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We consider a modulated fluid system with a finite state-space Markov dhan
modulating process and general state-dependent net input\Waederive differ-
ential equations for the transient and the stationary distributiongfl,), whereW,

is the content procesand the corresponding Laplace transforms with respect to
time. Moreover we study the level hitting times &. Our results lead to explicit
formulas in the case of two modulating states

1. INTRODUCTION

We consider a Markov-modulated fluid model with content prod&'ss {W,|t =

0} and modulating procesk= {J;|t = 0}, which is a right-continuous irreducible
continuous-time Markov chain with state spdde...,n} and rate transition ma-
trix Q = (gy). If ) =i, the state-dependenetinput rate at time is r; (W). We
suppose that the rate functiongy) are piecewise continuous and0) = 0. Let

C = w be the capacityFor eachi, the functionr;(-) is either everywhere positive
or everywhere negative oi®,C); that is for each statethe process is either in-
creasing or decreasinghis is done in order to avoid the situation where the
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process remains constant on any positive intemiareby ensuring that 0 ar@
can be the only possible atoms of the steady-state distrihutidhe caseC < oo,
we assume that;(C) = 0 for those indices for whichr;(-) > 0 on(0,C), and
ri(C) =r;(C—)if r;(-) <0 on(0,C). Thus during a time interval in whicld; =i,
the process\, follows a deterministic path according to the equat®n /dt =
ri(W), as long asw; stays in(0,C). Let 7;(t) = P(J = i), which is of course
equal to[ 7;(0)e?'];, andq, = —q;.
In this article we determine the following

(a) the transient distribution di, J;) [i.e., the functionp(i, y,t) = P(W, =<y,
J=1)]

(b) the stationary distribution diW\, J,), if it exists

(c) the distribution of the hitting time, = inf{t = 0|W, = x}.

The solutions fofa) and(c) are in terms of systems of differential equatipwbich
sometimes become simpler by considering certain related Laplace transtdisns
Because finding the distribution functions(@ or (c) is tantamount to solving the
corresponding differential equatigrmur results indicate to what extent closed-form
solutions are possibl&or a two-state modulating Markov chaime obtain several
explicit solutions

The literature on fluid models focuses on steady-state results in the case of
linear increase or decrease under any modulating state and an infinite Boferg
Perry and van der Duyn Schoutégd] have presented a detailed discussion of the
history of the subjec¢tKulkarni [12] has given a surveyElwalid and Mitra[8]
considered a system with piecewise constant rates and characterized the stationary
distribution of (W, J;). For corresponding nonmodulated storage processes with a
pure jump input process and a general release rate see Harrison and R@$nick
and Brockwel] Resnick and Tweedi¢5]. Non-Markovian fluid models were stud-
ied by among othersChen and Yad6], Kella and Whitt[11], and Boxma et al
[4]. These articles establish connections to ordinary queues with instantaneous
inputs Using a general point process approa€hspi Kella, and Perry{10] con-
sidered a fluid “production” process with on and off times forming an alternating
renewal process and state-dependent increase and decrease rates while the ma-
chine is on or off respectivelyRelated steady-state results or/ofi production
processes were given by Perry and Po$i&y16]. Boxma et al[4] derived sev-
eral exact results for a fluid system with constant rates governed by a three-state
semi-Markov processn Boxma Kella, and Perry3] this model was extended to
more than three modulation state@th a general release rate for one state with
exponential sojourn time and a linear increase for the oftileesstationary distri-
bution of the content is shown to decompose into the stationary distributions of
some clearing process and some darhich are then further analyze8tability
results for arbitrary nondecreasing input processes and general modulation struc-
ture can be found in Asmussen and Kglbg.
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2. THE DISTRIBUTION OF (W;, J;)

We first considep(i, y, t). Let us assume for a moment that the initial distribution is
absolutely continuou§hen the measure(\W, € dy, J; = j) has a density for any
andj. By the standard arguments for the forward equation

p(j,y,t+e&) =1 —qge)p(jy+ri(ye,t)
+ > g;epli,y,t) +o(e), j=1,...,n (2.1)

i#]

It follows from (2.1) that the limit

1
[‘irﬁn()(;[p(j,y,tﬂ)—p(j,y,t)] r(y)T[p(J y+r(yet) - p(j,y,t)]>
” l

exists Since the partial derivative with respect yaexists (being the density of
P(W, € dt, J, =])), the same is true for that with respectjso that(2.1) yields the
following system ofn linear partial differential equations

ad i . .
S Py O - r(y) yPUYD =9 p(i, ) + 2 a5 p(i, . 1),
1#]

ZEQIJ p(|9y7t)7 J :1""’n~ (22)

Equation(2.2) generalizes Theorem 1 of Kulkarfl2]. The pertinent boundary
conditions are

. _ (2.3)
p(j,C,t) = m;(t) if r;(y) <0on(0,C).

Moreover p( j, y,0) is given by the initial distribution ofW, Jo). The partial dif-
ferential equation(2.2) is difficult to solve even in the case of constant ra@s
pointed out by Kulkarnj12]. However by taking LTs with respect tband consid-
ering them as functions of the state variail€2.2) can be reduced to a system of
ordinary differential equationetf;(y) = [;" e >p(j, y, t) dt(with s> 0 fixed). In
terms of these LT92.2) becomes

sf(y) = p(},y,00 = (N (y) = X fi(y), i=1...,n (2.4)

The solution 0f(2.4) is uniquely determined subject to théooundary conditions

fi(0)=0 if r;(y) > 00n(0,C),
o (2.5)
fi(C) = f e Sz (t)dt if r;(y) <0on(0,C).
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It is easy to see that the integral (&5) is equal to thgth component ofr; (0) X
(Q —s)™%, wherel is then X nidentity matrix

The distribution of(W, Jy) occurs explicitly in(2.4) in the form ofp( j, y,0).
Any initial distribution can be obtained as a weak limit of absolutely continuous
ones(i.e., those for which? (W, € dy, J, = j ) has a density for anjy. It is thus clear
that(2.4) also holds for an arbitrary initial distributioffhe most important case, is
of coursethat of constant initial valueshat is (Ws, Jo) = (Yo, 10). Then we have

1 ify=ysj=lio

2.6
0 otherwise (2.6)

p(j,y,0) ={

Next, we assume that\, J,) is stationaryIn this case(d/0t)p(j,y,t) =0, and
settingp;(y) = p(j, y,0), we obtain from(2.4)

(P =2 ap(y), j=1...,n 2.7)

subject to

p(0) =0 if r;(y) >00n(0,C), 28)
2.8
p(C) = tIim i (t) ifr;(y) <0on(0,C).

Note that lim_,., 7rj(t) = 7;, where then-component row vectotr = () is the
unigue normalized solution efQ = 0.

All solutions of this first-order systertand similarly those o0€2.4)) are linear
combinations oh linearly independent functionand the coefficients are given by
the boundary condition8ecause there is no general way to determificndamen-
tal solutions a more explicit determination of the functiopg-) seems to be pos-
sible only for certain functiong(-).

To ensure the existence of the stationary distribyfietrus assume that the state
space ofW, J) is of the formS=1 X {1,..., n} for some interval which may contain
one or both of its end pointbut does not have tfand thatW, J) is irreducible with
respect t&. Note thatf; du/r;(u) (—fyX du/r;(u)) is the time it takes to get fromto
y when in statg for the case;(-) > 0 andy = x (r;(-) < 0 andy = x). Thus for the
irreducibility, it is sufficient to assume that all these integrals are finite for all
X,y € I. Now, using the method of uniformizatigiet A = max g; and denote

0ij o
-, I # ]
o = A
i = _
WL
A

Then we can view the modulating Markov chain as a discrete-time Markov chain
with transition matrixP = (p;) embedded at arrival epochs of an independent Pois-
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son process with ratk It is evident that the transition kernel of the state of our fluid
process embedded right before state changes of the uniformized Markov chain has
the following representation

. Y du
Pi (], (¥,00)) = pj exp{—/\f m} fory=x (2.9)
x 1j
whenr;(-) > 0 and
Pi.x(}, [0 y))=pi-e><p{—)\fx du } fory=x (2.10)
S ' )

whenr;(-) <O0.

This discrete-time Markov chain {strong Feller andthus whenC < oo, the
conditions for Theorem 1Q.1 of [13, p. 286] are satisfied and the existence of a
stationary probability measure is assurétderefore(PASTA), the existence of a
stationary probability measure for the continuous-time process is also addsiegl
a geometric trial argumeyit can also be argued that the continuous-time fluid pro-
cess is regenerative with finite mean regeneration ep@sreturns to statéi, x)
for 0 < x < C), which implies the existence of a limitifgtationaryergodic
distribution

3. A SPECIAL TWO-STATE CASE

Letn= 2 and assume that there are two constant input,ratesh we maywithout
restriction of generalityassume to be; = ¢ > 0 andc, = 0. Furthermorgwe
suppose that fluid is released at the ratg), wherer(y) € (0,c), 0 <y < C,
depends on the state but not on the modulafidrus for the net inflow we have
r{(y) =c—r(y)andry(y) = —r(y). SetA = g,, andpu = g;,. Under the initial
condition(Wg, Jo) = (Yo,1), (2.4) becomes

SL(Y) = Ly o0 (Y) = 1 (V) f2(y) = —Af(y) + pfi(y),

(3.1)
sh(y) + (c—r(y)fi(y) = —pfi(y) + Afa(y).
It follows from (3.1) thatf; is of the form
di(s)hy(y,s) + dx(s)h,(y,s) ify=yo
fi(y) = A , (3.2)
T (GO0 + 9Ny + s Y=Y

whereh,(-,s) andh,(-,s) are linearly independent solutions of the second-order
linear differential equation

r(y)(c—=r(y)h”(y) +[r(y)2s+ A+ p—r'(y) —c(s+ A)]h'(y)
—s(s+ A+ wh(y) =0. (3.3)
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The coefficientd;(s),i = 1,2,3,4, can be determined from four conditians

1. the continuity off(y) aty = y,
2. the differentiability off;(y) aty =y,

3. f(0)=0
4. £5(C) = [ e ®'my(t) dt.
Note that
A
(10 ()erom) 2 wae2
mo(t) = i
— a—(A+pt i =
1—-e ) A+ if Jo=1,
so that the right-hand side in condition 4 becomes
s+
B _STH =2
f &St (t) dit = s(s+ A+
o] .
— if =1
s(s+ A+ ) e

Thus at least in cases in which a fundamental systerf8&) is known the LTsf;
andf, are explicitly computableThe solution under the initial conditidiWg, Jp) =
(Yo,2) is obtained similarly

Example 1: fy) =y,c=1W, € (0,1). If C=1, we have
Woe™! if Jp=2
- [1— (1-Wpe  if Jpy=1
for values ott smaller than the first jump time df If C < 1, after hitting levelC the

procesd\; stays there until; changes from 1 to.2Note that levels 0 and 1 cannot be
attained After some algebra3.3) yields

yd—-y)h"(y) +[y2s+ A+ p—1)—s—AJh'(y) —s(s+ A+ wh(y) =0.

(3.4)

Two linearly independent solutions (3.11) are
hi(y,s) = Yy SPF(L+ A, —u+ 1,2+ s+ A, y), (3.5)
ha(y,s) = F(—=S— A — ,—S,—S+ A, y), (3.6)

where

'cy 2 r(a+nr(b+n) x_n

Fab,cx) = I'(a)I'(b) zo I'(c+n) n!
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is the Gauss hypergeometric functisee e.g., Abramowitz and Stegufil, Sect
15]). Thus fi(-) andf,(-) are linear combinations of the functions($5) and(3.6)
on (0, yo] and on y,, C) with coefficients determined by conditions 1-4

Example 2: (y)=1 < c.Then (3.1) is a linear differential equation with constant
coefficients

(c=Dh"(y) +[(2—=c)s+ (1 —c)A + u]lh'(y) = s(s+ A+ wh(y) = 0.

(3.7)
Letd=c — 1> 0. As linearly independent solutions (8.7), we can take
hi(y,s) = e%Y,  hy(y,s) =e% (3.8)
where
0.(5) = 5 (£ (1= d)s— dA + 0% + ds(s + A + ]2
—(1—-d)s+dr—p. (3.9)

Note thatg, (s) > 0 > g_(s). The coefficientsl;(s) are now easily obtaineds an
example let C = oo andJy = 2. Then ds(s) = 0, because otherwisé, would be
unbounded oly,, o), which is impossibleFord,, d,, andd,, we have the equations

d;(S)hy(Yo, ) + da(S)h,(Yo, S) = ds(S)hy(Yo,S) + S(S"'—)\'"H),
d1(8)g. (s)hyi(Yo, ) + dx(S)g-(S)h2(Yo,S) = d3(5) g, (S)hi( Yo, ), (3.10)
d,(s)h;(0,s) + d,(s)h,(0,s) = 0.
The solution 0f(3.10) is
Ag(s)
s(s+ A+ W(g-(s) — g+ (9)ha(Yo, )’

_ 9:(8)h1(Yo,8) — g (S)h,(Yo,S)
dils) = g (9M(Yo,S) (s

di(s) = —dy(s) =

Thus

)\g7 (S)[eg+(5)y — egf(S)y]

— _(9)Yo 'fyﬁ)’o
f(y) = s(s+ A+ W(g-(s) —g.(s)ed (3.11)

ds(s)hi(y,s) + ds(s)hy(y,s) + if y=yp.

s(s+ A+
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4. THE STATIONARY DISTRIBUTION IN THE TWO-STATE CASE

Now, let us turn to the two-state case with general rafeg) > 0> r,(y),y € (0,C),
and derive the stationary distribution 6\, J;). Assume thalC < co. Equations
(2.7) and(2.8) yield

ri(y)pi(y) = —upu(y) + Apo(y),

(4.1)
r2(y)pa(y) = —Ap2(y) + ppi(y),

subject to
PO =0 p(©=1 (42

Assume that,(y) andr,(y) are continuously differentiable df, C). Then system
(4.1) can be transformed into

0 =ri(y)ra(y)pi(y) + [ri(y)ra(y) + pra(y) + Arg(y)Ipa(y), (4.3)
) = Bty + Y gy, (4.4

It follows from (4.3) thatp; (y) = C,e9"), whereC, is some constant argl y) is an
antiderivative of=[Ary(y) + pra(y) + ri(y)ra(y)1/ra(y)ra(y), given by

_ fy Ary(u) + prp(u) + ri(u)ro(u)
W=, (U

du

(Yo € (0,C)) up to some additive constar8incep,(0) = 0, we have

y
p(y) = C4 f e9™ dx,
0

provided the integral is finiteThe constan€,; can now be computed fromy(C) =
W/ (A + p). From(4.4), we obtain

A C -1
C, —u<pf eg(x>dx+r1(c—)e9(c>> .
0

N A+
Hence
_/\u ¢ (%) (©) o[ ()
(y) = <fe9"dx+r(c—)eg ) J-egxdx,
P(y) = M 1 i
u C -1 y

p(y) = —(uf e9™ dx + rl(C—)egm) [uf e9 dx + rl(y)e9<y>}.

A+ o 0 0

Let W* be a random variable for whicR(W* =y) = lim_,,,P(W, =<vy), y = 0.
Then
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PW™ =y) = pi(y) + p2(y)

y
(A+ p)f e9™ dx + r,y(y)ed
=/\Eu - 0 , 0<y<C. (4.5)
pf g9 dx + ry(C—)ed®
0

If [§e9™ dx= oo for somey € (0,C), one can modify the rates anfdr example
considerf;(y) = ry(y) + € andf,(y) = ro(y) — & and then lek | 0 in (4.5). This
approach is used in the following

Example 3:Let us combine linear and constant release rates and {ake= B, —
Ay andro(y) = —(Ay + By), y € (0,C), whereA; € R\{0}, A, > 0,B;, > 0, and
B, > 0. Recall that we assume that'y) > 0 for ally € (0,C) to ensure that there is
a positive net inflow while the system is in stateTherefore we may without
restriction of generalitysuppose tha#, C = B,. We can take

_ (VAU + () i) o Y A HA
oty) = fo ry(ura(u) dU—J; <A2U+ B Bl_A1U> au

A Ao X —A A X
—log 1+ == +p 2Iog 1- —=).
A, B, A; B,

Now, (4.5) yields fory € (0,C),

u
P(W*=y)= ——
( y) A+

y
A+1 f (Agx + By)A2(By — Apx) W A2 A dx + (Agy + B,) VA2(By — Ary) (A A/
0

X
C
lif (Apx+ Bp)VA2(By — Apx) M A2/ A1 dx + (Ap C + By) M 2(By — A C) (A A/ A
(0]
(4.6)
Let us consider a few important special cases

1. LetB;=c, A; > 0,andB, — 0. This yields the model of Section 3 for linear
but possibly unequal rates (y) = c— Ay andr,(y) = —A,y. We obtain the
asymptotic distribution fron(4.6):

U
PW*=y)= ——
( y) e

y c (M=A2)/Ay c (H+AL=A2)/Ay
(A + u)f XA N X dx+ A y*he v
0 1

1

c c ((=A2)/A) 1 c (W+A—AL)/A
| xMhe| — — dx+ A, CMA2( — —C
o A A

1 l (4.7)

X
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If, additionally A; = A, = A, (4.7) slightly simplifies to

A "
PW*=y)= g

fy A c (W/A) -1 A C WA
A+ - — +A ==
(At ) x (A X> y (A y)

c ¢ \wA-1 c wa
uf xA/A<——x) dx + AC“A<——C>
o A A

(4.8)

X

2. LetA; <0,B; — 0,andB, — 0. In this caseri(y) = |A1]y, ro(y) = —ALy.
It is easy to conclude from.6) that the limiting distribution has positive
mass on0,C) if and only if p = (A/Az) — (W/|A1]) + (Az/|A4]) +1 >0,
and in this caseis of the formP(W* = vy) = y(y/C)?,y € (0,C), where

1 A
1, Al
p  AtH
1Al
1, 1Al
p M
3. For constant release rajesyr,;(y) = B; andr,(y) = —B,, the stationary

distribution can also be obtained fro@6) by lettingA; — 0 andA, — 0,
but it is easier to start again frod.5) noting that in this case

Y AB; — B,
( >=f B KB, s oy,
aly . B, B, V.

whereo = (A/B,) — (4/B,), so that a short calculation yields

A(By+ By) oy
(A + B, er -t
PW*=y)= , YE(,C). (4.9)
—e~ -1
KB,

5. HITTING TIMES

We now consider the hitting timeg = inf{t > 0|W, = x}. Note thatr, can be infinite
with positive probability Let C < oco. We want to compute the Laplace—Stieltjes
transform(LST) ¢;(a, X,s) = E(e 5 |Wy=a,Jy = i).
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The usual arguments yield
di(a,xs) = (1—-gee “p(atri(ae,Xs)
+ D 05e€ ¢ (a,x,S) + 0(e). (5.1)

j#i
It follows that
J .
(@) - $i(a %) = (a +9)¢i(a,x5) — > gidi(axs), i=1L..,n (5.2)
j#i
If a > x, the boundary conditions are
di(x,x,8) =1 ifr;(-)<0on(0,C), (5.3)

%@(C, X,8) =0 ifr;(-) >00n(0,C). (5.4)

Fora < x, the corresponding conditions are similar
Let us return to the two-state case of Section 3 to arrive at some explicit results
Setp(a, X,S) = ¢p1(a, X, ) andi (a, X, S) = ¢»(a, X, S). In this example(5.2) is easily
seen to lead to the second-order differential equatiogyforx, s):
r@(c—r(@)g"(ax,s)
—[(r'(@+2s+ A+ wr(a)—(s+ A +r'(a)cly'(a x,9)
—s(s+ A+ wy(a xs) =0. (5.5)

A prime means differentiation with respectdoNote the similarityand the differ-
ences between(3.3) and(5.5). The functione can be expressed in terms fas
follows:

e(@ax,s) = A [(s+ My(axs) +r(@y'(axs). (5.6)
We now solve the equations for the special rate functions considered in Section 3

Example 4: (y) =y,c=1W, € (0,1), andC = 1. The content will always be in
(0,1), never reaching 0 or.5Solving (5.5), we find thaty is of the form

¥(a,x,8) = C(x,s)F(ss+ A+ s+ Ar+1a)
+ D(x,s)a S *F(—A,W1—s—A,aQ) (5.7)

for a, x € (0,1), whereF is the hypergeometric functioifhe coefficient functions
C(x,s) andD(x,s) can be computed from the boundary conditions

Y(x,%,8) =1, ¢'(1,x,9)=0

(¢ being given by(5.6)) and can thus be expressed in terms of hypergeometric
functions and their derivatives
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Example 5: (y)=1andc > 1. Let us consider the cage= 0. The general solution
of (5.5) is now a linear combination of the two exponential functions{exgs)a}
and exgde_(s)a}, where

e.(s) = %[(1— d)s—dr+pu

+ ([(A—d)s—dAr + p]?2 + 4d3s(s+ A + w)V2].
(Recall thatd = ¢ — 1.) The boundary conditions are
¥(0,0,5) =1, ¢'(C,0,8) =0.
After tedious calculationsve arrive at the exact solutions
0(a,0,5) = A1[A + s+ e_(s)]H(s)exp{e_(s)a}
+ A A+ s+ e (s)](1— H(s))exple.(s)a} (5.8)
and
#(a,0,s) = H(s)exple_(s)a} + (1 — H(s))exple. (s)a}, (5.9)

where

1

e (s)(At+ste(s) exp{C(e_(s) — e, ()} . . (5.10)

e, (s)(A+s+e.(s)

H(s) = |1

In the case of infinite capacitit turns out that the LSTg(a,0,-) and(a,0,-) can
be inverted in closed fornf C = oo, we haveH(s) =1 and thus

©(a,0,8) = A A+ s+ e_(s)|exple_(s)a}, (5.11)
¥ (a,0,5) = exp{e_(s)a}. (5.12)
Letp=s+ A+ c 1(u— A). After some algebraic manipulatiortbese LTs can be
written as
— _ ca _ 2 _ —2 _ /2 }
¢ (a,0,s) eXP{ a(s+A) + 2c—1) (p—[p?—4rpc2(c—1]V?) ¢,
(5.13)
0(30,5) = =——— (p—[p? — 4Auc2(c - L*?)p(a0s).  (5.14)

2x(c—1)
By (5.13), ¢ is of the form

¥(a,0,s) = e e 5+ e e 2g(s+ h),
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whereb= A + ¢ (p— A) and

ca
2(c—1)

a(p) = eXP{ (p—[p?—4Auc ?(c— 1)]1/2)} -1, p€[0,).

However g(p) is the LT of the function
(o) = ca ( 4Apc3(c—1) )1/2
2(c—D \t2+calc—1) i
X 1 ([4Apc™2(c — 1) (t2 + ca(c — 1)7*)]Y2), t € (0,00)

(seeeg., [14, p. 263 formula(5.122)]), where of course
oo (X/2)i+2

00 =2

is the modified Bessel function of the first kind and of ordeid&nce ¢ (a,0,-) is the
LST of the subprobability measure which has an atom of wegghf at a and
densityc~ e Pt"3f(t — a) on(a,c0). The density is thus given by

()\u)l/Zaef)\tfc’l(uf)\)(tfa)
[(t—a)(a+ (c—D1)]*¥?
X e AwY2[(t—Da+ (c—DY)]Y?), tE€ (a0).

f(t[a,0) =

This measure is a probability if and onlyRf(7, < co|W, = a, Jy = 2) = 1, which
holds if and only if(c — 1) A = . Indeed it follows from (5.13) that

P(ro < 0o[Wo=a,Jo = 2) = #/(3,0,0)
e 2=V jf (c— 1A >
1 if (c— A=

Finally, consider the casg= x = 0. GivenW, = 0 andJ, = 1, the hitting timer, is
the length of the time interval from leaving level O until returning td\ibte that
¢(0,0,s) =1, so that by (5.14),

E(eier‘WO = 0’ JO = 1) = QD(O’O’ S)
c 2 __ —2 _ 1/2
= 2Ac—1) (p—[p*—4rpc?(c—D]¥?) (5.15)

with p defined as aboveNow, note thatp— p — [ p? — a?]Y2, @ > 0, is the LT of
t— at™(at) [14, p. 232 formula(3.46)]. Thus the inverse of the LT5.15) (i.e.,
the density of a busy perigds given by

1/2
" ((c —“1)A> e e 0l 20 (e~ DAY, L€ (00,
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The busy period is almost surely finite if and only(d — 1) A = . Note that this
distribution coincides with that of a busy period for a standdyil/1 queue with
arrival and service intensities *(c — 1)A and ¢y, respectively(see[7, Sect
11.2.2]).
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