluents affected by the action. Consider, for example,

the action Alter(x) to alter the position of a toggle switch. If x happens to be open

(fluent Open(x)), then it will be closed afterwards (i.e., not Open); otherwise, i.e., if

it is closed beforehand, then it will be open after the action. Tacitly assuming that

the action is always possible, its conditional effect is specified in the fluent calculus

by the following knowledge update axiom:

KState(Do(Alter(x), s), z′) ≡
(∃z) (KState(s, z) ∧ [Holds(Open(x), z) ∧ z′ = z − Open(x)

∨
¬Holds(Open(x), z) ∧ z′ = z + Open(x)])

(31)

The FLUX encoding of this update axiom requires to distinguish three kinds of

knowledge states. In case the current knowledge entails that switch x is open, the

resulting knowledge state is obtained through updating by negative effect −Open(x).

Conversely, in case the current knowledge entails that switch x is not open, the

resulting knowledge state is obtained through updating by positive effect +Open(x).

Finally, if the current knowledge state does not entail the status of the switch, then

this uncertainty transfers to the updated knowledge state. Moreover, possible partial

(e.g., disjunctive) information regarding the position of the affected switch is no

longer valid and, hence, needs to be cancelled.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 557

state_update(Z1, alter(X), Z2, []) :-

knows(open(X), Z1) -> update(Z1, [], [open(X)], Z2) ;

knows_not(open(X), Z1) -> update(Z1, [open(X)], [], Z2) ;

cancel(open(X), Z1, Z2).

For example,

?- not_holds(open(t1), Z0),

or_holds([open(t2),open(t3)], Z0),

state_update(Z0, alter(t1), Z1, []),

state_update(Z1, alter(t2), Z2, []).

Z2 = [open(t1) | Z0]

Constraints:

not_holds(open(t1), Z0)

That is to say, while switch T1 is known to be open after altering its position, it no

longer follows, after altering T2, that T2 or T3 is open.6

6 A FLUX control program for the cleaning robot

In this section, we show how our LP-based approach to reasoning about actions

can be used as the kernel for a high-level programming method for the design of

agents that reason about their actions. These agents use the concept of a state as

their mental model of the world when controlling their own behavior. As they move

along, agents constantly update their world model in order to reflect the changes

they have effected and the sensor information they have acquired. Thanks to the

extensive reasoning facilities provided by the kernel of FLUX and in particular the

constraint solver, the language allows to implement complex strategies with concise

and modular programs.

The general architecture of FLUX agent programs is depicted in Figure 9. Every

agent program contains the kernel Pkernel , which consists of

• the FLUX constraint system of Figure 2 and 3 plus a constraint solver for

finite domains;

• the definition of update of Figures 4 and 5;

• the definition of knowledge of Figure 6; and

6 Actually, the inferred knowledge state in this example is slightly weaker than what is implied by
knowledge update axiom (31). Suppose that initially T2 or T3 is open. Then it follows that after
altering the position of T2 , if T2 is open then so is T3 ! This is so because if T2 is open after
changing its position, it must have been closed initially, and hence T3 was (and still is) open. The
corresponding implication, i.e., Holds(Open(T2), z2) ⊃ Holds(Open(T3), z2), is not entailed by the
updated FLUX state. Fortunately, obtaining a weaker update specification – just like an incomplete
inference engine – is not an obstacle towards sound agent programs. Since FLUX agents are controlled
by what they know of the environment, a sound but incomplete knowledge state suffices to ensure
that the agent draws correct conclusions. This is a consequence of the simple fact that everything that
is known under a weaker knowledge state is also known under the stronger one.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

558 M. Thielscher

Pstrategy

←→ ΣdomainPdomain

Pkernel ←→ Σstate

Fig. 9. The three components of FLUX agent programs.

• the following definition of execution, by which action a is performed and,

simultaneously, the current state z1 is updated to state z2 according to the

effects and sensing result of performing a:

execute(A, Z1, Z2) :-

perform(A, Y), state_update(Z1, A, Z2, Y).

The second part, Pdomain , of a FLUX agent program contains encodings of the

domain axioms. These include

• action precondition axioms,

• update axioms,

• domain constraints, and

• initial knowledge state.

The domain program for the cleanbot, for example, consists of the precondition

and update axioms of Figure 7 along with the initial knowledge state and domain

constraints of Figure 8.

On top of this, the programmer defines the intended behavior of the agent via a

control program Pstrategy . This program uses the basic predicate Execute(z1, a, z2)

for the execution of an action. To this end, the interaction of the agent with the

outside world needs to be defined by the predicate Perform(a, y), which causes the

physical agent to carry out action a in the environment such that y returns the

sensing information acquired by performing this action. Control programs Pstrategy

use the predicate Knows(f, z) (and its derivatives KnowsNot and KnowsVal) to

evaluate conditions against the internal world model.

Figure 10 depicts a sample control program for our cleaning robot. After the

initialization of the world model and the execution of a Clean action at the home

square, the main loop is entered by which the robot systematically explores and

cleans the office floor. To this end, the program employs two parameters containing,

respectively, choice points yet to be explored and the current path of the robot. The

latter is used to backtrack from a location once all choices have been considered. A

choice point is a list of directions, which are encoded by 1 (for north) to 4 (for

west) as usual. The path is represented by the sequence, in reverse order, of the

directions the robot took in each step.

In the main loop, the cleanbot selects the first element of the current choices. If

the attempt to go into this direction is successful (predicate GoInDirection), then the

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 559

main :-

init(Z0),

execute(clean, Z0, Z1),

Choicepoints = [[1,2,3,4]], Backtrack = [],

main_loop(Choicepoints, Backtrack, Z1).

main_loop([Choices|Choicepoints], Backtrack, Z) :-

Choices = [Direction|Directions] ->

(go_in_direction(Direction, Z, Z1)

-> execute(clean, Z1, Z2),

Choicepoints1 = [[1,2,3,4], Directions | Choicepoints],

Backtrack1 = [Direction | Backtrack],

main_loop(Choicepoints1, Backtrack1, Z2)

;

main_loop([Directions|Choicepoints], Backtrack, Z))

;

backtrack(Choicepoints, Backtrack, Z).

go_in_direction(D, Z1, Z2) :-

knows_val([X,Y], at(X,Y), Z1),

adjacent(X, Y, D, X1, Y1),

\+ knows(cleaned(X1,Y1), Z1),

knows_not(occupied(X1,Y1), Z1),

turn_to_go(D, Z1, Z2).

backtrack(_, [], _).

backtrack(Choicepoints, [Direction|Backtrack], Z) :-

Reverse is (Direction+1) mod 4 + 1,

turn_to_go(Reverse, Z, Z1),

main_loop(Choicepoints, Backtrack, Z1).

turn_to_go(D, Z1, Z2) :-

knows(facing(D), Z1) -> execute(go, Z1, Z2)

;

execute(turn, Z1, Z), turn_to_go(D, Z, Z2).

Fig. 10. A cleanbot agent in FLUX.

robot empties the waste bin at the new location. A new choice point is created, and

the backtrack path is augmented by the direction into which the robot just went.

If, on the other hand, the chosen direction cannot be taken, then the main loop is

called with a reduced list of current choices. In case no more choices are left, the

cleanbot backtracks (predicate Backtrack).

The auxiliary predicate GoInDirection(d, z1, z2) succeeds if the cleanbot can safely

go into direction d from its current location in state z1, ending up in state z2.

A direction is only explored if the adjacent square is inside of the boundaries.

Furthermore, this location must not have been visited already (that is, it is not

known to be cleaned), and – most importantly – the adjacent location must known

not to be occupied. By the auxiliary predicate Backtrack , the robot takes back one

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

560 M. Thielscher

Table 1. The first nine calls to the main loop

At Choicepoints Backtrack Actions

(1, 1) [[1,2,3,4]] [] GC

(1, 2) [[1,2,3,4],[2,3,4]] [1] GC

(1, 3) [[1,2,3,4],[2,3,4],[2,3,4]] [1,1] –

(1, 3) [[2,3,4],[2,3,4],[2,3,4]] [1,1] –

(1, 3) [[3,4],[2,3,4],[2,3,4]] [1,1] –

(1, 3) [[4],[2,3,4],[2,3,4]] [1,1] –

(1, 3) [[],[2,3,4],[2,3,4]] [1,1] TTG

(1, 2) [[2,3,4],[2,3,4]] [1] TTTGC

(2, 2) [[1,2,3,4],[3,4],[2,3,4]] [2,1] TTTGC

1 2 3 4 5

1

2

3

4

5

?�

Fig. 11. The final knowledge state in the cleaning robot scenario. The small circles indicate

the cleaned locations.

step on its current path by reversing the direction. The program terminates once

this path is empty, which implies that the robot has returned to its home after it

has visited and cleaned as many locations as possible. The two auxiliary predicates

GoInDirection and Backtrack in turn call the predicate TurnToGo , by which the

robot makes turns until it faces the intended direction, and then moves forward.

Table 1 illustrates what happens in the first nine calls to the main loop when

running the program with the initial state of Figure 8 and the scenario depicted in

Figure 1.

The letters G,C, T are abbreviations for the actions Go , Clean , and Turn ,

respectively. After going north twice to office (1, 3), the cleanbot cannot continue

in direction 1 or 2 because both office (1, 4) and office (2, 3) may be occupied

according to the robot’s current knowledge. Direction 3 is not explored since

location (1, 2) has already been cleaned, and direction 4 is ruled out as (0, 3) is

outside of the boundaries. Hence, the cleanbot backtracks to (1, 2) and continues

with the next choice there, direction 2, which brings it to location (2, 2). From there

it goes north, and so on. Figure 11 depicts the knowledge state at the time the

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 561

program terminates. Back home, the cleanbot has acquired knowledge of all four

occupied offices. Moreover, it has emptied all waste bins but the ones in these four

offices and the bin in office (5, 1). This office has not been visited because the robot

cannot know that it is not occupied – the light sensors have been activated at both

surrounding locations, (4, 1) and (5, 2)!

6.1 Semantics of FLUX programs

The semantics of a FLUX agent program is given as a combination of the fluent

calculus and the standard semantics of logic programming. We assume the reader to

be familiar with the basic notion of a computation tree for constraint logic programs

(e.g. see Jaffar and Maher 1994).

Let T be the computation tree for an agent program Pstrategy ∪ Pdomain ∪ Pkernel

along with a query {← Q}. Tree T determines a particular action sequence as

follows. Let an execution node be any node in T which starts with the atom Execute .

Let Execute(α1, ,),Execute(α2, ,), . . . be the ordered sequence of all execution

nodes occurring in T, then this tree is said to generate the action sequence α1, α2, . . .

This sequence is to be used when proving formal properties of the agent program

with the help of the fluent calculus and the axiomatization Σdomain of the application

domain. For example, a program can be called sound if the domain axiomatization

entails that all actions are possible in the situation in which they are executed.

Formally,

Σstate ∪ Σdomain |= Poss(α1, S0) ∧ Poss(α2,Do(α1, S0)) ∧ . . .

Domain-dependent requirements are proved in a similar fashion. The program

for the cleanbot, for example, can be shown to admit a finite computation tree;

hence to terminate. Other properties are that the cleanbot will always end up in its

home (1, 1), it will never enter an office which is occupied (provided its light sensor

functions correctly), and it always cleans all locations in the hallway. The formal

proofs of these properties are not deep but tedious, which is why we refrain from

giving them here.

6.2 Computational Behavior

To illustrate the computational merits of FLUX, we have compared it to GOLOG

(Levesque et al. 1997), an agent programming language with similar purposes. The

cleanbot domain requires a variant of GOLOG which supports incomplete states

and sensing (Reiter 2001b). In this system, incompletely specified initial situations

are encoded by sets of (propositional) prime implicates. To decide whether a property

is known to hold after a sequence of actions, the property is regressed to the initial

situation. If the resulting formula is entailed by the initial prime implicates, then

the original property is known to hold in the respective situation. Acquired sensor

information is regressed, too, and the result is added to the initial set of prime

implicates.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

562 M. Thielscher

Fig. 12. Experimental results with the cleanbot control program in FLUX and GOLOG.

(Notice the exponential scale on the vertical axis.)

We have re-implemented the strategy of Figure 10 for the cleanbot as a GOLOG

program and ran a series of experiments with square office floors of different size.

For simplicity, no initial information about unoccupied cells besides (1,1) and the

two adjacent ones were given to the robot. Figure 12 depicts the results of five sets

of experiments. The given runtimes (seconds CPU time of a 1733 MHz processor)

are the average of 10 runs with randomly chosen occupied cells.

The dominance of FLUX has two main reasons:

1. Since prime implicates can be used to encode arbitrary propositional formulas,

the complexity of inferring knowledge in the GOLOG system of Reiter (2001b)

is exponential. In contrast, the restricted first-order state representation and the

incomplete inference engine of FLUX allows for inferring knowledge in linear

time.

2. In FLUX, the world model is progressed whenever an action is performed,

and the new model is directly used to decide whether a property is currently

known. The GOLOG system of Reiter (2001b), on the other hand, is regression-

based , so that deciding whether a property is known in a situation requires to

regress the property through the previously performed actions. Consequently,

the computational behavior of the GOLOG program worsens the longer the

program runs. This can be clearly seen from the graphs in Figure 13, which

depict the average time for action selection at different stages of the execution

of the cleanbot program.

3. To solve the frame problem, FLUX uses state update axioms, which specify

the effects of an action on an entire state. When progressing a state through

an update axiom, the large body of unaffected knowledge simply remains in

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 563

Fig. 13. Growth of the action selection time as the execution of the cleanbot program

proceeds (averaged over 10 runs with 6×6 rooms).

the constraint store. This is what makes up an efficient solution to the frame

problem even in the presence of incomplete states.

7 Discussion

We have presented the logic programming method FLUX for the design of logically

reasoning agents. The agents use a system of Constraint Handling Rules and finite

domain constraints to reason about actions in the presence of incomplete states.

Both the constraint solver and the logic program for state update have been formally

verified against the action theory of the fluent calculus. Thanks to a carefully chosen

expressiveness, the FLUX kernel exhibits excellent computational behavior.

The closest related work is the programming language GOLOG (Levesque et al.

1997) for dynamic domains, which is based on the situation calculus and successor

state axioms as a solution to the frame problem (Reiter 1991). The main differences

are:

1. GOLOG defines a special programming language for strategies, while FLUX

strategies are standard logic programs.

2. With the exception of Reiter (2001b), existing implementations of GOLOG

apply the principle of negation-as-failure to state specifications and, hence,

are restricted to complete state knowledge and deterministic actions. With its

underlying constraint solver, FLUX provides a natural way of representing and

reasoning with incomplete states as well as nondeterministic actions.

3. The logic programs for GOLOG described in the literature all apply the

principle of regression to evaluate conditions in agent programs. While this is

efficient for short action sequences, the computational effort increases with the

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

564 M. Thielscher

number of performed actions. With the progression principle, FLUX programs

scale up well to the control of agents over extended periods.7 Moreover,

progression through state update axioms in FLUX provides an efficient solution

to the frame problem, because unaffected state knowledge simply remains in

the constraint store.

4. GOLOG includes the concept of nondeterministic programs as a means to

define a search space for a planning problem. To find a plan, such a program

is executed “off-line” with the aim to find a run by which the planning goal

is attained. A similar concept can be added to FLUX, allowing agents to

interleave planning with program execution (Thielscher 2002).

We are conducting experiments where FLUX is applied to the high-level control

of a real robot, whose task is to collect and deliver in-house mail in an office

floor (Fichtner et al. 2003). To this end, the logic programming system has been

extended by a solution to the qualification problem (McCarthy 1977) in the

fluent calculus which accounts for unexpected failure of actions (Thielscher 2001;

Martin and Thielscher 2001). Future work will include the gradual extension of

the expressiveness of FLUX, e.g., by constraints for exclusive disjunction, without

loosing the computational merits of the approach.

Acknowledgments

The author wants to thank Stephan Schiffel for his help with the experiments and

Matthias Fichtner, Axel Großmann, Yves Martin, and the anonymous reviewers for

valuable comments on an earlier version. Parts of the work reported in this paper

have been carried out while the author was a visiting researcher at the University

of New South Wales in Sydney, Australia.

References

Baker, A. B. 1989. A simple solution to the Yale Shooting problem. In Proceedings of the

International Conference on Principles of Knowledge Representation and Reasoning (KR),

R. Brachman, H. Levesque, and R. Reiter, Eds. Morgan Kaufmann, Toronto, Canada,

11–20.

Bibel, W. 1986. A deductive solution for plan generation. New Generation Computing 4,

115–132.

Fichtner, M., Großmann, A. and Thielscher, M. 2003. Intelligent execution monitoring in

dynamic environments. Fundamenta Informaticae 57, 2–4, 371–392.

Frühwirth, T. 1998. Theory and practice of constraint handling rules. Journal of Logic

Programming 37, 1–3, 95–138.

Hentenryck, P. V. 1989. Constraint Satisfaction in Logic Programming. MIT Press.

Hölldobler, S. and Schneeberger, J. 1990. A new deductive approach to planning. New

Generation Computing 8, 225–244.

7 To achieve a similar behavior, GOLOG would have to be reimplemented by appealing to the definition
of progression in the situation calculus of Lin and Reiter (1997), which, however, is not first-order
definable in general.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

FLUX: A logic programming method for reasoning agents 565

Jaffar, J. and Maher, M. J. 1994. Constraint Logic Programming: A Survey. Journal of

Logic Programming 19/20, 503–581.

Kowalski, R. and Sergot, M. 1986. A logic based calculus of events. New Generation

Computing 4, 67–95.

Lespérance, Y., Levesque, H., Lin, F., Marcu, D., Reiter, R. and Scherl, R. 1994. A logical

approach to high-level robot programming—a progress report. In Control of the Physical

World by Intelligent Agents, Papers from the AAAI Fall Symposium, B. Kuipers, Ed. New

Orleans, LA, 109–119.

Levesque, H., Reiter, R., Lespérance, Y., Lin, F. and Scherl, R. 1997. GOLOG: A logic

programming language for dynamic domains. Journal of Logic Programming 31, 1–3, 59–83.

Lin, F. and Reiter, R. 1997. How to progress a database. Artificial Intelligence 92, 131–167.

Martin, Y. and Thielscher, M. 2001. Addressing the qualification problem in FLUX. In

Proceedings of the German Annual Conference on Artificial Intelligence (KI), F. Baader,

G. Brewka, and T. Eiter, Eds. LNAI, vol. 2174. Springer, Vienna, Austria, 290–304.

McCarthy, J. 1963. Situations and Actions and Causal Laws. Stanford Artificial Intelligence

Project, Memo 2, Stanford University, CA.

McCarthy, J. 1977. Epistemological problems of artificial intelligence. In Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI), R. Reddy, Ed. MIT Press,

Cambridge, MA, 1038–1044.

Moore, R. 1985. A formal theory of knowledge and action. In Formal Theories of the

Commonsense World, J. R. Hobbs and R. C. Moore, Eds. Ablex, 319–358.

Reiter, R. 1991. The frame problem in the situation calculus: A simple solution (sometimes)

and a completeness result for goal regression. In Artificial Intelligence and Mathematical

Theory of Computation, V. Lifschitz, Ed. Academic Press, 359–380.

Reiter, R. 2001a. Knowledge in Action. MIT Press.

Reiter, R. 2001b. On knowledge-based programming with sensing in the situation calculus.

ACM Transactions on Computational Logic 2, 4, 433–457.

Scherl, R. and Levesque, H. 2003. Knowledge, action, and the frame problem. Artificial

Intelligence 144, 1, 1–39.

Shanahan, M. 1997. Solving the Frame Problem: A Mathematical Investigation of the Common

Sense Law of Inertia. MIT Press.

Shanahan, M. and Witkowski, M. 2000. High-level robot control through logic. In

Proceedings of the International Workshop on Agent Theories Architectures and Languages

(ATAL), C. Castelfranchi and Y. Lespérance, Eds. LNCS, vol. 1986. Springer, Boston, MA,

104–121.

Thielscher, M. 1999. From situation calculus to fluent calculus: State update axioms as a

solution to the inferential frame problem. Artificial Intelligence 111, 1–2, 277–299.

Thielscher, M. 2000. Representing the knowledge of a robot. In Proceedings of the

International Conference on Principles of Knowledge Representation and Reasoning (KR),

A. Cohn, F. Giunchiglia, and B. Selman, Eds. Morgan Kaufmann, Breckenridge, CO,

109–120.

Thielscher, M. 2001. The qualification problem: A solution to the problem of anomalous

models. Artificial Intelligence 131, 1–2, 1–37.

Thielscher, M. 2002. Programming of reasoning and planning agents with FLUX. In

Proceedings of the International Conference on Principles of Knowledge Representation and

Reasoning (KR), D. Fensel, D. McGuinness, and M.-A. Williams, Eds. Morgan Kaufmann,

Toulouse, France, 435–446.

https://doi.org/10.1017/S1471068405002358 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002358

