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Several aspects of animal embryo cryopreservation:
anti-freeze protein (AFP) as a potential cryoprotectant
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Summary

With the development of embryo technologies, such as in vitro fertilization, cloning and transgenesis,
cryopreservation of mammalian gametes and embryos has acquired a particular interest. Despite a certain
success, various cryopreservation techniques often cause significant morphological and biochemical
alterations, which lead to the disruption of cell organelles, cytoskeleton damages, cell death and loss
of embryo viability. Ultrastructural studies confirm high sensitivity of the cell membrane and organelle
membrane to freezing and thawing. It was found that many substances with low molecular weights
have a protective action against cold-induced damage. In this concern, an anti-freeze protein (AFP)
and anti-freeze glycoproteins (AFGPs), which occur at extremely high concentrations in fish that live in
Arctic waters and protect them against freezing, may be of potential interest for cryostorage of animal
embryos at ultra-low temperatures. This mini-review briefly describes several models of AFP/AFGP
action to preserve cells against chilling-induced damages and indicates several ways to improve post-
thaw developmental potential of the embryo.
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Introduction

Embryo cryopreservation has become an essential com-
ponent of artificial reproductive technologies enabling
storage of valuable germplasm produced at in vitro
fertilization programme (in vitro embryo production),
intracytoplasmic sperm injection–ICSI, transgenesis
and cloning. Embryo cryopreservation also provides a
means to store excessive embryos when the yield from
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superovulation is larger than the number of available
recipients. Moreover, this approach is effective to
preserve embryos from exotic, rare or endangered
species, to protect valuable animal lines from potential
loss due to environmental disasters, genetic drift and
infectious diseases (Landel, 2005; Moore & Bonilla,
2006).

There are six steps to successful embryo cryopreser-
vation: exposure to cryoprotectant; cooling to subzero
temperatures; storage; thawing or warming; removal
of cryoprotectant; and return to a physiological
environment (Liebermann et al., 2003). At present two
techniques, conventional slow cooling/freezing and
vitrification, are used. The time required to freeze
embryos using the classical technique of slow freezing
varies from 90 min to 5 h, depending upon freezing
protocol. Freezing involves precipitation of water to
form ice, which causes separation of water from diluted
substances. The resulting high concentration of diluted
substances, as well as intracellular ice formation, may
damage the cell. Despite the balance between these two
factors during slow freezing, ice formation, osmotic
and cold influence may cause cracking of the zona
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pellucida, disintegration of blastomeres and alterations
in cytoskeleton.

Numerous studies have been directed to reduce
freezing times and eliminate the expensive accessories
required for conventional slow freezing. One of the
ways to avoid damage caused by ice crystals is the
use of the vitrification technique. This freezing method
is an alternative to classical freezing with equilibration.
This method was first described in 1985 with mouse
embryos (Rall & Fahy, 1985) and 8 years later it
was successfully repeated by Ali & Shelton (1993).
Martino et al. (1996) indicated that bovine oocytes
vitrified at high-rate cooling were able to develop
to blastocysts. Successful vitrification of bovine in
vitro produced embryos was described following
the invention of the ‘open-pulled straws’ (OPS)
method by Vajta et al. (1997). Using this technique,
live offspring have been produced consistently from
cryopreserved porcine blastocysts (Berthelot et al.,
2000; Beebe et al., 2002). Rabbit embryos vitrified by
this method showed a dramatic decrease in post-
thaw hatching rate (Popelkova et al., 2005). Following
progress in assisted reproduction technology in 1999–
2000, vitrification protocols were also successfully
applied to freeze human oocytes (Kuleshova et al.,
1999; Yoon et al., 2000). Although this method has
existed for about three decades it still produces
variable results. Obviously, success is dependent
upon several factors that include embryo stage and
quality, embryo species and derivation, cooling and
warming rates, culture conditions and others. Efforts
to optimize these conditions will further enhance
survival and future developmental potential of the
embryo.

Factors affecting cryopreservation outcomes

The factors that cause stage-specific sensitivity to
cold shock in embryos are unknown, although
ultrastructural changes in cell structure have been
described (Palasz et al., 1997; Vajta et al., 1997; Fair
et al., 2001; Visintin et al., 2002; Cocero et al., 2002;
Pivko et al., 2003; Popelkova et al., 2005). Based on
previous knowledge and the study of Vajta et al. (1997),
it is possible to predict the existence of mechanisms
at 24 h after vitrification that leads to the repair of
cellular structures, for example intercellular junctions,
that are responsible for compaction of the morula and
formation of the blastocyst.

Some of the factors that affect the extent of cellular
damages and survival of frozen embryos are: the type
of the medium; cryoprotectant; rate of cooling and
temperature level at ice crystal formation; duration
of cryopreservation procedure; species; developmental

stage of the embryo; the system of embryo production;
and preparation of recipients (Fabian et al., 2005).
In particular, rabbit embryos at the morula stage
(Silvestre et al., 2003; Naik et al., 2005; Papis
et al., 2005), blastocysts (Lopez-Bejar & Lopez-Gatius,
2002) and zona-free expanded or hatching blastocysts
(Cervera & Garcia-Ximenez, 2003; Popelková et al.,
2008) were cryopreserved; higher rates of development
were achieved when blastocyst-stage embryos were
used.

The possible cause of reduced embryo viability
during freezing–thawing is the disruption of cell
organelles, in particular the cytoskeleton, as a result
of intracellular ice formation (Dobrinsky, 1996). It has
been demonstrated that cryopreservation of equine
(Tharasanit et al. 2005) or rabbit (Makarevich et al., 2008)
embryos leads to actin cytoskeleton disruption and cell
death. The viability of frozen–thawed porcine embryos
was improved when cytoskeletal damage was reduced
after addition of the actin polymerization inhibitor
cytochalasin B (Dobrinsky et al., 2000). Modification
of the actin cytoskeleton and injury to other organelles
may affect signal transduction and lead to programmed
cell death or apoptosis. Cryopreservation was found to
cause an increase in the apoptotic rate in post-thaw
bovine (Baguisi et al., 1999; Marquez-Alvarado et al.,
2004; Park et al., 2006), porcine (Fabian et al., 2005) and
mouse (Ahn et al., 2002) embryos.

Survival rate after cryopreservation may also be
decreased in micromanipulated embryos (Popelkova
et al., 2005; Makarevich et al., 2008) due to
their high sensitivity to external influences, when
compared with intact embryos. Popelkova et al. (2005)
described severe degenerative alterations in cellular
organelles, detected on the ultrastructural level,
in rabbit gene-microinjected OPS-vitrified embryos
when the cryoprotectants ethylene glycol (EG) and
dimethylsulfoxide (DMSO) were used. The damage
was attributed not to the microinjection procedure
itself but rather to a direct influence of the vitrification
procedure. Although this vitrification protocol was
used successfully on bovine embryos (Vajta et al., 1997,
1998), it was found that rabbit embryos vitrified by
this protocol showed a dramatic decrease in post-thaw
hatching rate (Popelkova et al., 2005).

A vitrification technique that used ethylene glycol,
Ficoll 70 and sucrose in the vitrification medium (EFS
solution) was initially described by Kasai et al. (1992)
and Gajda (1996) and was modified by Papis et al.
(2005). Results for this vitrification technique showed
that most warmed rabbit embryos survived post-thaw,
71% of embryos developed to the blastocyst stage and
23.5% were developed to term (Papis et al., 2005).
Subsequently this technique was successfully used
for the cryopreservation of rabbit gene-microinjected
embryos (Makarevich et al., 2008).
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Cryoprotectants, sugars and macromolecules

The most commonly used medium for vitrification is
phosphate-buffered saline (PBS). Cryoprotective sub-
stances are necessary for successful cryostorage of liv-
ing cells. Cryoprotectants are divided into two groups:

(i) penetrating: glycerol, ethylene glycol, DMSO,
propanediol;

(ii) non-penetrating: saccharides, proteins and poly-
mers (Ficoll, polyethylene glycol [PEG]).

The main components of vitrification solutions are cell
membrane-penetrating substances. These components
are hydrophilic with a strong dehydrating action and
have the ability to reduce the freezing point of solution,
from −10 ◦C to −35 ◦C or even up to −45 ◦C, and to
delay spontaneous ice formation. A freezing point is de-
pendent upon cryoprotectant concentration as well as
on the speed of freezing. At slow freezing the cells
have a longer time for rehydration. Cell membrane-
penetrating cryoprotectant is able to bind with
intracellular water, therefore the water withdraws from
the cell very slowly. Therefore, the critical intracellular
concentration of minerals is reached at lower values.

Test results showed that ethylene glycol and then
glycerol were the least toxic of several cryoprotective
substances. In particular, ethylene glycol appears to
have a low toxic effect on mouse embryos (Ali &
Shelton, 1993) and a rapid diffusion coupled with
a quick equilibration of ethylene glycol into the cell
through the zona pellucida and the cellular membrane
(Emiliani et al., 2000). From this reason ethylene glycol
is more often used for the vitrification. Generally, the
best cryoprotectants are those that penetrate cells faster,
because they reduce exposure time and minimize cell
shrinkage. Moreover, these substances are able diffuse
more quickly from the cells; the cells will return to their
initial volume faster and will be protected from osmotic
injury.

It was found that many substances with low
molecular weight have protective actions against cold-
induced damage. Therefore, many researchers have
compared the action of various cryoprotective agents
on mammalian embryos. Hasler et al. (1997) in their
extensive study reported both the development of
68% embryos to hatching following the freezing of
blastocysts in 1.4 M glycerol or a rate of 62% of embryos
after freezing in 1.5 M ethylene glycol.

High-molecular-weight additives, such as disacchar-
ides (sucrose, trehalose and raffinose), do not penetrate
across cell membranes but substantially decrease the
concentration of intracellular cryoprotectants needed
for successful cryostorage and therefore minimize their
toxic effect. Saccharide solution may also serve as an
osmotic buffer during thawing, when cryoprotectant
is toxic to the cells. On thawing, water enters the cell

faster than the cryoprotectant diffuses out, therefore
fast flushing the vitrification solution out of the cells
is necessary. Excessive water flow may lead to damage
due to osmotic swelling. Sucrose acts as an osmotic
buffer by reducing osmotic shock. Sucrose at a high
concentration (i.e. 1 mol/l) is not toxic to embryos
or oocytes (Kuleshova et al., 1999); sucrose cannot
completely preserve the cells against swelling but it can
reduce the speed and extent (Lieberman et al., 2003).
Injection of trehalose into the oocyte’s cytoplasm has
been shown to be a promising approach and results
in increased survival of oocytes after thawing (Eroglu
et al., 2002). Trehalose rapidly exits the cytoplasm of the
developing embryo and does not affect developmental
capacity negatively (Eroglu et al., 2005).

Macromolecules, such as PEG, polyvinylpyrrolidone
(PVP), Ficoll, dextran and polyvinyl alcohol, modify
the properties of the vitrification solution (Asada
et al., 2002). These polymers are generally of low
toxicity and protect the embryos against cryodamage
by reducing mechanical stress; they affect the viscosity
of the vitrification solutions and lower the toxicity of
cryoprotectants by reducing the concentration required
to reach vitrification itself. These polymers form
viscous matter enclosed the embryo and also prevent
crystallization during vitrification and warming. The
most commonly used polymer among those mentioned
above is Ficoll, mainly in combination with ethylene
glycol and sucrose (Kasai et al., 1990).

Various protein additives, including egg yolk, were
also tested but were not implemented for wide
use due to the resulting optically dense appearance
and difficulties in microscopical manipulations.
Particularly in cattle, serum additives, bovine serum
albumin (BSA)-based preparations, recombinant BSA
and hyaluronan are widely used supplements for
vitrification media (Lane et al., 2003).

Many authors (Bautista & Kanagava, 1998; Sommer-
feldt & Niemann, 1999) have reported that embryos are
highly permeable following the use of cryoprotective
agents (particularly ethylene glycol) that are not toxic
at various concentrations. Freezing media may contain
proteins, serum or other biological macromolecules
or synthetic ones such as PEG, polyvinylpyrrolidone
or Ficoll. One of the disadvantages of naturally
derived macromolecules is that they act as carriers for
many substances such as steroids, fatty acids, citrates.
Other macromolecules, such as hyaluronan or glucos-
aminoglycans, are also used as serum substituents for
embryo freezing (Palasz et al., 1993) and several of these
are used for embryo culture.

Anti-freeze protein

It has been known for the past three decades that fish
that live in Arctic waters have developed mechanisms
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that protect themselves against freezing. Scholander
et al. (1957) found that these fish contain a factor in their
blood that prevents freezing. De Vries & Wohlschlag
(1969) found that this factor is a protein that occurs
at extremely high concentrations (35 g/l). These are
proteins called anti-freeze proteins (AFPs) and anti-
freeze glycoproteins (AFGPs) and are present in tissues
and blood of fish (Yeh & Feeney, 1996). Anti-freeze
proteins have been found not only in animals but also in
plants. Four groups of these proteins exist, one of which
is glycosylated (Yeh & Feeney, 1996). Glycosylated
protein or AFGPs consists of repeating tripeptides Ala–
Ala–Thr with a disaccharide on each Thr. To date
eight fractions of AFGPs have been identified, all have
molecular weight in the range 2.6–33.7 kDa. Fractions
7 and 8 are the smallest and contain a Pro that follows
Thr and represents about 75% of the total AFPG in
the serum. AFP type I consists of 60% alanine with
helical structures of 4.3 and 3.3 kDa in size. Type II
is rich in cysteine and is 14 kDa. Type III has only
66 amino acids and is rich neither in alanine nor in
cysteine.

Recently, AFP function was associated with freezing
only, as it was known that AFPs can decrease the
freezing temperature of solutions, inhibit recrystalliza-
tion during thawing or bound to an ice nucleator (Yeh
& Feeney, 1996). In the 1990s, Rubinsky et al. (1990)
and Arav et al. (1994) discovered a new property of
these proteins when working with porcine oocytes,
which are very susceptible to cold damage. When
they put the oocytes in the presence of AFGPs in the
refrigerator the oocytes were still intact the following
day and after rewarming they appeared normal.
Further studies showed that oocytes, if cooled to 4 ◦C
without the addition of AFGPs, were unable to retain
a normal electric membrane potential after thawing.
However, when AFGP was added before cooling, 6.5%
of rewarmed cells exhibited an electric potential that
was comparable with that of fresh oocytes (Rubinski
et al., 1990). The mechanism of cell protection was
described 2 years later. Using patch-clamp technique
on porcine granulosa cells it was found that a low
concentration of AFP (0.5 mg/ml) blocks K+ and Ca2+

channels during cooling, whereas other proteins, such
as BSA or soybean trypsin inhibitor, do not block these
ion channels (Arav et al., 1994).

After these primary results several controversial
reports appeared in the literature. For example,
AFPGs did not increase the vitality of rat heart after
hypothermia or freezing (Wang et al., 1994). Rat sperm,
which are known to be sensitive to cooling, were not
stabilized following cooling to 5 ◦C and subsequent
warming even in the presence of AFPs. Thylakoid
membranes were stabilized after the addition of AFPs
and AFGP during freezing and also when stored at 0 ◦C
for 7 days (Hincha et al., 1993). The many unresolved

aspects that arose from these findings were explained
after finding the mechanism for AFP action.

Mechanisms of AFP/AFGP action

Several molecular models for the mechanism of AFP
and ice binding were reported (see review by Madura
et al., 2000). From these schemes it is obvious, that the
specific forces involved in the AFP interaction with ice
are still not fully known. However it is clear that the
specific ability of AFPs to bind to ice is the property
that distinguishes AFPs from non-AFPs. This property
is responsible for the differences observed in the levels
of AFP activity.

Compared with many other solutions, AFPs
suppress the temperature of ice crystal formation
kinetically thus preventing thermal shock. This
property enables fish to survive in water temperatures
lower than the freezing point of their blood or other
body fluids by modifying or preventing ice crystal
growth. This process protects cell membranes against
cold-induced injury (Yeh & Feeney, 1996; Madura
et al., 2000). These ubiquitous properties are interesting
as a potential medical application, as well as in areas
in which long-term storage of biological material is
needed (Fletcher et al., 1999).

Rubinski et al. (1990) showed that AFPs protect
cell membranes following hypothermic stress. They
found that bovine and porcine oocytes maintained
their membrane potentials after chilling to 4 ◦C and
warming in the presence of AFPs. This protection was
due to the interaction between anti-freeze peptides
and integral cell membrane proteins. In an attempt
to understand the different properties of AFGPs, a
series of studies was performed on liposomes as a
model for the effects of lipid-phase transitions. It was
concluded that the stabilizing effects of AFGPs on intact
cells during chilling, reported in earlier studies (Shaw
et al., 2000; Sugimoto et al., 1996), were perhaps due to
non-specific effects on the lipid components of native
membranes (Lee et al., 2000; Kagabu et al., 2000).

Use of AFPs for cryostorage of animal embryos

AFPs were mostly used as cryoprotective agents
in fish embryo cryopreservation. Anti-freeze protein
significantly improved chilling resistance at 0 ◦C,
particularly in 2-cell microinjected zebrafish embryos
(Robles et al., 2007). The authors stated that AFPs
protect cellular structures by stabilizing cellular
membranes. To improve cryoprotection of the cellular
compartment of zebrafish embryos, AFP type I and
AFP type III were incorporated into the embryo either
by microinjection (Robles et al., 2007), laser pulse (Kohli
et al., 2007) or by a non-invasive method of embryo
incubation in medium containing AFPs (Martinez-
Paramo et al., 2008).
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In mammalian embryos, AFPs were tested for
cryopreservation of equine embryos either given alone
or together with glycerol in medium; no difference was
observed between both groups (Lagneaux et al., 1997).
Sheep embryos that had been cooled and stored at
4 ◦C in the presence of AFPs, showed similar embryo
survival and pregnancy rates as fresh embryos (Baguisi
et al., 1997).

Available reports on AFP usage in mammalian
embryo preservation mainly describe its use for the
storage in chilling conditions (0–4 ◦C), these proteins
have, as yet, no application for ultra-low freezing
(−196 ◦C, in liquid nitrogen). In our opinion, this
application is worthy of attention from researchers who
are investigate AFPs’ cryoprotective properties. AFP is
a potential candidate as a cryoprotective substance.

Ultrastructural morphology of cryopreserved cells

Although huge efforts have been made to improve
freezing methods, numerous studies have shown
destruction of cytoplasmic membrane and cell
organelles in embryos frozen both by classical method
or vitrification. Sensitivity to freezing in embryos
of most animal species is tightly dependent on the
presence of vesicular inclusions in embryoblastic cells.
Bovine embryos have an abundance of such inclusions
at early stages of development, and the loss of
such vesicles in blastocyst cells results in decreased
sensitivity to freezing (Pivko et al., 1998).

Cryopreserved blastocysts usually display a collapse
of the blastocoele cavity and cell swelling, a general
distension or shrinkage of mitochondria and massive
increase in the amount of vesicles, vacuoles and
secondary lysosomes. Some embryos are able to
recover, whereas the remaining degenerate (Fabian
et al., 2005).

The majority of organelles in early embryos are
formed by membranes. The endoplasmic reticulum is
an organelle formed by fine pipes and flat cisternae the
walls of which form membranes. The Golgi apparatus
is also formed by flat cisternae. Mitochondria are
formed by external and internal membranes and
cristae. Cytoplasmic membrane and other membranes
of organelles are present in trophoblastic and
embryoblastic cells of early embryos. Results from
ultrastructural studies confirm the high sensitivity of
cytoplasmic membrane and organelle membrane to
the influence of freezing and thawing. It is assumed
that electron microscopic analysis is required for the
quality evaluation of early embryos, which are more
sensitive to cold-induced damage than blastocysts but
hardly ever evaluated by stereomicroscope. The three
most frequently appearing ultrastructural alterations
in cellular organelles and cytoplasmic structure are
a waving of cytoplasmic membrane, formation of

enlargements and vesicles orientated to widened space
(Pivko et al., 2003). Microvilli of trophoblastic cell
surface have a disordered configuration with the
occurrence of membrane vesicles. Detritus of damaged
cell parts accumulates in the perivitelline space more
often than in the blastocoele cavity. Desmosomal tight
junctions between trophoblastic cells appear without
changes and nexus-like junctions appear undamaged,
but they are smaller and less expressed. The cytoplasm
of trophoblastic and embryoblastic cells after freezing–
thawing is characterized by an increased number
of vacuoles and vesicles with electron-dense matter,
vacuolated dark mitochondria, widened cisternae of
the Golgi apparatus and granulated endoplasmatic
reticulum. Lipid droplets appear undamaged, but the
surrounding endoplasmatic reticulum membranes are
often widened. Cell nuclei are often vacuolated and
the nuclear membrane is expanded at several sites
(Pivko et al., 2003). Cells respond to cold shock more
often due to alterations in structure of mitochondria
and cytoplasmic membrane. Part of the mitochondrion
appears distended, resulting in electrolucent areas in
the mitochondrial matrix, whereas other areas are
shrunken and display increased electron density. In
many cases, the smooth endoplasmic reticulum is
also swollen (Fabian et al., 2005). The organelles in
general and cells of cryopreserved embryos react by
either distension or shrinkage, which, in the case of
whole cells (at least of a proportion of them), results
in degeneration. Some of these degenerated cells are
extruded into the perivitelline space or blastocoele
(Vajta et al., 1997; Fabian et al., 2005).

Several directions to improve post-thaw embryo
survival

Cold shock-induced damage may be associated with
changes in membrane permeability and cellular
microfilament structure (Mavrides & Morroll, 2005).
Therefore, the artificial stabilization of cytoskeletal
microfilaments may be a tool to improve survival of
post-thaw embryos. For this purpose the addition of
cytochalasin B to embryos prior to vitrification was
used in porcine (Dobrinsky et al., 2000), mouse (Chen
et al., 2005) or equine (Tharasanit et al., 2005) blastocysts.
However, this step was useful only in porcine embryos,
whereas in mouse embryos cytochalasin B provided no
benefit for improving post-warming survival; in equine
embryos cytochalasin B reduced post-warming cell
death, but depolymerization of actin filaments was not
reversed within 6 h of culture, compromising embryo
survival (Tharasanit et al., 2005).

The dehydration of blastocyst stage embryos at
vitrification may be impaired due to a difficulty with
cryoprotectants to permeate the blastocoelic cavity,
therefore increasing ice crystal formation. Therefore,
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another approach to improve post-thaw embryo
developmental potential may be the artificial reduction
of blastocoelic fluid when osmotic shock, permeability
and ice crystal formation can be reduced (Moore
& Bonilla, 2006). Thus, microsuction of blastocoelic
fluid prior to vitrification improved post-warming
survival, implantation and pregnancy rates in human
(Vanderzwalmen et al., 2002; Son et al., 2003) and mouse
(Chen et al., 2005) embryos.

Recently, Moreira da Silva & Metelo (2005) reported
that vitrification significantly reduced pore size and
pore number of the zona pellucida of bovine embryos.
Moreover, pore size following vitrification (73%) was
more substantially reduced than in conventionally slow
cooled embryos (46%). According to above authors, this
factor may inhibit nutrient exchange in culture and also
the ability of embryos to hatch. Furthermore, it was
observed for mouse embryos, that 0.7 M sucrose can
cause zona hardening (Vincent et al., 1991). Therefore,
further optimalization of culture conditions and/or
vitrification solution may help to solve these problems.

Vitrification has become useful for storage of
micromanipulated embryos. Thus, Nguyen et al.
(2000) demonstrated that cloned embryos were more
sensitive to cryopreservation and successfully vitrified
using a lower concentration of ethylene glycol. This
factor may be due to the greater access of the
cryoprotectant caused by hole formation in the zona
pellucida of micromanipulated embryos. Makarevich
et al. (2008) reported that micromanipulated transgenic
rabbit embryos vitrified in vitrification medium that
contained ethylene glycol and Ficoll 70 showed
higher survival rates than those vitrified in medium
containing ethylene glycol and DMSO. Therefore,
efforts in improving cryopreservation protocols may
be important to enhance the survival rate of
micromanipulated embryos.

Conclusion

Cryostorage, i.e. freezing or vitrification of mammalian
embryos, has a real significance in embryo production
using the methods of in vitro fertilization, embryonal
and somatic cloning, chimeric and transgenic embryo
formation or the preservation of endangered animal
species. In farm animals, cryostorage is reasonable in
order to create a bank of embryos or spermatozoa
from outstanding individuals or endangered species.
In human medicine, cryopreservation of gametes is an
integral part in the function of assisted reproduction
centres.

Although great progress has been achieved in the
area of structural characterization and properties of
AFPS and AFGPs, the molecular mechanisms behind

inhibiting ice growth are still not completely clear.
Common properties of AFPs and AFGPs, such as an
ability to alter the ice formation process, to inhibit
re-crystallization and to protect cell membranes, may
be used in various processes associated with low
temperatures. Both AFGPs and AFPs exhibit a number
of unique properties that protect biological systems
in vitro: the ability to change the normal growth
habit of ice, the capacity to inhibit re-crystallization
and to protect the cell membranes. These unique
abilities have been tested for potential application in
medicine, biotechnology and food industry. Outcomes
of these tests indicate a potential possibility to use
AFPs in cryosurgery, increasing the destruction of
solid tumours through mechanical damage to cells
caused by bi-pyramidal ice crystals or as potential food
additives that inhibit the formation of large ice crystals
in frozen foods. Moreover, these AFPs may be useful in
veterinary and agricultural practice.

In recent years, a certain success in embryo
survival following vitrification was reached in many
animal species. Nevertheless, further optimization of
culture conditions for in vitro embryo production,
both prior to cryopreservation and post-warming, as
well as development of reliable vitrification protocols
are essential to improve pregnancy rates and the
production of viable offspring.
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