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We prove a new rigorous upper bound on the vertical heat transport for Bénard–
Marangoni convection of a two- or three-dimensional fluid layer with infinite Prandtl
number. Precisely, for Marangoni number Ma� 1 the Nusselt number Nu is bounded
asymptotically by Nu6 const.×Ma2/7(ln Ma)−1/7. Key to our proof are a background
temperature field with a hyperbolic profile near the fluid’s surface and new estimates
for the coupling between temperature and vertical velocity.
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1. Introduction

When a layer of fluid heated from below is subject to temperature gradients
along its surface, local variations in the surface tension generate a shear stress. This
phenomenon, called the Marangoni effect, can set the fluid in motion when the
ratio of surface tension forces to viscosity is sufficiently large. The ensuing flow,
known as Bénard–Marangoni convection, can produce beautiful surface patterns,
as famously observed by Bénard (1901), and is a paradigm for pattern formation.
It also underpins a number of industrial processes, such as fusion welding (DebRoy
& David 1995) and the growth of semiconductors (Lappa 2010). Nevertheless,
Bénard–Marangoni convection remains poorly understood, especially when compared
to its buoyancy-driven counterpart, Rayleigh–Bénard convection.

A fundamental open problem is to determine the vertical heat transport as a function
of the thermal forcing and the material parameters of the fluid. In non-dimensional
terms, one is interested in how the Nusselt number Nu varies with the Marangoni
number Ma, which measures the relative strength of thermally driven surface tension
to viscous forces, and the Prandtl number Pr, given by the ratio between the kinematic
viscosity and the thermal diffusivity of the fluid.
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For finite Prandtl numbers, a phenomenological argument by Pumir & Blumenfeld
(1996) predicts Nu ∼ Ma1/3 with a Prandtl-dependent prefactor when Ma � 1 and
the flow is turbulent. Two-dimensional direct numerical simulations (DNS) with
stress-free boundaries at low Pr support this scaling (Boeck & Thess 1998), but
no-slip boundaries in either two or three dimensions yield smaller powers of Ma
(Boeck 2005). Two-dimensional free-slip DNS at both high and infinite Pr also
suggest a smaller exponent. Assuming steady convection rolls are stable at arbitrarily
large Ma, a boundary-layer scaling analysis predicts Nu ∼ Ma2/9 in the infinite-Pr
limit (Boeck & Thess 2001).

Rigorous results, derived directly from the governing equations without introducing
unproven assumptions, are key to substantiate or rule out any of these heuristic scaling
arguments. By expressing the temperature field in terms of fluctuations around a
carefully chosen steady ‘background’ temperature field, Hagstrom & Doering (2010)
proved that Nu . Ma1/2 uniformly in Pr when this is finite, and Nu . Ma2/7 for
Pr = ∞. These bounds are consistent with all aforementioned theories, but the
question remains of whether they are sharp – meaning there exist convective flows
that saturate them – or can be improved.

Recently, numerical optimisation of the background temperature field for Ma 6 109

suggested that Hagstrom & Doering’s bound for the infinite-Pr case can be improved
at least by a logarithm (Fantuzzi, Pershin & Wynn 2018). Precisely, the best bound
available to the ‘background method’ for Ma� 1 appears to be Nu.Ma2/7(ln Ma)−1/2,
although the power of the logarithm remains uncertain due to the limited range
of Ma spanned by the numerical data. In this work, we prove analytically that
logarithmic improvements to a power-law bound with exponent 2/7 are indeed
possible. Specifically, we show that

Nu . Ma2/7(ln Ma)−1/7, when Ma� 1. (1.1)

We do this by combining the careful construction of an asymmetric background
temperature field, inspired by the optimal profiles from Fantuzzi et al. (2018), with
new estimates for the coupling between temperature and vertical velocity. These differ
fundamentally from the estimates that apply to infinite-Pr Rayleigh–Bénard convection
(Doering, Otto & Reznikoff 2006; Whitehead & Doering 2011; Whitehead &
Wittenberg 2014) due to the different boundary conditions (BC) for the velocity field.

2. The model

We consider a d-dimensional layer of fluid (d = 2 or 3) in a box domain with
horizontal coordinates x ∈ Π d−1

i=1 [0, Li] and vertical coordinate z ∈ [0, 1]. In the
infinite-Pr limit, Pearson’s equations for Bénard–Marangoni convection (Pearson 1958)
become

∂tT + u · ∇T −1T = 0, (2.1a)
∇ · u= 0, (2.1b)

−1u+∇p= 0. (2.1c)

Here, u(x, z, t) = (v(x, z, t), w(x, z, t)) is the velocity vector field with horizontal
and vertical components v and w, respectively, T(x, z, t) is the scalar temperature
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and p(x, z, t) is the scalar pressure. We assume that all variables are periodic in the
horizontal directions, while

T|z=0 = 0, ∂zT|z=1 =−1, (2.2a)
u|z=0 = 0, w|z=1 = 0, (2.2b)
[∂zv +Ma∇xT]z=1 = 0, (2.2c)

where ∇x denotes the horizontal gradient. The steady solution u = 0, T = −z,
p = const. corresponds to a purely conductive state; it is globally asymptotically
stable for Ma 6 66.84 (Fantuzzi & Wynn 2017) and linearly stable for Ma 6 79.61
(Pearson 1958).

For larger Marangoni numbers convection ensues, and the velocity field can be
completely slaved to the temperature. Precisely, let ŵk and T̂k be any Fourier modes
of the vertical velocity and temperature, respectively, with horizontal wavevector k of
magnitude k. (These are unique when d= 2 but not when d= 3.) One finds (Hagstrom
& Doering 2010)

ŵk(z)=−Ma fk(z)T̂k(1), (2.3)

where, setting h(x) := (sinh x)/x for convenience,

fk(z)=
1
2

k2z(z− 1)
{

h(k)h(kz)− h[k(1− z)]
h(2k)− 1

}
. (2.4)

Key to proving (1.1) are the following new bounds for the temperature–velocity
coupling in (2.3). They are proved in appendix A and hold for any fixed 0 6 β < 1
and k > 0. First, for 0 6 z 6 β we have

| fk(z)|6
1
6
α(β, k)z2, α(β, k) := k4 h(k)h(kβ)

h(2k)− 1
. (2.5a,b)

Further, for β 6 z 6 1 we can bound

| fk(β)|

1− β
(1− z)6 | fk(z)|6

k
2
(1− z)e−k(1−z). (2.6)

3. Bound on the Nusselt number

Denote the horizontal and long-time average of a quantity q(x, z, t) by

〈q〉(z)= lim sup
T→∞

1
T L1 · · · Ld−1

∫ T

0

∫ L1

0
· · ·

∫ Ld−1

0
q(x, z, t) dx dt. (3.1)

Our interest is to derive a Marangoni-dependent upper bound on the Nusselt number,
i.e., the ratio of the total vertical heat flux to the purely conductive one:

Nu :=

∫ 1

0
〈wT − ∂zT〉 dz∫ 1

0
〈−∂zT〉 dz

. (3.2)
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To bound Nu, we follow Hagstrom & Doering (2010) and write the temperature
field as the sum of a steady background field τ(z), which satisfies the inhomogeneous
BC in (2.2a) but is otherwise arbitrary, and a fluctuation θ(x, z, t) satisfying

T(x, z, t)= τ(z)+ θ(x, z, t), (3.3a)
τ(0)= 0, τ ′(1)=−1, (3.3b)
θ |z=0 = 0, ∂zθ |z=1 = 0. (3.3c)

Primes denote differentiation in z. It is shown by Hagstrom & Doering (2010) that

Nu−1
=

∫ 1

0
〈|∇θ |2 + 2τ ′wθ〉 dz− ‖τ ′‖2

2 − 2τ(1), (3.4)

where ‖ · ‖2 denotes the usual L2-norm. At this stage, suppose that τ is chosen such
that

Qτ
{θ} :=

∫ 1

0
〈|∇θ |2 + 2τ ′wθ〉 dz > 0 (3.5)

for all time-independent trial fields θ = θ(x, z) that are horizontally periodic and
satisfy (3.3c), with w = w(x, z) being a function of θ defined in Fourier space
according to (2.3). This can be interpreted as a nonlinear stability condition for τ as
if it were a solution to (2.1a)–(2.1c) (see, for example, Malkus (1954)). Then,

Nu−1 >−‖τ ′‖2
2 − 2τ(1)= 1− ‖τ ′ + 1‖2

2, (3.6)

where τ(0)= 0 is used to obtain the second equality. If the right-hand side is positive,
inverting this lower bound produces a finite upper bound on Nu. A background field
τ is now constructed which gives (1.1) when Ma� 1.

4. Proof of the main result

The boundary condition τ(0)=0 can be dropped because τ can always be shifted by
a constant without affecting (3.5) and (3.6), which depend only on τ ′. Moreover, the
boundary condition τ ′(1) = −1 can formally be ignored because it can be enforced
at the end by modifying τ ′ in a infinitesimally thin layer near 1 without affecting
our bound on Nu. Given these observations, and motivated by the numerically optimal
profiles computed by Fantuzzi et al. (2018, see figure 4), we choose

τ ′(z) :=

−1+
( z
δ

)1/s
=: η(z), for 0 6 z 6 δ,

ξ(z), for δ 6 z 6 1,
(4.1)

where δ < 1
2 , s > 0, and ξ(z) is a non-negative function to be specified later. With

ξ(z)= 0 and s→ 0 this choice yields the piecewise constant profiles already studied
by Hagstrom & Doering (2010) and Fantuzzi et al. (2018).

By expanding θ and w as Fourier series in the horizontal directions, using (2.3), and
noting that | fk(z)| =−fk(z) for 06 z6 1, it can be shown (Hagstrom & Doering 2010)
that the marginal stability condition (3.5) holds if and only if the quadratic form

Qτ
k{θ̂k} :=

∫ 1

0
[|θ̂ ′k(z)|

2
+ k2
|θ̂k(z)|2 + 2Ma τ ′(z) | fk(z)| θ̂k(z)θ̂k(1)] dz (4.2)
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is non-negative for all k> 0 and all real-valued functions θ̂k(z) subject to

θ̂k(0)= 0, θ̂ ′k(1)= 0. (4.3a,b)

Since Qτ
k{θ̂k} is homogeneous, we may assume without loss of generality that

θ̂k(1)> 0.
Using (4.1) and dropping the non-negative term k2

|θ̂k(z)|2 we obtain

Qτ
k{θ̂k}> ‖θ̂

′

k‖
2
2 + 2Ma θ̂k(1)

∫ δ

0
η(z)|fk(z)|θ̂k(z) dz+ 2Ma θ̂k(1)

∫ 1

δ

ξ(z)|fk(z)|θ̂k(z) dz.

(4.4)
The fundamental theorem of calculus, the BC (4.3) and the Cauchy–Schwarz
inequality imply

θ̂k(z)=
∫ z

0
θ̂ ′k(ζ ) dζ 6 ‖θ̂ ′k‖2

√
z, (4.5a)

θ̂k(z)= θ̂k(1)−
∫ 1

z
θ̂ ′k(ζ ) dζ > θ̂k(1)− ‖θ̂ ′k‖2

√
1− z. (4.5b)

Since the boundary value θ̂k(1) and the function ξ(z) are non-negative by assumption,
we can use these inequalities to bound

Qτ
k{θ̂k} > ‖θ̂

′

k‖
2
2 + 2Ma I0(ξ , k)θ̂k(1)2

− 2Ma θ̂k(1)‖θ̂ ′k‖2

[∫ δ

0
|η(z)fk(z)|

√
z dz+ I1/2(ξ , k)

]
, (4.6)

where we have introduced the notation

Iβ(ξ , k)=
∫ 1

δ

ξ(z)|fk(z)|(1− z)β dz. (4.7)

Let us now estimate the terms inside the square brackets in (4.6). For the integral
over (0, δ), we use estimate (2.5) with β = δ and the definition of η(z) from (4.1) to
obtain ∫ δ

0
|η(z)fk(z)|

√
z dz 6

∫ δ

0

∣∣∣∣−1+
( z
δ

)1/s
∣∣∣∣ 1

6
α(δ, k)z2√z dz

=
1
6
α(δ, k)

∫ δ

0
(z5/2
− δ−1/sz(1/s)+(5/2)) dz

=
2

21(2+ 7s)
α(δ, k)δ7/2. (4.8)

To bound I1/2(ξ , k), instead, we use the Cauchy–Schwarz inequality:

I1/2(ξ , k) =
∫ 1

δ

ξ(z)|fk(z)|
√

1− z dz

=

∫ 1

δ

√
ξ(z)|fk(z)|

√
ξ(z)|fk(z)|(1− z) dz
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6

(∫ 1

δ

ξ(z)|fk(z)| dz
)1/2 (∫ 1

δ

ξ(z)|fk(z)|(1− z) dz
)1/2

=

√
I0(ξ , k)

√
I1(ξ , k). (4.9)

Substituting these two estimates into (4.6) we arrive at

Qτ
k{θ̂k} > ‖θ̂

′

k‖
2
2 + 2Ma I0(ξ , k)θ̂k(1)2

− 2Ma θ̂k(1)‖θ̂ ′k‖2

[
2α(δ, k) δ7/2

21(2+ 7s)
+

√
I0(ξ , k)

√
I1(ξ , k)

]
. (4.10)

The right-hand side of this estimate is a quadratic form of type ax2
− 2bxy + cy2

with x=‖θ̂ ′k‖2 and y= θ̂k(1). Quadratic forms are non-negative when their discriminant
is negative, meaning |b|6

√
ac, so Qτ

k{θ̂k}> 0 for all admissible fields θ̂k if

Ma
(

2α(δ, k) δ7/2

21(2+ 7s)
+

√
I0(ξ , k)

√
I1(ξ , k)

)
6
√

2Ma I0(ξ , k). (4.11)

For simplicity, we rewrite this condition as

2α(δ, k)δ7/2

21(2+ 7s)
√

I0(ξ , k)
+

√
I1(ξ , k)6

√
2

Ma
. (4.12)

To prove a bound on the Nusselt number Nu we require inequality (4.12) to hold for
all k > 0. A sufficient condition for this is that ξ(z) and δ be chosen such that, for
some constant c ∈ (0, 1),

sup
k>0

√
I1(ξ , k)6 (1− c)

√
2

Ma
, (4.13)

sup
k>0

2α(δ, k)δ7/2

21(2+ 7s)
√

I0(ξ , k)
6 c

√
2

Ma
. (4.14)

Equivalently, after squaring both sides of each condition and rearranging,

sup
k>0

I1(ξ , k)6
2(1− c)2

Ma
, (4.15a)

δ7 6
441(2+ 7s)2c2

2Ma
× inf

k>0

I0(ξ , k)
α(δ, k)2

. (4.15b)

We will now show that (4.15a) and (4.15b) can be satisfied by a suitable choice
of ξ(z). Inspired by the numerically optimal background fields in Fantuzzi et al. (2018,
figure 4) we consider

ξ(z) :=


ωε2

(1− z)2
, for 1− γ 6 z 6 1− ε,

0, otherwise.
(4.16)

Here, ε, γ and ω are strictly positive parameters, to be determined as a function of
the Marangoni number Ma subject to the constraint ε < γ 6 1

2 .
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Upon combining this choice with the upper bound on | fk| in (2.6) and the
elementary inequality e−kε

− e−kγ 6 1 we can estimate

I1(ξ , k)6
kωε2

2

∫ 1−ε

1−γ
e−k(1−z) dz=

ωε2

2
(e−kε
− e−kγ )6

ωε2

2
. (4.17)

This estimate holds for all k, so we can bound the left-hand side of (4.15a) from
above as

sup
k>0

I1(ξ , k)6
ωε2

2
. (4.18)

To estimate the right-hand side of (4.15b) from below, instead, observe that the lower
bound on | fk| in (2.6) with β = 1− γ implies

I0(ξ , k)=
∫ 1−ε

1−γ
| fk(z)|

ωε2

(1− z)2
dz>

∫ 1−ε

1−γ

ωε2 | fk(1− γ )|
γ (1− z)

dz=
ωε2

γ
| fk(1− γ )| ln

(γ
ε

)
.

(4.19)
Thus,

inf
k>0

I0(ξ , k)
α(δ, k)2

> inf
k>0

ωε2 | fk(1− γ )|
γα(δ, k)2

ln
(γ
ε

)
. (4.20)

After substituting the expressions for | fk(1− γ )|=−fk(1−γ ) and α(δ, k) from (2.4)
and (2.5) into the right-hand side of the last inequality and rearranging, we conclude
from (4.18) and (4.20) that conditions (4.15a) and (4.15b) hold, respectively, if

ωε2 6
4(1− c)2

Ma
, (4.21a)

δ7 6
441
4Ma

(1− γ )ωε2(2+ 7s)2c2 ln
(γ
ε

)
ϕ(γ , δ), (4.21b)

where
ϕ(γ , δ) := inf

k>0

{h(k)h[k(1− γ )] − h(kγ )}[h(2k)− 1]
k6h(k)2h(kδ)2

. (4.22)

Observe that the right-hand side of (4.21b) is strictly positive because the function
z 7→ h(z) is increasing, so for all γ , δ ∈ [0, 1

2 ] the quantity ϕ(γ , δ) satisfies

0<ϕ
(

1
2 ,

1
2

)
6 ϕ

(
γ , 1

2

)
6 ϕ(γ , δ)6 ϕ(0, 0). (4.23)

The analysis we have just carried out shows that the background temperature field
τ(z) defined through (4.1) satisfies the marginal stability constraint (3.5) when ξ(z) is
as in (4.16), provided that (4.21a) and (4.21b) hold. Let us now turn the attention
to the bound on the Nusselt number produced by τ . Substituting (4.1) and (4.16)
into (3.6) gives

Nu−1 >
2

2+ s
δ −

ω2ε

3

(
1−

ε

γ

)(
6
ω
+ 1+

ε

γ
+
ε2

γ 2

)
. (4.24)

Maximising the right-hand side of (4.24) over δ, ε, γ , s, ω and c subject to (4.21a),
(4.21b) and the constraints δ < 1

2 , ε < γ 6 1
2 and 0 < c < 1 is hard analytically, but

can be done numerically. The results, plotted in figure 1, strongly suggest that the
optimal upper bound on Nu provable via (4.24), (4.21a) and (4.21b) is proportional
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FIGURE 1. (a) Bounds on Nu obtained with (4.24) for optimised δ, ε, γ , s, ω, c
(· · · · · ·, red), and with (4.29) for ε =Ma−1/2, s= 2

5 , c= 1
2 and either γ = 1

2 (——, red)
or γ = (ln Ma)−1 (– – –, red). Also plotted are the analytical bound Nu 6 0.838Ma2/7

by Hagstrom & Doering (2010) (– – –, black), the numerical bound by Fantuzzi et al.
(2018) (——, black), and DNS data by Boeck & Thess (2001) (×). (b,c) Optimised
boundary layers of τ ′ for Ma = 104. (d–i) Values of δ, ε, γ , ω, s and c that optimise
(4.24) subject to (4.15a), (4.15b), δ < 1

2 , ε < γ 6 1
2 and 0< c< 1, as a function of Ma.

to Ma2/7(ln Ma)−1/7 as Ma→∞, even though not all of the parameters δ, ε, γ , ω,
s and c exhibit a simple scaling behaviour. Optimisation of these parameters in the
limit of infinite Marangoni number is also not easy and will not be pursued in this
work. Instead, we prove that

Nu . Ma2/7(ln Ma)−1/7, as Ma→∞ (4.25)

if we set either γ = 1
2 or γ = (ln Ma)−1 (the latter gives a better prefactor) and

s= 2
5 , c= 1

2 , ε=Ma−1/2, ω= 1, (4.26a−d)

δ =

[(
126
5Ma

)2

(1− γ ) ln(γMa1/2)ϕ

(
γ ,

1
2

)]1/7

. (4.26e)

First, for simplicity we strengthen (4.21b) by estimating ϕ(γ , δ)>ϕ(γ , 1
2), cf. (4.23).

Then, it follows from (4.24) that δ should be taken as large as the resulting inequality
allows. Upon insisting that

ωε2
=

4(1− c)2

Ma
(4.27)
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New bounds for infinite-Pr Bénard–Marangoni convection

at all Ma, which is the case for the optimal parameters obtained numerically, we find

δ =

[
441
Ma2

c2(1− c)2(2+ 7s)2(1− γ ) ln
(γ
ε

)
ϕ

(
γ ,

1
2

)]1/7

. (4.28)

Substituting this expression back into (4.24) and using (4.27) to eliminate ω yields

Nu−1 > A(γ , ε, c, s)− B(γ , ε, c), (4.29)

where

A(γ , ε, c, s) :=
2

2+ s

[
441
Ma2

c2(1−c)2(2+ 7s)2(1−γ ) ln
(γ
ε

)
ϕ

(
γ ,

1
2

)]1/7

, (4.30)

B(γ , ε, c) :=
16(1− c)4

3Ma2ε3

(
1−

ε

γ

)(
3Ma ε2

2(1− c)2
+ 1+

ε

γ
+
ε2

γ 2

)
. (4.31)

To proceed, we make two suboptimal but simple choices. First, to simplify the
dependence of B(γ , ε, c) on Ma we set ε = Ma−1/2. This gives ω = 4(1 − c)2

by (4.27). Second, motivated by our computational results we assume that γ /ε =
γMa1/2

→∞ as Ma tends to infinity. Then, B(γ ,Ma−1/2, c) decays to zero faster than
A(γ ,Ma−1/2, c, s) as Ma is raised and we conclude from (4.29) that, asymptotically,
Nu 6 1/A(γ , Ma−1/2, c, s). Minimising this asymptotic bound over s and c simply
requires maximising A(γ ,Ma−1/2, c, s). This is straightforward and yields s = 2

5 and
c = 1

2 , the same values approached by the optimal parameters in figure 1(h,i). With
these values, equation (4.28) reduces to the value in (4.26e) and the asymptotic bound
on Nu becomes

Nu 6
6
5

[
1262

25
1

Ma2
(1− γ ) ln(γMa1/2)ϕ

(
γ ,

1
2

)]−1/7

, as Ma→∞. (4.32)

Minimising this expression over γ is not possible analytically, but is also not
necessary in order to prove (4.25). For instance, simply setting γ = 1

2 gives

Nu 6
6
5

[
1262

100
ϕ

(
1
2
,

1
2

)]−1/7

×
Ma2/7

(ln Ma)1/7
, as Ma→∞. (4.33)

Moreover, in light of (4.23) the prefactor can be improved by letting γ → 0 as
Ma→∞, which asymptotically optimises the term (1 − γ )ϕ(γ , 1

2) in (4.32). The
decay of γ must be sufficiently slow to ensure that γMa1/2

→∞, as assumed above.
With γ = (ln Ma)−1, for instance,

Nu 6
6
5

[
1262

50
ϕ

(
0,

1
2

)]−1/7

×
Ma2/7

(ln Ma)1/7
, as Ma→∞. (4.34)

The exact bounds on Nu obtained from (4.29) at finite Ma for ε=Ma−1/2, c= 1
2 , s= 2

5
and either γ = 1

2 or γ = (ln Ma)−1 are plotted in figure 1(a).
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5. Conclusion

In this paper we have derived a new rigorous bound for the Nusselt number
in Pearson’s model of Bénard–Marangoni convection at infinite Prandtl number.
Specifically, we have proved that Nu . Ma2/7(ln Ma)−1/7 at asymptotically high Ma,
thereby refining a pure power-law bound with exponent 2/7 by Hagstrom & Doering
(2010). The quantitative improvement on this previous result is not large for realistic
values of the Marangoni number, but our logarithmic correction is significant for two
reasons.

First, its proof relies on a subtle balance between the width of the bottom boundary
layer of our background temperature field, which drives the asymptotic scaling of Nu,
and the stabilising effect – with respect to the marginal stability constraint (3.5) –
of a thin layer near the fluid’s surface where the temperature increases. Qualitatively
similar layers characterise the mean vertical temperature profiles observed in DNS by
Boeck & Thess (2001, figure 2) and their coupling underpins the phenomenological
scaling theory proposed by those authors. It is therefore tempting to conjecture that
the heat transport in physically realised flows indeed depends on a subtle interplay
between the thermal boundary layers. In order to test this hypothesis thoroughly, it
would be desirable to perform numerical simulations at higher Marangoni numbers
than those considered by Boeck & Thess (2001). Further DNS would also enable one
to check if our rigorous bound is sharp and if the assumptions in Boeck & Thess’
scaling argument (most notably, the stability of simple steady convection rolls) should
be revised.

Second, our result is the first upper bound proved with the background method that
has a logarithmic correction with negative exponent. This is reminiscent of scaling
laws obtained for wall-bounded flows through ‘mixing length’ turbulent theories
(see, for example, chapter 3 in Doering & Gibbon (1995)). While we are not aware
of any such theories being applied to Bénard–Marangoni convection, they have
historically motivated the development of rigorous upper-bounding theory in general,
and the background method in particular (Doering & Constantin 1992). In the future,
it would be interesting to see if bounds with logarithmic corrections with negative
exponent are provable for other flows, starting with extensions of the basic model
considered in this work to more general types of thermal boundary conditions (see,
for example, Pearson (1958) and Fantuzzi & Wynn (2017)).

Declaration of interests

The authors report no conflict of interest.

Appendix A. Estimates on fk(z)

For the lower bound on fk(z) in (2.6), observe that the functions h(kz) and
h[k(1 − z)] are, respectively, increasing and decreasing on [β, 1] for any fixed
k> 0. This means that the function |fk(z)|(1− z)−1 increases on [β, 1], which yields
the lower bound.

For the upper bound in (2.6), instead, rewrite (2.4) as

| fk(z)| =
k(1− z)

2
e−k(1−z)gk(z) (A 1)

with
gk(z) :=

h(k)h(kz)− h(k(1− z))
h(2k)− 1

kzek(1−z). (A 2)
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Differentiation gives

g′k(z)=
e2k(1−z)`k(z)

2(h(2k)− 1)(1− z)2
, (A 3)

with `k(z) := e−2k(e2kz
− (1 − z)2) + z2(1 − 2k) + 2z(k − 1). Now, `k(0) = 0 = `k(1)

and `′k(0) > 0. Further, `′k is the sum of a convex and a linear function, meaning that
`k has at most two stationary points. Since `′k(1)= 0, there is at most one stationary
point in 0 < z < 1. Thus, both `k(z) > 0 and g′k(z) > 0 for z ∈ [0, 1]. From this we
conclude that

gk(z)6 gk(1)= k[h(k)2 − 1][h(2k)− 1]−1 6 1, (A 4)

which, by (A 1), proves the upper bound in (2.6).
Finally, to show (2.5), use the definition of h and the inequalities 1 6 x coth x 6

1+ (x2/3), which are valid for x > 0, to obtain

(z− 1)
h[k(1− z)]
h(k)h(kz)

= kz[coth(k)− coth(kz)]6 z
(

1+
1
3

k2

)
− 1. (A 5)

Combining this estimate with (2.4) and the identity | fk| =−fk gives

| fk(z)|6
1
2

k2z
h(k)h(kz)
h(2k)− 1

[
1− z+ z

(
1+

1
3

k2

)
− 1
]
=

1
6

k4 h(k)h(kz)
h(2k)− 1

z2. (A 6)

Since h is increasing, so h(kz) 6 h(kβ) for all z ∈ [0, β], the upper bound (2.5)
follows.
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