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Rayleigh–Taylor instability experiments are performed using both immiscible and
miscible incompressible liquid combinations having a relatively large Atwood number
of A≡ (ρ2 − ρ1)/(ρ2 + ρ1)= 0.48. The liquid-filled tank is attached to a test sled that
is accelerated downwards along a vertical rail system using a system of weights and
pulleys producing approximately 1g net acceleration. The tank is backlit and images
are digitally recorded using a high-speed video camera. The experiments are either
initiated with forced initial perturbations or are left unforced. The forced experiments
have an initial perturbation imposed by vertically oscillating the liquid-filled tank to
produce Faraday waves at the interface. The unforced experiments rely on random
interfacial fluctuations, resulting from background noise, to seed the instability. The
main focus of this study is to determine the effects of forced initial perturbations
and the effects of miscibility on the growth parameter, α. Measurements of the
mixing-layer width, h, are acquired, from which α is determined. It is found that
initial perturbations of the form used in this study do not affect measured α values.
However, miscibility is observed to strongly affect α, resulting in a factor of two
reduction in its value, a finding not previously observed in past experiments. In
addition, all measured α values are found to be smaller than those obtained in
previous experimental studies.

Key words: buoyancy-driven instability, nonlinear instability, turbulent mixing

1. Introduction

The Rayleigh–Taylor instability (RTI) is a buoyancy-driven fluid flow that occurs
when a stratified system of unequal-density fluids is accelerated such that the light
fluid is accelerated into the heavier one. In order for the instability to develop,
the pressure gradient that results from the acceleration must be oriented such that
∇p · ∇ρ < 0 (where p is pressure and ρ is density). The most notable example of
the RTI occurs when a heavy fluid lies atop a light one while in the presence of
a downward-acting gravitational force. However, RTI is also observed in situations
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Effects of forcing and miscibility on Rayleigh–Taylor instability 51

Heavy fluid

Light fluid

FIGURE 1. (Colour online) Visualization of an unstable Rayleigh–Taylor configuration
where baroclinic torque at the interface creates vorticity and induces a velocity field that
increases the baroclinic torque. Here ω is vorticity, p is pressure, ρ is density, u is velocity
and g is gravity. The thick circular arrows represent the velocity field created by the
vortex.

in which the fluid system itself is accelerated whereby the acceleration produces the
necessary body force required to drive the instability.

RTI can be viewed to be the result of baroclinic torque created by the misalignment
of the pressure and density gradients at the perturbed interface, as described by the
two-dimensional inviscid vorticity equation

Dω
Dt
= 1
ρ2
∇ρ ×∇p, (1.1)

where ω is vorticity, ρ is density and p is the pressure (Cohen & Kundu 2004). In
this case the dominant pressure gradient is hydrostatic, resulting from the acceleration.
When in the unstable configuration, for a particular harmonic component of the initial
perturbation, the torque on the interface creates vorticity that will tend to increase the
misalignment of the gradient vectors. This in turn creates additional vorticity, leading
to further misalignment. This concept is depicted in figure 1, where it is observed
that the two counter-rotating vortices have velocity fields that sum at the peak and
trough of the perturbed interface. In the stable configuration, the vorticity, and thus
the induced velocity field, will be in a direction that decreases the misalignment and
therefore stabilizes the system.

A very important application of RTI is inertial confinement fusion (ICF). In ICF,
a spherical capsule containing a deuterium/tritium (DT) mixture is bombarded with
energy originating from high-powered lasers with the purpose of causing a fusion
reaction to take place. The two isotopes fuse, producing 4He, a neutron and energy
(Ghasemizad, Zarringhalam & Gholamzadeh 2009). ICF experiments are currently
being performed at the National Ignition Facility (NIF) at the Lawrence Livermore
National Laboratory (LLNL), but ignition (a net output of energy from the fusion
reaction) has not yet been achieved. RTI occurs at two instances during an ICF
implosion and eventually causes turbulent mixing to take place. First, RTI occurs
within the ablator region during the initial implosion of the target. Then, RTI occurs
during the deceleration phase between the high-temperature, high-pressure DT gas
and the outer, colder DT ice layer. The mixing due to RTI brings cold fuel from
the outer layer into the centre ‘hot spot’, lowering the temperature and decreasing
the reaction rate; this process may prevent ignition altogether (Betti et al. 1998;
Herrmann, Tabak & Lindl 2001). By more fully understanding this instability, more
efficient capsules can be designed (Clark et al. 2011).
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52 M. S. Roberts and J. W. Jacobs

The evolution of the RTI follows four main stages, as defined by Sharp (1984).
In the first stage, if the perturbation amplitudes are small when compared to their
wavelengths, the equations of motion can be linearized, resulting in exponential
instability growth. In the early portion of this stage, a sinusoidal initial perturbation
retains its sinusoidal shape. However, after the end of this first stage, when nonlinear
effects begin to appear, one observes the beginnings of the formation of the ubiquitous
mushroom-shaped spikes (fluid structures of heavy fluid growing into light fluid) and
bubbles (fluid structures of light fluid growing into heavy fluid). The growth of
the mushroom structures continues in the second stage and can be modelled using
buoyancy drag models (Oron et al. 2001; Goncharov 2002), resulting in a growth
rate that is approximately constant in time. At this point, nonlinear terms in the
equations of motion can no longer be ignored. The spikes and bubbles then begin to
interact with one another in the third stage. Bubble merging takes place, where the
nonlinear interaction of mode coupling acts to combine smaller spikes and bubbles to
produce larger ones. Also, bubble competition takes places, where spikes and bubbles
of smaller wavelength that have become saturated are enveloped by larger ones that
have not yet saturated. This eventually develops into a region of turbulent mixing,
which is the fourth and final stage in the evolution. It is generally assumed that the
mixing region that finally develops is self-similar and turbulent, provided that the
Reynolds number is sufficiently large.

Lord Rayleigh (1883) was the first to study RTI, in which he analysed the
stability of non-uniform density fluid in the presence of a gravitational field. In
his analysis, Rayleigh considered both the case of two uniform fluids of different
densities separated by a discontinuous interface and the case with an exponentially
varying density distribution. Almost 70 years later, seemingly not aware of the
analysis of Rayleigh, Taylor (1950) developed his own linear stability analysis of RTI.
Following Taylor’s work, a number of experimental studies were published (Lewis
1950; Emmons, Chang & Watson 1960; Cole & Tankin 1973; Ratafia 1973) focusing
on the early-time linear stability analysis. Over the years the stability analysis of RTI
has been expanded to include the effects of interfacial tension, viscosity (Bellman
& Pennington 1954; Chandrasekhar 1961) and nonlinear effects (Fermi & Neumann
1955; Layzer 1955; Emmons et al. 1960; Jacobs & Catton 1988a,b). However, all
of this early work focused on the evolution of the instability from a single-mode
perturbation and thus only focused on the first two stages described by Sharp (1984).

This changed when experiments were published (Anuchina et al. 1978; Read 1984;
Youngs 1984) where it was found that at late enough time the RTI appears to become
turbulent, insensitive to its initial conditions and self-similar. The work of Anuchina
et al. (1978) was compared to the theory of Neuvazhaev & Yakovlev (1976a,b).
Anuchina et al. performed experiments where an initially stable light liquid above
a heavy liquid configuration is accelerated downwards, by use of a gas gun, at a
rate exceeding 100g, causing the instability to develop. X-ray imaging was used
to visualize the mixing region. In addition to experiments, Anuchina et al. also
performed numerical simulations. Neuvazhaev & Yakovlev performed a full similarity
analysis on the underlying equations of the turbulent velocity and concluded that the
mixing-layer width should grow asymmetrically, where the bubble and spike grow at
different rates. The growth is proportional to f (n)geff t2, where f (n) is a function of
the density ratio. It was also found that the growth becomes symmetric as the density
ratio of the two fluids becomes unity. The results of Anuchina et al. compared well
to Neuvazhaev & Yakovlev’s theory. Read’s experiments were performed in a similar
way, where an initially light over heavy fluid combination is made Rayleigh–Taylor
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unstable by accelerating the fluid combination downwards at a rate greater than
gravity. Using a rocket rig, the system was capable of producing accelerations up to
75g. By using dimensional arguments and assuming the flow is self-similar, Youngs
concluded that the mixing-layer width in this regime grows proportional to Ageff t2.

Youngs went on to continue studying turbulent development RTI with simulations
(Youngs 1989, 1991, 1994). Continuing with the experiments of Anuchina et al.,
Kucherenko et al. (1991) investigated the turbulent RTI further using the gas gun
apparatus with accelerations up to 650g (Kucherenko et al. 1997a,b, 2001). A few
years later, Dimonte et al. (1996) performed similar experiments employing a linear
electric motor (LEM) rig (Dimonte & Schneider 1996, 2000; Schneider, Dimonte
& Remington 1998; Dimonte 2004; Dimonte et al. 2004; Dimonte, Ramaprabhu &
Andrews 2007).

In experiments using a different approach, Snider & Andrews (1994), Ramaprabhu
& Andrews (2003) and Mueschke et al. (2009) performed small-Atwood-number
turbulent RTI experiments using gravity to drive the instability. These experiments
were performed using a water channel where a heavier fluid is flowed atop a lighter
one at the same velocity by means of a splitter plate, thus producing RTI. Unlike
earlier highly accelerated turbulent RTI experiments, these lower-acceleration studies
allowed the analysis of the interior of the turbulent mixing region, where velocity
fluctuations could be extracted in which it was confirmed that fully developed
turbulence had indeed been reached (Ramaprabhu & Andrews 2004). Gravitationally
accelerated experiments with a small Atwood number were also performed by Linden
& Redondo (1991), Dalziel (1993) and Jacobs & Dalziel (2005), where a tank with
an initially heavy over light fluid configuration is separated by a horizontal barrier
that is removed, thus creating RTI. These experiments also obtained measurements of
the interior of the mixing region, showing that fully developed turbulence is indeed
reached (Dalziel, Linden & Youngs 1999).

The focus of the present study is to experimentally determine the effects of initial
perturbations and miscibility on the development of turbulent RTI. The experiments
are performed in an apparatus developed at the University of Arizona (Waddell,
Niederhaus & Jacobs 2001) that uses a weight-and-pulley system to accelerate an
initially RTI stable configuration downwards at a rate greater than gravity to produce
the instability. Of particular interest is to verify that the turbulent growth rate does not
depend on the form of the initial conditions provided they are of sufficiently small
wavelength as given by the bubble merger limit (Ramaprabhu, Dimonte & Andrews
2005).

Two methods of producing initial perturbations with the required short wavelengths
are used. The experiments are either initiated with parametrically forced initial
perturbations or are left unforced. The forced experiments have an initial perturbation
imposed by vertically oscillating the liquid-filled tank to produce Faraday waves
at the interface. The unforced experiments rely on random interfacial fluctuations,
resulting from background noise, to seed the instability. The resulting instabilities
resulting from both types of perturbations are then compared. Two different liquid
combinations are used to produce either a miscible or immiscible combination, and
the resulting instabilities from these different combinations are compared as well.

2. Experimental apparatus

Experiments were performed using a drop tower, in which a liquid-filled tank
is accelerated downwards at a rate greater than gravity to produce the instability.
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A square acrylic tank, having inside dimensions of 76 mm × 76 mm in the two
horizontal directions and with a height of 178 mm, was used to contain the liquids.
With this set-up, the aspect ratio is large enough that the instability should be
unaffected by the top and bottom walls at the end of the self-similar stage, when the
mixing-layer thickness is of the order of the tank width. At later times, one would
expect a transition to t2/5 growth, as found by Lawrie & Dalziel (2011). However,
this regime is not the focus of the present study. The drop tower consists of two
102 mm × 102 mm, 3.05 m long, thick-walled vertical steel columns on which are
mounted precision linear rails. Four Thompson Roundway linear roller bearings
(two for each guide rail) are attached to a test sled that travels down the rails. The
liquid-filled tank and imaging system are mounted to the test sled, which is made
from Techno-Isel 30 mm × 250 mm extruded aluminium panels that have a system
of slots that allow for easy fastening of the required instrumentation (Waddell 1999).

In order to accelerate the test sled downwards at a rate greater than that of gravity,
a system of weights and pulleys is used (Waddell et al. 2001). Renderings of the
set-up are shown in figure 4. A cable is fed through five pulleys so that the downward
acceleration of the much more massive weight pulls the test sled downwards. This
system is similar to a block-and-tackle system operated in reverse. The small distance
traversed by the large mass is translated into a larger distance at the test sled,
which acquires a larger velocity and acceleration. The mass of the weight-and-pulley
system can be altered by changing the number of lead bricks contained in it and
the corresponding weight can be increased up to approximately 450 kg, yielding a
test sled acceleration of approximately 2g. Subtracting the 1g downward acceleration
due to gravity from the 2g acceleration experienced by the liquids results in a net
acceleration of approximately 1g. An I-beam is attached to the bottom of the test
sled that provides the attachment point for the cable to direct its force through. At
the bottom of the drop tower are two Enidine shock absorbers to stop the sled at the
end of its travel. In addition to the shock absorbers, clay is used to add extra impact
absorption. This deceleration system was chosen to keep the acceleration below 70g,
which is the camera’s maximum acceleration limit.

It is necessary to have a method to quickly and repeatably release the sled initiated
by an electronic trigger. To accomplish this, a release mechanism with an unstable
linkage secures a 1/4 in. bolt attached to the test sled. The unstable linkage quickly
releases the bolt when a small force is applied by a Dormeyer Industries P10-201L
solenoid. Since only a small force is required for release, a P6-101L ‘safety’ solenoid
is also used. This second solenoid effectively stabilizes the unstable linkage and must
be disengaged before the test sled can be released. A SolidWorks rendering of the
release mechanism is depicted in figure 2. More details of this mechanism can be
found in Waddell et al. (2001).

A typical acceleration profile measured by an accelerometer that has been attached
to the tank lid is shown in figure 3. An average through the main acceleration region
between approximately 100 and 400 ms gives approximately 1g of acceleration. While
time-dependent acceleration measurements were obtained for each experiment, only
time averages over the main acceleration region were used in the analysis that follows.

The apparatus used in this study is identical to that used before (Olson & Jacobs
2009), but there have been instrumentation improvements. The 60 f.p.s. framing rate
of the analogue camera used in the earlier studies has been upgraded with a faster
200 f.p.s. Pulnix TM-6740CL camera with 640 × 480 resolution and a Cameralink
interface connected to a National Instruments PCIe-1427 frame grabber. This system
provides more than a threefold increase in camera frame rate, thus increasing the
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Safety
solenoid

FIGURE 2. Rendering of the weight-and-pulley system release mechanism.
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FIGURE 3. (Colour online) Typical acceleration profile during an experiment for the
weight-and-pulley apparatus. The acceleration is represented in multiples of g (the
ordinate) and time is represented as milliseconds (the abscissa).

temporal resolution of the data that can be acquired. In addition, the new camera
has a bit depth of 10 bits rather than 8 bits, yielding a fourfold increase in greyscale
resolution. A rendering of the test sled with the tank and camera attached is shown
in figure 5.

Acceleration measurements are also acquired during each experiment. Two
accelerometers were used: a Silicon Designs Model 2210-005 capacitive accelerometer
with a ±5g range and a PCB model JQ353-B32 constant-current piezoelectric
accelerometer with a ±100g range. The accelerometer measurements are used both
for data analysis and to verify that the system is operating within its design limits.
Data from the accelerometers are acquired and synchronized with the camera using a
National Instruments PCIe-6251 multifunction Data Acquisition (DAQ) card.

3. Liquids and imaging
The experiments in this study were performed using either an immiscible or a

miscible liquid combination, where care was taken to match both the Atwood number
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FIGURE 4. (Colour online) Renderings of the weight-and-pulley system.
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Camera

Test
sled

Plexiglass
tank

FIGURE 5. (Colour online) Rendering of the weight-and-pulley test sled with the
experimental equipment attached.

and the viscosity so that only miscibility and forcing was varied. The Atwood number
here was 0.48 for both of the fluid combinations. In accordance with viscous linear
stability theory (Roberts 2012, A.31), the important quantity governing instability
growth is the ratio of the dynamic viscosity difference to the sum of the densities.
This quantity was matched to within 10 % for both the miscible and immiscible
experiments (0.491 cSt for the miscible case and 0.496 cSt for the immiscible case).
The immiscible combination consists of lithium polytungstate (LST Heavy Liquid) as
the heavy liquid and silicone oil (Clearco 5cSt) as the light liquid. LST Heavy Liquid
is a proprietary liquid solution consisting of a polytungstate salt water solution. The
concentration of the salt (and thus the density) can be varied, but in the experiments
presented here the solution was close to the saturation point. The silicone oil used
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in this study was chosen because of its low viscosity and non-toxic properties.
Surfactant was also added to the liquid combination to reduce the interfacial tension.
The surfactant used in this study was AOT (dioctyl sulfosuccinate sodium salt). It
should be noted that using surfactant to reduce the surface tension in mixing problems
can produce unwanted effects in situations with large interfacial strain, such as occurs
in the turbulent RTI. In these situations, highly strained regions of the interface may
become depleted of surfactant, thus potentially locally increasing the surface tension.
In order to mitigate this effect, a relatively large concentration of surfactant was used.
Thus 1 g l−1 of AOT was added to the LST Heavy Liquid, and whatever did not
dissolve was filtered out, thus assuring that the saturation limit was reached. Using
this combination to achieve an Atwood number of 0.48, the LST Heavy Liquid was
diluted to have a specific gravity of 2.61 and a viscosity of 6.34 cP (calculated using
an exponential fit of the manufacturer’s supplied data). The silicone oil has a specific
gravity of 0.918 and a dynamic viscosity of 4.59 cP. Before an experiment, mixed
liquids were allowed to equilibrate to room temperature by leaving them undisturbed
overnight or longer.

For the miscible configuration, LST Heavy Liquid is used in conjunction with a
90 % ethanol–10 % water mixture. The use of large ethanol concentrations can lead to
nonlinear mixing with the water-based heavy liquid solution, resulting in volume not
being conserved during the mixing process. In fact, the liquid volume was observed
to decrease during an experiment. Since the tank is rigid and sealed, this creates a
vacuum, which causes the light liquid to cavitate and bubbles to form within the
mixing region during an experiment. To prevent bubbles from forming, an ethanol
mixture-filled bladder was affixed on the outside of the tank to provide a reservoir
of fluid that could flow in through an opening as the volume decreases. It should
be noted that this reduction in volume is consistent with what is observed with
pure water mixing with alcohol, where the decrease in volume associated with water
with pure ethanol to a 50 % mixture is 7.5 % (Parsons & Estrada 1942). Using this
information, an estimate was derived to determine how much extra volume of liquid
would be required for the heavy-liquid mixing case. Using the fact that the maximum
mixing-layer width observed in the miscible experiments was approximately 40 mm
and the tank has inside dimensions of 76 mm × 76 mm, the volume of the mixing
region at the end of the experiment was 230 ml. Assuming that the 7.5 % reduction
applies to this entire volume, this results in a 17 ml decrease. However, this value
represents an upper bound and the actual required volume will be significantly less
than this value. Note that this small volume should produce very minimal effect on
the evolution of the instability. Although bubbles still occasionally formed, they were
normally far enough from the interface not to affect the instability. Also, the bladder
is situated at the top of the tank far from the interface to mitigate any effects on the
RTI development.

Using LST Heavy Liquid in combination with a 90 % ethanol–10 % water mixture,
an Atwood number of 0.48 was achieved. The LST Heavy Liquid was diluted to have
a specific gravity of 2.31 and a viscosity of 3.02 cP (calculated using an exponential
fit of the manufacturer’s supplied data). In addition, pure ethanol was diluted with
distilled water to a mole fraction of 0.735, yielding a specific gravity of 0.810 and
a viscosity of 1.493 cP (as calculated from Tanaka et al. (1977)). Again, before the
start of an experiment, mixed liquids were allowed to equilibrate to room temperature
by leaving the liquids undisturbed overnight or longer.

The very large differences in the indices of refraction of the liquids used in
this study precluded the use of planar imaging techniques. This resulted in backlit
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FIGURE 6. (Colour online) Illustration of the imaging system.

imaging being the only optical diagnostic possible for this study. Imaging was
therefore accomplished by placing an LED backlight behind the tank and observing
the resulting light transmission from the front, as shown in figure 6. Here the distance
from the centre of the tank to the camera was 317 mm. Thus, parallax error was
always less than 12 %.

When turbulent RTI experiments with unmatched refractive index are performed,
the turbulent mixing region between the two pure liquids appears darker than the
two pure liquids, making it visible during backlit visualization (Roberts 2012, 3.1.2).
Since both fluids are nearly transparent, the mixing region becomes visible due to
redirection of light from the refractive-index gradients within the turbid mixing region
preventing light from the backlight from reaching the camera. This mechanism is a
form of the shadowgraph principle when considering an extended light source (Settles
1999). It is also important to note that, as the number of refraction events that a light
ray encounters increases, the mixed region will appear darker. Thus, smaller turbulent
length scales will result in a darker-appearing mixing region. In all cases, the backlight
and camera field of view extends beyond the tank sidewalls. Thus the horizontal extent
of all images shown in what follows is always the full tank width.

In addition to the unmatched refractive-index experiments, it was found that, by
using trans-anethole as the light liquid, it was possible to match the refractive index
with LST Heavy Liquid in an immiscible combination. trans-Anethole is difficult to
use owing to its ability to dissolve plastic. However, a small set of matched-index
experiments were performed in order to validate the measurements from experiments
having unmatched refractive index. Using this combination to achieve an Atwood
number of 0.48, the LST Heavy Liquid was diluted to have a specific gravity of 2.81
and a viscosity of 10.21 cP (calculated using an exponential fit of the manufacturer’s
supplied data). The trans-anethole has a specific gravity of 0.988. Tests were also
performed to confirm the validity of Beer’s law for these experiments, and this can
be found in Roberts (2012, 3.2).
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4. Initial perturbations

Since it is desired to study the instability in the self-similar regime, small-
wavelength initial perturbations when compared to the tank width are required
(Cook, Cabot & Miller 2004). The self-similar flow is characterized by a progression
in time from smaller to larger scales as the mixing-layer width grows in time.
Scales cannot become larger than the tank width, and therefore self-similarity ends
when the largest scale reaches that point. Thus, the initial perturbation wavelength
must be small enough to allow sufficient time to study the self-similar flow. In the
experiments presented here, the small initial perturbations imposed on the interface
are either forced or left unforced where background noise acts as the source of the
perturbations.

In the past, forced initial perturbations were created in our laboratory by
horizontally oscillating the fluid-filled tank, which was affixed to a set of horizontal
bearings (Waddell et al. 2001; Wilkinson & Jacobs 2007). This method works well
to produce a large-wavelength perturbation (with a maximum of approximately five
wavelengths spanning the tank width). However, when perturbations with greater than
five wavelengths are produced, viscous damping results in amplitude non-uniformity,
where the amplitude at the centre is less than that at the edges. An alternative
method to produce interfacial perturbations is to parametrically (where gravity is the
parameter being varied) excite the two stratified fluids to produce Faraday waves.
This technique produces three-dimensional perturbations with uniform amplitude
across the container. However, the perturbations produced are more complex and are
no longer single-mode. This method was first implemented in this experimental set-up
by Olson & Jacobs (2009) using a large stepper motor to oscillate the entire tank
containing the liquids in the vertical direction. The production of large-wavenumber
disturbances requires a higher frequency of oscillation that proved to be very difficult
to accomplish with Olson’s set-up. Also, the large mass of the motor resulted in
large forces applied to connecting joints by the nearly 70g acceleration that occurs at
the end of the experiment. Because of these difficulties, different mechanisms were
considered and tested.

In order to determine the displacement of the tank oscillation amplitude necessary
to create waves at the interface, an analysis of parametric wave theory was performed,
and the details are available in Roberts (2012, A.3). It was determined that using
a spring–mass system driven at resonance would be the best way to produce tank
motion of this amplitude without using an exceedingly large motor. The tank and
backlight are therefore mounted on an open enclosure that is affixed on the sides
to the test sled using crossed roller bearings so that it is constrained to move
only in the vertical direction. Equating the expression for Faraday-wave resonance
frequency, ωw=

√
4kAg+ γ k3/(ρ2 + ρ1), with that of the spring resonance frequency,

ωs =√K/m, where K is the spring constant, m is the mass of the system, k is the
wavenumber and γ is the interfacial tension, allows for the sizing of the required
springs. The system uses three springs in parallel, which are held in place on the
bottom of the open enclosure and the test sled. These springs provide a large enough
spring constant to achieve the desired perturbation with approximately 20 wavelengths
across the tank width. Small counterweights that can be adjusted in the front-to-back
direction help balance the system and allow for fine tuning of the resonance frequency,
allowing for up to an approximately 10 % variation in the resonance frequency. A
voice coil is used to produce the force to drive the spring–mass system, allowing
the acceleration amplitude to be easily adjusted without changing the frequency by
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FIGURE 7. (Colour online) Rendering of the resonant enclosure used to create the vertical
oscillations used for the parametric excitation.

increasing or decreasing the current passing through the coil. A rendering of the
shaker system is shown in figure 7.

Parametrically forced immiscible and miscible experiments were performed.
The smallest-wavelength perturbations that could be produced in the immiscible
experiments with this set-up were approximately 3 mm, which required a forcing
frequency of approximately 37 Hz. This is the initial perturbation that was used for
all the experiments of this type presented in this study. The amplitude of the waves
produced is approximately 0.5 mm. The sled release could not be synchronized with
the tank oscillation, so each experiment was initiated at a different phase of oscillation.
The visualization method used in these experiments did not allow measurement of
perturbation spectra. However, the perturbation spectrum should be similar to that
measured by Olson & Jacobs (2009), who utilized a similar forcing technique. In
the forced miscible experiments, the tank was oscillated vertically at approximately
25 Hz, producing Faraday waves having an amplitude of approximately 1 mm and a
wavelength of approximately 3 mm.

In the unforced experiments, the instability was allowed to evolve from background
noise of unmeasurable size. However, the initial amplitude can be approximated
using linear stability analysis. At an early time in the progression of the experiment,
at the point where perturbations first become visible (at approximately 100 ms for
the immiscible experiments and 175 ms for the miscible ones), the wavelength and
amplitude were noted. Using this measured wavenumber and amplitude, along with
the growth rate computed from viscous linear stability analysis, an approximate
initial amplitude was determined by extrapolating backwards in time using the linear
instability solution. The resulting initial amplitude, found using this technique, was
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determined to be in the range of 1 × 10−7 to 1 × 10−6 m (for both miscible and
immiscible experiments). It should be noted that the calculation of the predicted
initial perturbation amplitude for the miscible case required the inclusion of the
effects of a diffuse interface. It is known that diffusion reduces the initial growth
rate of the RTI as shown by Duff, Harlow & Hirt (1962), which was accounted for
in the calculated value for initial amplitude. For this calculation, an initial diffusion
thickness of 0.5–1 mm was used as obtained by assuming that the development of
the diffusion region grows as

√
Dt, and that 5–10 min has elapsed between the time

when the tank was filled until when the experiment is performed. The diffusion
coefficient used here (1.12× 10−10 m2 s−1 (Poling 2001)) is approximated by taking
the average of the diffusion coefficients for ethanol into water and water into ethanol.
Further details of this calculation can be found in Roberts (2012, 4.2.1).

It should also be noted that, while the form of the noise spectrum that resulted in
the first observed perturbations is unknown, the many e-foldings that have occurred
during this process result in a nearly single-scale perturbation at the fastest-growing
wavelength. Thus, the primary difference between the forced and unforced experiments
is the many orders-of-magnitude difference in the amplitude of the perturbations. In
addition, forced experiments have a smaller wavelength with a smaller bandwidth,
while the unforced experiments have a larger bandwidth centred around a wavelength
that is slightly larger. However, in both cases we obtain a small-wavelength, finite-
bandwidth initial perturbation that one would expect to result in the mode-coupling
case described by Ramaprabhu et al. (2005).

One might expect components of the initial perturbation to be on the scale of the
tank. However, in all of the experiments performed, none were observed, except for
the effect of slight tilting of the tank with respect to the vertical direction. This tilting,
which was impossible to remove entirely, produces the equivalent of a very small-
amplitude triangular perturbation. In the cases with forced perturbations, the effects of
this triangular perturbation are much less than that of the much faster-growing shorter-
wavelength forced perturbation and thus are not observable. However, in the cases
with unforced perturbations and particularly those with miscible fluid combinations
that have much slower growth rates, the effects of tilting are more pronounced. But,
nevertheless, they are always confined to regions near the walls.

5. Results and discussion
5.1. Qualitative results

For the immiscible experiments performed in this study, the fluids were initially added
to the tank (heavy liquid first) with care taken to remove all air bubbles. Because the
fluids remain unmixed, experiments were performed repeatedly without emptying the
tank. Enough time was allowed to pass (approximately 10 min) between experiments
to allow the emulsion layer that develops at the interface to dissipate. Shown in
figure 8 is a sequence of images of a typical unforced immiscible experiment.
It can be observed in this sequence that a range of scales develops at late time,
beginning at approximately 300 ms, where both large and small wavelengths are
observed. The initially small structures can be observed to merge into larger and
larger structures as time progresses. Since a range of small scales is initially present,
once the linear regime is no longer valid, nonlinear mode coupling will allow the
creation of additional wavelengths, which is also observed. As the mixing-layer width
becomes larger, so does the largest turbulent length scale, which is consistent with
the concept of self-similarity. It should be noted that all experiments showed very
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

FIGURE 8. Experimental images progressing in time in which a diluted LST Heavy Liquid
with AOT as a surfactant (bottom liquid) and 5 cSt silicone oil (top liquid) combination,
giving an Atwood number of 0.48, was used. These experiments are unforced. Here the
horizontal extent of the images is the full tank width (76 mm) at t= 0 ms (a), 25 ms (b),
50 ms (c), 75 ms (d), 100 ms (e), 125 ms (f ), 150 ms (g), 175 ms (h), 200 ms (i),
225 ms (j), 250 ms (k), 275 ms (l), 300 ms (m), 325 ms (n), 350 ms (o) and 375 ms (p).
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slight run-to-run variations, such as slight asymmetry or variation in the mixing-layer
thickness across the tank width. However, these were not consistent from experiment
to experiment and thus were assumed to be the result of randomness in the initial
perturbation. For this reason, ensemble averages were used to obtain the mixing-layer
widths along with the associated α values. Using the eigenvalue expression from a
viscous linear stability analysis that includes the effects of interfacial tension to obtain
the fastest-growing wavelength (Roberts 2012, A.31), one can estimate the interfacial
tension of the fluid combination by assuming that the observed dominant wavelength
at the onset of the instability is equal to the fastest-growing wavelength from the
linear stability analysis. At a time of approximately 100 ms, the instability is still
in the linear regime and a dominant wavelength of approximately 4.3 mm is clearly
visible. Using this wavelength along with the known viscosities of the two liquids,
the interfacial tension is found to be 2.1 mN m−1. This value is also consistent with
the value of 1.6 mN m−1 found for the heptane/calcium nitrate solution combination
with AOT added that was used by Waddell et al. (2001).

Although it was expected that surfactant was required to produce small scales, an
experiment was performed without surfactant to verify this assumption. In figure 9, an
experiment with the same fluid combination and parameters as that used in figure 8
is presented, where the only difference is the lack of surfactant. In this experiment,
only a few wavelengths across the tank were observed, and thus there is not enough
domain size to display a large range of scales. Once again, an attempt to determine
the interfacial tension was made using the experimentally observed wavelength.
Although it was difficult to determine a dominant wavelength in this experiment, it
was approximated to be 11 mm, which yields an approximate interfacial tension of
20 mN m−1. Thus, adding surfactant appears to produce a factor of 10 decrease in
the interfacial tension.

Figure 10 shows an immiscible experiment in which parametric forcing is used
to produce the initial perturbation. It is observed that the initial wavelength is much
less than the tank width. In addition, as with the unforced experiments (figure 8),
there appears to be a large range of scales present at late time, as can be seen
at 300 ms and later. The Faraday forcing used in this study does not produce a
monochromatic initial perturbation. However, the perturbation that is produced has
a bandwidth narrower than that which evolves from background noise. Therefore,
the forced experiments might be expected to have a decreased amount of mode
coupling when compared to the unforced experiments, which logically would result
in a reduction in the degree of self-similarity observed. This difference, therefore,
might be expected to affect the measured growth constant α. It is also apparent that
the forced experiments develop into the possibly turbulent self-similar regime earlier
than the unforced ones. With a larger initial amplitude, the forced experiments should
be expected to progress into turbulence (and therefore self-similarity) more rapidly.
All of these observations suggest that the effects of forcing on the growth of the
turbulent mixing region deserve further study.

As with the immiscible experiments, miscible experiments were performed by first
adding the heavy liquid and then the light one. Owing to the miscible nature of the
liquids, a piece of balsa wood was rested atop the heavy liquid and allowed to float
while the light liquid was added. This had the effect of spreading the liquid flow and
thus decreasing the velocity to minimize mixing between the two fluids. Unlike with
the immiscible experiments, the tank had to be refilled with new pure fluids after every
experiment.

Shown in figure 11 is a sequence of images from a miscible unforced experiment.
In these experiments, it is apparent that the first observable interfacial waves appear
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

FIGURE 9. Experimental images progressing in time in which a diluted LST Heavy Liquid
without a surfactant (bottom liquid) and 5 cSt silicone oil (top liquid) combination, giving
an Atwood number of 0.48, was used. These experiments are unforced. Here the horizontal
extent of the images is the full tank width (76 mm) at t= 0 ms (a), 25 ms (b), 50 ms (c),
75 ms (d), 100 ms (e), 125 ms (f ), 150 ms (g), 175 ms (h), 200 ms (i), 225 ms (j),
250 ms (k), 275 ms (l), 300 ms (m), 325 ms (n), 350 ms (o) and 375 ms (p).
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

FIGURE 10. Parametrically forced experimental images progressing in time in which a
diluted LST Heavy Liquid with surfactant (bottom liquid) and 5 cSt silicone oil (top
liquid) combination, giving an Atwood number of 0.48, was used. Here the horizontal
extent of the images is the full tank width (76 mm) at t= 0 ms (a), 25 ms (b), 50 ms (c),
75 ms (d), 100 ms (e), 125 ms (f ), 150 ms (g), 175 ms (h), 200 ms (i), 225 ms (j),
250 ms (k), 275 ms (l), 300 ms (m), 325 ms (n), 350 ms (o) and 375 ms (p).
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

FIGURE 11. Miscible unforced liquid experiments performed on the weight-and-pulley
apparatus with diluted LST Heavy Liquid (bottom liquid) and 90 % ethanol–10 % water
(top liquid), having an Atwood number of 0.48. Here the horizontal extent of the images is
the full tank width (76 mm) at t=0 ms (a), 25 ms (b), 50 ms (c), 75 ms (d), 100 ms (e),
125 ms (f ), 150 ms (g), 175 ms (h), 200 ms (i), 225 ms (j), 250 ms (k), 275 ms (l),
300 ms (m), 325 ms (n), 350 ms (o) and 375 ms (p).
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after twice as much time has passed when compared to the immiscible experiments.
In addition, these first observed perturbations appear to have a smaller wavelength
than their immiscible counterparts and are of varying scale. It should be noted that
a linear stability calculation including viscosity but neglecting diffusion yields a
fastest-growing wavelength of 0.9 mm, which agrees well with that observed here.
Adding diffusion to the analysis would further increase the fastest-growing wavelength,
bringing it even closer to the observed value (1.8 mm). At late time, the development
of a range of scales also is observed. Without the stabilizing effect of interfacial
tension on small wavelengths, a larger range of wavelengths is present at late time.
It is therefore more likely that the miscible experiments will have achieved true
self-similarity because of the larger range of scales achieved.

In figure 12, a sequence of images from a forced miscible experiment is shown. In
these forced experiments, it is observed that the growth of the mixing region develops
nearly immediately, as was observed in the forced immiscible experiments. Similar to
the immiscible experiments, at late time we also observe the development of a range
of scales.

Shown in figure 13 is a comparison of the late-time behaviour of all four cases,
all taken at a time in which the mixing-layer width is approximately the same.
When comparing the two immiscible experiments, it is observed that the dominant
wavelength (as observed in the profile of the bubble and spike fronts) appears similar
in size, which is consistent with the assumption that forcing small wavelengths does
not alter the flow once self-similarity is reached and implies that initial conditions do
not influence the self-similar regime. Comparing the dominant length scales between
the two miscible experiments yields a similar conclusion. However, one significant
difference between the miscible and immiscible experiments is that the miscible
experiments have noticeably darker mixing regions than the immiscible ones, thus
implying that significantly smaller wavelengths are present in the miscible experiments
than in the immiscible ones. Note that the lack of surface tension in the miscible
experiments would allow the formation of smaller scales that would be suppressed by
the presence of surface tension in the immiscible experiments. Thus the presence of
shorter length scales is not the result of diffusion but instead is the result of the lack
of surface tension. This observation, however, contradicts the fact that miscibility also
results in molecular mixing, which should act to reduce refractive-index gradients.
Thus the fact that the miscible experiments have darker mixing zones implies that
the lack of surface tension is more dominant than the effect of diffusion.

5.2. Quantitative results
The primary measured quantity in this study is the mixing-layer width, h, and it is
desired to determine how this quantity progresses in time. The mixing-layer width
can be divided into that of the bubble (the portion in which the less dense mixing
region grows into the heavy liquid), hb, and that of the spike (the portion in which the
more dense mixing region grows into the light liquid), hs. The widths of the bubble
and spike regions are found by subtracting the locations of the spike and bubble
extents, respectively, from the initial interface location. Image analysis was performed
using programs written in Java utilizing the ImageJ and JExcel libraries as the main
components (Roberts 2012, 6.2).

The first step in the process was to obtain an intensity average across each row
for each frame in the usable mixing region area. The usable mixing region area was
determined by excluding structures created by interaction with the sidewalls of the
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

FIGURE 12. Miscible forced liquid experiments performed on the weight-and-pulley
apparatus with diluted LST Heavy Liquid (bottom liquid) and 90 % ethanol–10 % water
(top liquid), having an Atwood number of 0.48. The frequency of forcing here is 25 Hz.
Here, the horizontal extent of the images is the full tank width (76 mm) at t= 0 ms (a),
25 ms (b), 50 ms (c), 75 ms (d), 100 ms (e), 125 ms (f ), 150 ms (g), 175 ms (h),
200 ms (i), 225 ms (j), 250 ms (k), 275 ms (l), 300 ms (m), 325 ms (n), 350 ms (o)
and 375 ms (p).
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(a) (b)

(c) (d )

FIGURE 13. Comparison between forced, unforced, miscible and immiscible experiments
performed on the weight-and-pulley apparatus for the 0.48 Atwood number case at t =
320 ms for immiscible unforced (a), 380 ms for miscible unforced (b), 275 ms for
immiscible forced (c) and 300 ms for miscible forced (d) cases. Images were chosen at
times in which the mixing-layer width is approximately matched between experiments.

tank. At the latest usable frame for an experiment, the usable region was determined
by excluding obvious wall effects, and this is the region used for averaging throughout
the experiment. The mixing region width measurements also had to be measured while
accounting for inhomogeneities in the tank and in the backlight. Ideally, one could
divide each experimental image by an image in which the tank was empty to account
for these non-uniformities. However, in addition to the backlight intensity being non-
uniform in space, it was also found to vary in time due to temperature variations. For
this reason, all of the experimental images for a particular run were scaled by the first
image in the sequence and then the top and bottom fluid regions were re-multiplied by
an average of a representative area of the corresponding fluid. This area was chosen to
be near the interface to account for the backlight intensity variations that occur near
the edges of each fluid.

It is important to point out that there is no standardized way of determining the
mixing-layer width from backlit images such as used here. However, since we do not
obtain concentration measurements, a consistent way of extracting the mixing-layer
widths had to be developed. After the initial rescaling process has been performed,
the data from each image were then row-averaged. Marching from both the light
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and heavy liquid towards the interface, for the bubble and spike, respectively, the
row-averaged intensity value is compared to the average intensity value in the pure
liquid region. The edge of the mixing layer is determined when the intensity (I) drops
below a threshold percentage value (P) defined by

Ithresh = Idrk + (Ilght − Idrk)× P
100

. (5.1)

It was found that a threshold value of 80 % produces the most consistent results. Other
threshold values (70 % and 90 %) were considered, but since they did not always
yield a smoothly increasing mixing width across a set of experiments, they were
not chosen. A 95 % threshold is often used in experiments in which concentration
is measured, but this value showed inconsistent results in the present study and
was thus found to be unsuitable. Also, because transmitted light intensity is not an
indicator of concentration, using a 95 % threshold would not necessarily correspond
to an equivalent concentration threshold. In figure 14, a montage of images is shown.
Superimposed on each image are a scaled row-averaged profile along with horizontal
lines indicating the determined edge locations found from using 70 %, 80 % and
90 % threshold values. Also, one line is present that represents the intersection of
a least-squares curve fit of the intensity profile with the quiescent intensity value.
Note that the evolution in time of the profiles appears to have the characteristics of
self-similarity: as the profile becomes wider with time, its shape remains similar. It
is obvious from the figure that using a 90 % or 95 % threshold value would result in
only a slight increase in α. However, doing so would also bring with it significantly
increased error due to increased run-to-run variation.

Plots showing the time evolution of mixing-layer width are shown in figure 15. Note
that the parametrically forced experiments obtain a mixing-layer width larger than their
unforced counterparts. As was shown in the image sequences, forcing produces larger-
amplitude initial perturbations that also produce faster initial growth. Also, there is a
very obvious difference between the immiscible experiments and the miscible ones.
The miscible experiments grow significantly more slowly than the immiscible ones.
This is to be expected since a diffuse interface will result in a reduction in the local
Atwood number and thus growth rate as dictated by linear stability analysis.

We would like to determine the effects of forcing on the growth parameter α.
We are not able to determine conclusively whether self-similarity is achieved in our
experiments. However, since turbulence is required for self-similarity, it is useful
to compute the Reynolds number in our experiments to determine whether it is
at least as large as those of other studies that observed self-similar flow, i.e. the
results of Dalziel et al. (1999) and Ramaprabhu & Andrews (2004). The Reynolds
number obtained by Ramaprabhu & Andrews was approximately 1000. This value
was calculated using

Re= hḣ
ν
, (5.2)

where h represents the full mixing-layer width and ḣ is its temporal derivative. In the
present study, bubble and spike Reynolds numbers are calculated individually,

Re= hb/sḣb/s

ν
, (5.3)

so the corresponding Reynolds numbers of Ramaprabhu & Andrews becomes a
factor of four smaller, yielding a value of 250. An approximate bubble Reynolds
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

FIGURE 14. A sequence of images where the images of an ensemble-averaged
refractive-index mismatch experiment have been post-processed. Horizontally averaged
intensity values are superimposed on the images. The profiles have the characteristics of a
self-similar flow as time progresses. Also on the images are horizontal lines representing
different bubble and spike extent measurements so they can be compared. Times are
(a) t = 100 ms, (b) t = 125 ms, (c) t = 150 ms, (d) t = 175 ms, (e) t = 200 ms, (f ) t =
225 ms, (g) t = 250 ms, (h) t = 275 ms, (i) t = 300 ms, (j) t = 325 ms, (k) t = 350 ms
and (l) t= 375 ms.

number in the experiments of Dalziel et al. at a time where the flow was verified,
by internal mixing region measurements, to be turbulent was 3700 (Dalziel et al.
1999; S. B. Dalziel 2013, personal communication). Plots of Reynolds number versus
time for the cases studied here are shown in figure 16. The approximate maximum
values, excluding the scatter towards the ends of the experiments, are approximately
2000, 4000, 1500 and 4000 for the unforced immiscible forced immiscible unforced
miscible and forced miscible experiments, respectively, where the values for the
spikes are approximately 20 % larger than those for the bubbles. It is observed that
the maximum Reynolds numbers for the forced experiments are twice those for the
unforced ones. Since these values are larger than those obtained by Ramaprabhu &
Andrews and similar to those of Dalziel et al. (both of whom found their flows to
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FIGURE 15. Mixing-layer width for ensemble-averaged experiments where 80 % of the
pure liquid intensity was taken as the mixing-layer width cutoff. Data are for LST Heavy
Liquid experiments for the four cases discussed previously: (a) immiscible unforced,
(b) immiscible forced, (c) miscible unforced and (d) miscible forced.

be self-similar and turbulent by internal mixing-layer measurements), we will assume
our experiments are self-similar.

Under the premise that we have a large enough Reynolds number to achieve self-
similarity, we will proceed with the determination of the growth factor α. As shown by
Dimonte & Schneider (2000), one way to measure α is to plot

√
hb/s versus t

√
Ageff

and fit a straight line (by the method of least squares) through the part of the curve
that appears linear at late time. Squaring the slope of this line will yield an averaged
value of α. Another way of determining α is to use a method proposed by Cabot &
Cook (2006) using an expression developed by Ristorcelli & Clark (2004) where

α = ḣ2
b/s

4Ageff hb/s
. (5.4)

This gives a time-dependent expression for α which can be compared to the average
value.
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FIGURE 16. Reynolds-number data for ensemble-averaged experiments where 80 % of
the pure liquid intensity was taken as the mixing-layer width cutoff. Data are for the
four cases of the LST Heavy Liquid experiments: (a) immiscible unforced, (b) immiscible
forced, (c) miscible unforced and (d) miscible forced.

5.2.1. Immiscible experiments
In using the fitting method for the calculation of α as used by Dimonte & Schneider

(2000), it is desirable to employ a fixed fitting region for consistency in comparing
values from different sets of experiments. For the immiscible fluid combination in
the present study, the fitting region was chosen to be 5 mm1/2 < t

√
Ageff < 25 mm1/2

and the curve fits are shown in figure 17. For the α calculations, geff was found by
averaging over the main acceleration region between approximately 100 and 400 ms,
which yielded 11.06 ± 0.02 m s−2 for the unforced case and 10.87 ± 0.33 m s−2

for the forced case, where uncertainties represent 95 % confidence intervals of
measurements from individual experiments. The calculated values of α are displayed
on the plots. At the end of the unforced experiments, α is nearly constant, indicated
by the linearity of the data at late time, with a value of 0.059 ± 0.002 for the
spike and 0.047± 0.007 for the bubble. For the forced case, α is 0.057± 0.014 for
the spike and 0.044 ± 0.009 for the bubble. These α values represent an ensemble
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FIGURE 17. Measurements of α determined by fitting a straight line to the
√

hb/s versus
t
√

Ageff plot for ensemble-averaged experiments where 80 % of the pure liquid intensity
was taken as the mixing-layer width cutoff. Data are for the two LST Heavy Liquid
immiscible cases: (a) immiscible unforced; αb = 0.047, αs = 0.059 and (b) immiscible
forced; αb = 0.044, αs = 0.057.

average of 13 experiments for the unforced case and 10 experiments for the forced
case. Here the uncertainties were calculated using a 95 % confidence interval from
α values determined from experiments analysed individually. Note that the α values
obtained in both cases are smaller than those obtained in earlier experimental studies.
For example, when comparing the experiments that match the Atwood number used
in our experiments, Youngs & Read (1983) obtained α values of 0.086 and 0.066
for spike and bubble, respectively, Kucherenko et al. (1991) obtained values of 0.070
and 0.055, respectively, and Dimonte & Schneider (2000) obtained values of 0.063
and 0.050, respectively. However, it should be noted that the data of figure 17 have
significantly greater time resolution and are an average over a much larger ensemble
than in previous studies. As a result, the measurements shown in this figure yield
much smoother curves than in the earlier experiments and thus could explain the
small difference in α values measured here. In addition to attaining smaller α values
than previously found, the results presented here indicate that imposing forced initial
perturbations with a wavelength smaller than the fastest-growing wavelength and
larger than the cutoff wavelength (as is done in the forced experiments) yields an α
value similar to that obtained in the unforced experiments. The larger amplitude of
the forced case extends the experimental time in the nonlinear regime for the flow
to evolve, but the similar α values imply the extra evolution time is not necessary
to achieve the same final result. The spike to bubble ratios are also very similar
for the forced and unforced experiments, where the ratio αs/αb was found to be
1.26± 0.19 and 1.30± 0.41 for the unforced and forced cases, respectively. Here the
error estimates were obtained by propagating error estimates from the bubble and
spike values. These ratios compare well with past experiments having similar Atwood
number, where Youngs & Read (1983) found a ratio of 1.3, Dimonte & Schneider
(2000) found a ratio of 1.26 and Kucherenko et al. (1991) found a ratio of 1.27.

Using (5.4), α is plotted in figure 18, where ḣb/s is determined using a central
difference approximation and geff are the average values used in the

√
h versus t
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FIGURE 18. Measurements of α determined by the method of Cabot & Cook (2006) for
ensemble-averaged immiscible experiments where 80 % of the pure liquid intensity was
taken as the mixing-layer width cutoff. Here ḣb/s was calculated using a central difference
approximation. Data are for the two LST Heavy Liquid cases: (a) immiscible unforced and
(b) immiscible forced. The horizontal line here represents α obtained from the square-root
method and is drawn to show the consistency between methods of determining α: the
top line represents the spike and the bottom represents the bubble for both plots. Also,
a weighted running average of 20 % of the total number of points in the particular
experiment is also performed (represented as solid and dashed lines on the plot) to smooth
the data.

method described above. A weighted running average of α of 20 % of the total number
of points in the particular experiment is also performed (represented as solid and
dashed lines on the plot) to smooth the data. The weighted running average function
performs a nonlinear regression using a locally weighted regression method, where
more weight is given to the central data point. Horizontal dashed lines are also drawn
representing the average α values obtained by the square-root method, described above,
showing that it agrees well with (5.4) at late time. It is observed that α for the forced
and unforced cases show similar values.

As mentioned above, in addition to the unmatched refractive-index experiments,
a small set of experiments were performed using a liquid combination in which
LST Heavy Liquid is the heavy liquid and trans anethole is the light liquid, where
the refractive indices were matched. In addition, these experiments were unforced.
The analysis of these experiments utilized Beer’s law absorption to obtain integrated
concentration profiles, from which the 10 % and 90 % concentration thresholds of
LST Heavy Liquid were used to determine the spike and bubble front locations.
From these, α measurements were obtained utilizing the same techniques as used
in the unmatched-index experiments. For these matched-index experiments, α was
found to have a value of 0.046 ± 0.011 for the spike and 0.039 ± 0.015 for the
bubble. These α values represent an ensemble average of nine experiments. Here
the uncertainties were calculated using a 95 % confidence interval from α values
determined from experiments analysed individually. These measurements compare
well with the non-index-matched experiments, thus validating our results. More
information on these experiments can be found in Roberts (2012, 6.2).
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FIGURE 19. Measurements of α determined by fitting a straight line to the
√

hb/s versus
t
√

Ageff plot for ensemble-averaged experiments where 80 % of the pure liquid intensity
was taken as the mixing-layer width cutoff. Data are for the two LST Heavy Liquid
miscible cases: (a) miscible unforced; αb = 0.030, αs = 0.047 and (b) miscible forced;
αb = 0.023, αs = 0.017.

5.2.2. Miscible experiments
The fitting region for the miscible experiments was chosen to be 15 mm1/2 <

t
√

Ageff < 25 mm1/2, which is slightly later in time than for the immiscible
experiments due to the difficulty in making measurements at early time. The curve fits
for extracting α are shown in figure 19, where the values of α are displayed on the
plots. For the α calculations, the average acceleration was computed and used for each
set of experiments in the same manner as was done for the immiscible experiments.
The acceleration for the unforced and forced cases is 10.12 ± 2.21 m s−2 and
10.73 ± 0.34 m s−2, respectively, where the uncertainties represent 95 % confidence
intervals of measurements from individual experiments. These result in unforced
spike and bubble α values of 0.047 ± 0.023 and 0.030 ± 0.008, respectively, and
forced spike and bubble values of 0.017 ± 0.008 and 0.023 ± 0.007, respectively.
These α values represent an ensemble average of nine experiments for the unforced
case and nine experiments for the forced case as well. Again, the uncertainties here
were calculated using a 95 % confidence interval from α values determined from
experiments analysed individually. Thus, as was similarly found for the immiscible
experiments, the α values obtained for the miscible experiments are smaller than those
obtained in past experiments. But, unlike the immiscible experiments that yielded α
values only slightly smaller than previous measurements, values for the miscible
experiments are significantly smaller than those previously found. Thus the miscible
experiments yield α values that are significantly less than those of their immiscible
counterparts. Differences with the immiscible experiments’ spike to bubble ratios for
the growth rates are also observed. For the miscible unforced and miscible forced
experiments, the ratio αs/αb was found to be 1.57± 0.87 and 0.74± 0.41, respectively.
Here the error estimates were obtained by propagating error estimates from the bubble
and spike values. Note that the forced miscible ratio is less than unity, indicating a
larger bubble growth rate than for the spike. However, the very large error estimate
associated with this value indicates that this discrepancy can probably be attributed
to experimental uncertainty caused by imaging limitations.
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FIGURE 20. Measurements of α determined by the method of Cabot & Cook (2006)
for ensemble-averaged miscible experiments where 80 % of the pure liquid intensity was
taken as the mixing-layer width cutoff. Here ḣb/s was calculated using a central difference
approximation. Data are for the two LST Heavy Liquid cases: (a) miscible unforced and
(b) miscible forced. The horizontal line here represents α obtained from the square-root
method and is drawn to show the consistency between methods of determining α: on the
left, the top line is the spike and the bottom the bubble, while it is opposite for the right
panel. Also, a weighted running average of 20 % of the total number of points in the
particular experiment is also performed (represented as solid and dashed lines on the plot)
to smooth the data.

The time-dependent α value obtained using (5.4) is shown in figure 20, where, as
was done for the immiscible experiments, ḣb/s is determined using a central difference
approximation. Also, as with the immiscible results, a weighted running average of
20 % of the total number of points in the particular experiment is also performed
(represented as solid and dashed lines on the plot) to smooth the data and a dashed
line is drawn representing the average α value obtained by the square-root method.
As was similarly shown in the immiscible experiments, the square-root method agrees
well with (5.4) at late time.

5.2.3. Discussion and comparison of results
A compilation of measured α values obtained from the experiments described

here for both the immiscible and miscible experiments along with those obtained in
prior studies is shown in table 1. As described above, good agreement is observed
in the present study between the forced and unforced immiscible experiments, with
differences less than the respective error estimates indicating that, even though there
may be increased mode coupling in the unforced case, it does not appear to strongly
alter the late-time self-similar behaviour. The values from the miscible experiments
do not show the same level of agreement between the forced and unforced cases.
Nevertheless, the forced and unforced measurements are within the range of their
respective error estimates. This discrepancy may be expected, owing to difficulties
when imaging the miscible experiments. It should be noted that, because of their
much slower growth, the miscible experiments are much more strongly affected by
edge effects, resulting in vortical structures at the front and back walls of the tank
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caused by slight tank misalignments. These artifacts along with their associated effects
on visualization are discussed in detail in Roberts (2012, 3.1.3) and are indicated by
the larger uncertainty estimates for this set of experiments.

When comparing miscible and immiscible forced experiments, it is observed
that the α values associated with the miscible ones are significantly smaller than
those found in the immiscible experiments. Furthermore, the differences between the
miscible and immiscible values are significantly larger than their associated error
estimates, indicating that miscibility does play a statistically significant role in the
growth parameter. This effect can be explained by the fact that molecular mixing
will result in a lowering of the local effective Atwood number, as discussed by Cook
et al. (2004). Cook et al. define the effective Atwood number as

Ae ≡ ρrms

〈ρ〉|0 , (5.5)

which they found to approach Ae = 0.48A at late time in their miscible simulations.
On the other hand, Ae = A for immiscible fluids. Here 〈ρ〉|0 represents the average
density at the centre-plane (z=0) and ρrms is the centre-plane root mean square density
deviation. Cook et al. argue that molecular mixing results in a decrease in the local
buoyancy force experienced by regions of lighter and heavier fluids near the zero plane
in the mixing layer and thus should result in a lowering of the RTI turbulent growth
rate. Cook et al. also hypothesize that this mechanism is the reason why their miscible
simulations yield lower α values than all previous simulations that modelled the fluids
as immiscible. The results presented here thus support Cook et al.’s hypothesis that
miscibility results in a significant lowering of the RTI growth constant α. Furthermore,
the factor of two difference between our miscible and immiscible α measurements
agrees well with the difference between Cook et al.’s result and those of previous
immiscible simulations.

6. Summary and conclusions
In this study, a system of two stratified liquids that is accelerated downwards

at a rate greater than gravity is used to study the Rayleigh–Taylor instability.
Experiments were performed using a weight-and-pulley apparatus, which produces
a net acceleration of approximately 1g, with fluid combinations having an Atwood
number of 0.48. Owing to the large refractive index of the denser liquid for these
large-Atwood-number experiments, the refractive index could not be matched. Thus,
during an experiment the refractive-index mismatch is imaged. After the instability
has progressed late enough in time, a mixing region develops. This mixing layer
is assumed to be self-similar and turbulent. In this study, the effect of forcing and
miscibility on the turbulent RTI was investigated. The initial conditions of these
experiments were either forced to produce small-wavelength perturbations or left
unforced (allowing small wavelengths, close in size to the fastest-growing wavelength,
to grow). In addition, experiments were performed using miscible and immiscible
liquid combinations. In all cases, we obtain a small-wavelength, finite-bandwidth
initial perturbation consistent with the bubble-merger, mode-coupling case presented
by Ramaprabhu et al. (2005).

The fact that the dominant scales appear to evolve in time proportionally with
the mixing-layer width supports the assumption that the experiments are in the
self-similar regime. Also, the Reynolds number was measured and compared to those
obtained in earlier experimental studies, where it was verified that self-similarity
was reached (from quantitative internal mixing region measurements). The Reynolds
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numbers achieved in the present experiments were found to be similar to those found
in earlier studies, implying that the flow in our experiments is sufficiently turbulent to
be self-similar. Using the assumption of self-similarity, α values were obtained in a
consistent manner for all the experiments presented here. The growth parameter α was
extracted from mixing-layer width measurements using both the method of Dimonte
& Schneider (1996) and that of Ristorcelli & Clark (2004) and Cabot & Cook (2006),
where it was found that both methods yielded consistent results. For the immiscible
forced experiments, it was found that αs=0.057±0.014 and αb=0.044±0.009, while
for the immiscible unforced experiments αs = 0.059± 0.002 and αb = 0.047± 0.007.
The α value differences between the forced and unforced experiments are within their
respective error estimates, thus indicating that the differences in forcing the initial
perturbations had no measurable effect in the resulting α values. For the miscible
forced experiments, it was found that αs=0.017±0.008 and αb=0.023±0.007, while
for the miscible unforced experiments, αs = 0.047 ± 0.023 and αb = 0.030 ± 0.008.
It is particularly notable that the α values measured for the miscible experiments
are significantly smaller than those of the immiscible experiments and that, for three
of the four comparisons made, this difference is statistically significant based on
the calculated confidence intervals, thus indicating that miscibility plays a role in
the late-time turbulent instability growth. It is important to note that the effect of
miscibility to reduce the value of α has never been observed experimentally. However,
it supports the hypothesis of Cook et al. (2004) that molecular mixing results in the
lowering of the buoyancy force experienced by light and heavy fluid regions near the
centreline of the RTI mixing region. It is also significant that α values measured in
the immiscible experiments of the present study are smaller than those measured in
previous studies. This difference is most likely the result of the increased temporal
resolution and the increased ensemble sizes used in the present study resulting in
more accurate measurements of α at later times.

In this study we experimentally showed that imposing a small-wavelength initial
perturbation on the interface does not significantly alter the value of α when compared
to the case where a small-wavelength spectrum (from background noise perturbations)
was allowed to develop due to viscous effects in the linear regime. This indicates that
the form of a perturbation having a short enough wavelength and finite bandwidth
does not affect the growth rate of the turbulent self-similar RTI and supports the
conclusions put forward by Ramaprabhu et al. (2005). It was also found that
miscibility does play a role in the turbulent RTI where the miscible experiments
have a smaller growth rate than the immiscible ones.
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