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We consider a modulated fluid system with a finite state-space Markov chainJt as
modulating process and general state-dependent net input rates+We derive differ-
ential equations for the transient and the stationary distribution of~Wt , Jt !,whereWt

is the content process, and the corresponding Laplace transforms with respect to
time+ Moreover, we study the level hitting times ofWt + Our results lead to explicit
formulas in the case of two modulating states+

1. INTRODUCTION

We consider a Markov-modulated fluid model with content processW 5 $Wt 6 t $
0% and modulating processJ 5 $Jt 6 t $ 0% , which is a right-continuous irreducible
continuous-time Markov chain with state space$1, + + + , n% and rate transition ma-
trix Q 5 ~qij !+ If Jt 5 i , the state-dependentnet input rate at timet is ri ~Wt !+ We
suppose that the rate functionsri ~ y! are piecewise continuous andri ~0! $ 0+ Let
C # ` be the capacity+ For eachi , the functionri ~{! is either everywhere positive
or everywhere negative on~0,C!; that is, for each state, the process is either in-
creasing or decreasing+ This is done in order to avoid the situation where the
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process remains constant on any positive interval, thereby ensuring that 0 andC
can be the only possible atoms of the steady-state distribution+ In the caseC , `,
we assume thatri ~C! 5 0 for those indicesi for which ri ~{! . 0 on ~0,C!, and
ri ~C! 5 ri ~C2! if ri ~{! , 0 on ~0,C!+ Thus, during a time interval in whichJt 5 i ,
the processWt follows a deterministic path according to the equationdWt 0dt 5
ri ~Wt !, as long asWt stays in~0,C!+ Let pi ~t ! 5 P~Jt 5 i !, which is, of course,
equal to@pi ~0!eQt# i , andqi 5 2qii +

In this article we determine the following:

~a! the transient distribution of~Wt , Jt ! @i+e+, the functionp~i, y, t ! 5 P~Wt # y,
Jt 5 i !#

~b! the stationary distribution of~Wt , Jt !, if it exists
~c! the distribution of the hitting timetx 5 inf $t $ 06Wt 5 x% +

The solutions for~a! and~c! are in terms of systems of differential equations, which
sometimes become simpler by considering certain related Laplace transforms~LTs!+
Because finding the distribution functions in~a! or ~c! is tantamount to solving the
corresponding differential equations, our results indicate to what extent closed-form
solutions are possible+ For a two-state modulating Markov chain, we obtain several
explicit solutions+

The literature on fluid models focuses on steady-state results in the case of
linear increase or decrease under any modulating state and an infinite buffer+ Boxma,
Perry, and van der Duyn Schouten@4# have presented a detailed discussion of the
history of the subject; Kulkarni @12# has given a survey+ Elwalid and Mitra @8#
considered a system with piecewise constant rates and characterized the stationary
distribution of~Wt , Jt !+ For corresponding nonmodulated storage processes with a
pure jump input process and a general release rate see Harrison and Resnick@9#
and Brockwell, Resnick, and Tweedie@5# + Non-Markovian fluid models were stud-
ied by, among others, Chen and Yao@6# , Kella and Whitt@11# , and Boxma et al+
@4# + These articles establish connections to ordinary queues with instantaneous
inputs+ Using a general point process approach, Kaspi, Kella, and Perry@10# con-
sidered a fluid “production” process with on and off times forming an alternating
renewal process and state-dependent increase and decrease rates while the ma-
chine is on or off, respectively+ Related steady-state results on on0off production
processes were given by Perry and Posner@15,16# + Boxma et al+ @4# derived sev-
eral exact results for a fluid system with constant rates governed by a three-state
semi-Markov process+ In Boxma, Kella, and Perry@3# this model was extended to
more than three modulation states, with a general release rate for one state with
exponential sojourn time and a linear increase for the others; the stationary distri-
bution of the content is shown to decompose into the stationary distributions of
some clearing process and some dam, which are then further analyzed+ Stability
results for arbitrary nondecreasing input processes and general modulation struc-
ture can be found in Asmussen and Kella@2# +
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2. THE DISTRIBUTION OF (Wt , Jt )

We first considerp~i, y, t !+ Let us assume for a moment that the initial distribution is
absolutely continuous+ Then the measureP~Wt [ dy, Jt 5 j ! has a density for anyt
andj+ By the standard arguments for the forward equation,

p~ j, y, t 1 «! 5 ~12 qj «!p~ j, y 1 rj ~ y!«, t !

1 (
iÞj

qij «p~i, y, t ! 1 o~«!, j 5 1, + + + , n+ (2.1)

It follows from ~2+1! that the limit

lim
«r0
S1

«
@ p~ j, y, t 1 «! 2 p~ j, y, t !# 2 rj ~ y!

1

rj ~ y!«
@ p~ j, y 1 rj ~ y!«, t ! 2 p~ j, y, t !#D

exists+ Since the partial derivative with respect toy exists ~being the density of
P~Wt [ dt, Jt 5 j !!, the same is true for that with respect tot, so that~2+1! yields the
following system ofn linear partial differential equations:

]

]t
p~ j, y, t ! 2 rj ~ y!

]

]y
p~ j, y, t ! 5 2qj p~ j, y, t ! 1 (

iÞj

qij p~i, y, t !,

5 (
i

qij p~i, y, t !, j 5 1, + + + , n+ (2.2)

Equation~2+2! generalizes Theorem 1 of Kulkarni@12# + The pertinent boundary
conditions are

p~ j,0, t ! 5 0 if rj ~ y! . 0 on~0,C!,

p~ j,C, t ! 5 pj ~t ! if rj ~ y! , 0 on~0,C!+
(2.3)

Moreover, p~ j, y,0! is given by the initial distribution of~W0, J0!+ The partial dif-
ferential equation~2+2! is difficult to solve even in the case of constant rates, as
pointed out by Kulkarni@12# + However, by taking LTs with respect tot and consid-
ering them as functions of the state variabley, ~2+2! can be reduced to a system of
ordinary differential equations+ Let fj ~ y! 5 *0

` e2stp~ j, y, t ! dt ~with s. 0 fixed!+ In
terms of these LTs, ~2+2! becomes

sfj ~ y! 2 p~ j, y,0! 2 rj ~ y! fj
'~ y! 5 (

i

qij fi ~ y!, j 5 1, + + + , n+ (2.4)

The solution of~2+4! is uniquely determined subject to then boundary conditions:

fj ~0! 5 0 if rj ~ y! . 0 on~0,C!,

fj ~C! 5E
0

`

e2stpj ~t ! dt if rj ~ y! , 0 on~0,C!+
(2.5)
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It is easy to see that the integral in~2+5! is equal to thejth component ofpi ~0! 3
~Q 2 sI!21, whereI is then 3 n identity matrix+

The distribution of~W0, J0! occurs explicitly in~2+4! in the form ofp~ j, y,0!+
Any initial distribution can be obtained as a weak limit of absolutely continuous
ones~i+e+, those for whichP~W0 [ dy, J05 j ! has a density for anyj !+ It is thus clear
that~2+4! also holds for an arbitrary initial distribution+ The most important case is,
of course, that of constant initial values; that is, ~W0, J0! [ ~ y0, i0!+ Then, we have

p~ j, y,0! 5 H1 if y $ y0, j 5 i0

0 otherwise+
(2.6)

Next, we assume that~Wt , Jt ! is stationary+ In this case, ~]0]t !p~ j, y, t ! [ 0, and
settingpj ~ y! 5 p~ j, y,0!, we obtain from~2+4!

2rj ~ y!pj
'~ y! 5 (

i

qij pi ~ y!, j 5 1, + + + , n (2.7)

subject to

pj ~0! 5 0 if rj ~ y! . 0 on~0,C!,

pj ~C! 5 lim
tr`

pj ~t ! if rj ~ y! , 0 on~0,C!+
(2.8)

Note that limtr`pj ~t ! 5 pj , where then-component row vectorp 5 ~pi ! is the
unique normalized solution ofpQ 5 0+

All solutions of this first-order system~and similarly those of~2+4!! are linear
combinations ofn linearly independent functions, and the coefficients are given by
the boundary conditions+ Because there is no general way to determinen fundamen-
tal solutions, a more explicit determination of the functionspj ~{! seems to be pos-
sible only for certain functionsrj ~{!+

To ensure the existence of the stationary distribution, let us assume that the state
space of~W, J! is of the formS5 I 3 $1, + + + , n% for some intervalI which may contain
one or both of its end points, but does not have to, and that~W, J! is irreducible with
respect toS+Note that*x

y du0rj ~u! ~2*y
x du0rj ~u!! is the time it takes to get fromx to

y when in statej for the caserj ~{! . 0 andy $ x ~rj ~{! , 0 andy # x!+ Thus, for the
irreducibility, it is sufficient to assume that all these integrals are finite for all
x, y [ I+ Now, using the method of uniformization, let l $ maxi qi and denote

pij 5 5
qij

l
, i Þ j

12
qi

l
, i 5 j+

Then, we can view the modulating Markov chain as a discrete-time Markov chain
with transition matrixP5 ~ pij ! embedded at arrival epochs of an independent Pois-
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son process with ratel+ It is evident that the transition kernel of the state of our fluid
process embedded right before state changes of the uniformized Markov chain has
the following representation:

Pi, x~ j, ~ y,`!! 5 pij expH2lE
x

y du

rj ~u!J for y $ x (2.9)

whenrj ~{! . 0 and

Pi, x~ j, @0, y!! 5 pij expH2lE
y

x du

2rj ~u!J for y # x (2.10)

whenrj ~{! , 0+
This discrete-time Markov chain is~strong! Feller and, thus, whenC , `, the

conditions for Theorem 12+0+1 of @13, p+ 286# are satisfied and the existence of a
stationary probability measure is assured+ Therefore~PASTA!, the existence of a
stationary probability measure for the continuous-time process is also assured+Using
a geometric trial argument, it can also be argued that the continuous-time fluid pro-
cess is regenerative with finite mean regeneration epochs~e+g+, returns to state~i, x!
for 0 , x , C!, which implies the existence of a limiting0stationary0ergodic
distribution+

3. A SPECIAL TWO-STATE CASE

Let n5 2 and assume that there are two constant input rates,which we may,without
restriction of generality, assume to bec1 5 c . 0 andc2 5 0+ Furthermore, we
suppose that fluid is released at the rater ~ y!, wherer ~ y! [ ~0,c!, 0 , y , C,
depends on the state but not on the modulation+ Thus, for the net inflow, we have
r1~ y! 5 c 2 r ~ y! and r2~ y! 5 2r ~ y!+ Setl 5 q21 andµ 5 q12+ Under the initial
condition~W0, J0! 5 ~ y0,1!, ~2+4! becomes

sf2~ y! 2 1@ y0,`!~ y! 2 r ~ y! f2
'~ y! 5 2lf2~ y! 1 µf1~ y!,

sf1~ y! 1 ~c 2 r ~ y!! f1
'~ y! 5 2µf1~ y! 1 lf2~ y!+

(3.1)

It follows from ~3+1! that f1 is of the form

f1~ y! 5 H d1~s!h1~ y,s! 1 d2~s!h2~ y,s! if y # y0

d3~s!h1~ y,s! 1 d4~s!h2~ y,s! 1
l

s~s1 l 1 µ!
if y $ y0,

(3.2)

whereh1~{,s! andh1~{,s! are linearly independent solutions of the second-order
linear differential equation

r ~ y!~c 2 r ~ y!!h ''~ y! 1 @r ~ y!~2s1 l 1 µ2 r '~ y!! 2 c~s1 l!#h '~ y!

2 s~s1 l 1 µ!h~ y! 5 0+ (3.3)
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The coefficientsdi ~s!, i 5 1,2,3,4, can be determined from four conditions:

1+ the continuity off1~ y! at y 5 y0

2+ the differentiability off1~ y! at y 5 y0

3+ f1~0! 5 0
4+ f2~C! 5 *0

` e2stp2~t ! dt+

Note that

p2~t ! 5 5S11 Sl

µ
De2~l1µ!tD µ

l 1 µ
if J0 5 2

~12 e2~l1µ!t !
µ

l 1 µ
if J0 5 1,

so that the right-hand side in condition 4 becomes

E
0

`

e2stp2~t ! dt 5 5
s1 µ

s~s1 l 1 µ!
if J0 5 2

µ

s~s1 l 1 µ!
if J0 5 1+

Thus, at least in cases in which a fundamental system of~3+3! is known, the LTsf1
andf2 are explicitly computable+ The solution under the initial condition~W0, J0! 5
~ y0,2! is obtained similarly+

Example 1: r~ y! 5 y, c 5 1,W0 [ ~0,1!+ If C $ 1, we have

Wt 5 HW0e2t if J0 5 2

12 ~12 W0!e2t if J0 5 1

for values oft smaller than the first jump time ofJ+ If C , 1, after hitting levelC the
processWt stays there untilJt changes from 1 to 2+Note that levels 0 and 1 cannot be
attained+ After some algebra, ~3+3! yields

y~12 y!h ''~ y! 1 @ y~2s1 l 1 µ2 1! 2 s2 l#h '~ y! 2 s~s1 l 1 µ!h~ y! 5 0+

(3.4)

Two linearly independent solutions of~3+11! are

h1~ y,s! 5 y11s1lF~11 l,2µ1 1,2 1 s1 l, y!, (3.5)

h2~ y,s! 5 F~2s2 l 2 µ,2s,2s1 l, y!, (3.6)

where

F~a,b,c, x! 5
G~c!

G~a!G~b! (
n50

` G~a 1 n!G~b 1 n!

G~c 1 n!

xn

n!
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is the Gauss hypergeometric function~see, e+g+, Abramowitz and Stegun@1, Sect+
15# !+ Thus, f1~{! andf2~{! are linear combinations of the functions in~3+5! and~3+6!
on ~0, y0# and on@ y0,C! with coefficients determined by conditions 1–4+

Example 2: r~ y! [1 , c+ Then, ~3+1! is a linear differential equation with constant
coefficients:

~c 2 1!h ''~ y! 1 @~2 2 c!s1 ~12 c!l 1 µ#h '~ y! 2 s~s1 l 1 µ!h~ y! 5 0+

(3.7)

Let d 5 c 2 1 . 0+ As linearly independent solutions of~3+7!, we can take

h1~ y,s! 5 eg1~s!y, h2~ y,s! 5 eg2~s!y, (3.8)

where

g6~s! 5
1

2d
~6 @~~12 d!s2 dl 1 µ!2 1 ds~s1 l 1 µ!#102

2 ~12 d!s1 dl 2 µ!+ (3.9)

Note thatg1~s! . 0 . g2~s!+ The coefficientsdi ~s! are now easily obtained+As an
example, let C 5 ` andJ0 5 2+ Then, d3~s! [ 0, because otherwise, f1 would be
unbounded on~ y0,`!,which is impossible+ Ford1,d2, andd4,we have the equations

d1~s!h1~ y0,s! 1 d2~s!h2~ y0,s! 5 d3~s!h1~ y0,s! 1
l

s~s1 l 1 µ!
,

d1~s!g1~s!h1~ y0,s! 1 d2~s!g2~s!h2~ y0,s! 5 d3~s!g1~s!h1~ y0,s!, (3.10)

d1~s!h1~0,s! 1 d2~s!h2~0,s! 5 0+

The solution of~3+10! is

d1~s! 5 2d2~s! 5
lg2~s!

s~s1 l 1 µ!~g2~s! 2 g1~s!!h2~ y0,s!
,

d4~s! 5
g1~s!h1~ y0,s! 2 g2~s!h2~ y0,s!

g2~s!h1~ y0,s!
d1~s!+

Thus,

f1~ y! 5 5
lg2~s!@eg1~s!y 2 eg2~s!y#

s~s1 l 1 µ!~g2~s! 2 g1~s!!eg2~s!y0
if y # y0

d3~s!h1~ y,s! 1 d4~s!h2~ y,s! 1
l

s~s1 l 1 µ!
if y $ y0+

(3.11)
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4. THE STATIONARY DISTRIBUTION IN THE TWO-STATE CASE

Now, let us turn to the two-state case with general ratesr1~ y! . 0. r2~ y!, y[ ~0,C!,
and derive the stationary distribution of~Wt , Jt !+ Assume thatC , `+ Equations
~2+7! and~2+8! yield

r1~ y!p1
' ~ y! 5 2µp1~ y! 1 lp2~ y!,

r2~ y!p2
' ~ y! 5 2lp2~ y! 1 µp1~ y!,

(4.1)

subject to

p1~0! 5 0, p2~C! 5
µ

l 1 µ
+ (4.2)

Assume thatr1~ y! andr2~ y! are continuously differentiable on~0,C!+ Then, system
~4+1! can be transformed into

0 5 r1~ y!r2~ y!p1
''~ y! 1 @r1

'~ y!r2~ y! 1 µr2~ y! 1 lr1~ y!# p1
' ~ y!, (4.3)

p2~ y! 5
µ

l
p1~ y! 1

r1~ y!

l
p1
' ~ y!+ (4.4)

It follows from ~4+3! thatp1
' ~ y! 5 C1eg~ y! , whereC1 is some constant andg~ y! is an

antiderivative of2@lr1~ y! 1 µr2~ y! 1 r1
'~ y!r2~ y!#0r1~ y!r2~ y!, given by

g~ y! 5 2E
y0

y lr1~u! 1 µr2~u! 1 r1
'~u!r2~u!

r1~u!r2~u!
du

~ y0 [ ~0,C!! up to some additive constant+ Sincep1~0! 5 0, we have

p1~ y! 5 C1E
0

y

eg~x! dx,

provided the integral is finite+ The constantC1 can now be computed fromp2~C! 5
µ0~l 1 µ!+ From ~4+4!, we obtain

C1 5
lµ

l 1 µSµE
0

C

eg~x! dx1 r1~C2!eg~C!D21

+

Hence,

p1~ y! 5
lµ

l 1 µSµE
0

C

eg~x! dx1 r1~C2!eg~C!D21E
0

y

eg~x! dx,

p2~ y! 5
µ

l 1 µSµE
0

C

eg~x! dx1 r1~C2!eg~C!D21FµE
0

y

eg~x! dx1 r1~ y!eg~ y!G +
Let W * be a random variable for whichP~W * # y! 5 lim tr`P~Wt # y!, y $ 0+
Then,
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P~W * # y! 5 p1~ y! 1 p2~ y!

5
µ

l 1 µ

~l 1 µ!E
0

y

eg~x! dx1 r1~ y!eg~ y!

µE
0

C

eg~x! dx1 r1~C2!eg~C!

, 0 , y , C+ (4.5)

If *0
y eg~x! dx5` for somey [ ~0,C!, one can modify the rates and, for example,

consider Ir1~ y! 5 r1~ y! 1 « and Ir2~ y! 5 r2~ y! 2 « and then let« f 0 in ~4+5!+ This
approach is used in the following+

Example 3:Let us combine linear and constant release rates and taker1~ y! 5 B1 2
A1y andr2~ y! 5 2~A2y1 B2!, y [ ~0,C!, whereA1 [ R\$0%, A2 . 0,B1 . 0, and
B2 . 0+ Recall that we assume thatr1~ y! . 0 for all y [ ~0,C! to ensure that there is
a positive net inflow while the system is in state 1+ Therefore, we may, without
restriction of generality, suppose thatA1C # B1+We can take

g~ y! 5 2E
0

y lr1~u! 1 µr2~u! 1 r1
'~u!r2~u!

r1~u!r2~u!
du5E

0

yS l

A2u 1 B2

2
µ2 A2

B1 2 A1uD du

5
l

A2

logS11
A2 x

B2
D1

µ2 A2

A1

logS12
A1 x

B1
D+

Now, ~4+5! yields, for y [ ~0,C!,

P~W * # y! 5
µ

l 1 µ

3

~l 1 µ!E
0

y

~A2 x 1 B2!l0A2~B1 2 A1 x!~µ2A2!0A1 dx1 ~A2 y 1 B2!l0A2~B1 2 A1 y!~µ1A12A2!0A1

µE
0

C

~A2 x 1 B2!l0A2~B1 2 A1 x!~µ2A2!0A1 dx1 ~A2C 1 B2!l0A2~B1 2 A1C!~µ1A12A2!0A1

+

(4.6)

Let us consider a few important special cases+

1+ Let B15 c, A1 . 0, andB2 r 0+ This yields the model of Section 3 for linear
but possibly unequal rates: r1~ y!5c2A1yandr2~ y!52A2y+We obtain the
asymptotic distribution from~4+6!:

P~W * # y! 5
µ

l 1 µ

3

~l 1 µ!E
0

y

xl0A2S c

A1

2 xD~µ2A2!0A1

dx1 A1 yl0A2S c

A1

2 yD~µ1A12A2!0A1

µE
0

C

xl0A2S c

A1

2 xD~~µ2A2!0A1!21

dx1 A1Cl0A2S c

A1

2 CD~µ1A12A2!0A1

+

(4.7)
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If , additionally, A1 5 A2 5 A, ~4+7! slightly simplifies to

P~W * # y! 5
µ

l 1 µ

3

~l 1 µ!E
0

y

xl0AS c

A
2 xD~µ0A!21

1 Ayl0AS c

A
2 yDµ0A

µE
0

C

xl0AS c

A
2 xD~µ0A!21

dx1 ACl0AS c

A
2 CDµ0A

+

(4.8)

2+ Let A1 , 0, B1 r 0, andB2 r 0+ In this case, r1~ y! 5 6A16y, r2~ y! 5 2A2y+
It is easy to conclude from~4+6! that the limiting distribution has positive
mass on~0,C! if and only if r 5 ~l0A2! 2 ~µ06A16! 1 ~A206A16! 1 1 . 0,
and, in this case, is of the formP~W * # y! 5 g~ y0C!r , y [ ~0,C!, where

g 5

1

r
1
6A16

l 1 µ

1

r
1
6A16

µ

+

3+ For constant release rates, sayr1~ y! 5 B1 andr2~ y! 5 2B2, the stationary
distribution can also be obtained from~4+6! by lettingA1 r 0 andA2 r 0,
but it is easier to start again from~4+5! noting that in this case,

g~ y! 5E
0

y lB1 2 µB2

B1 B2

du5 sy,

wheres 5 ~l0B2! 2 ~µ0B1!, so that a short calculation yields

P~W * # y! 5

l~B1 1 B2!

~l 1 µ!B2

esy 2 1

lB1

µB2

esC 2 1

, y [ ~0,C!+ (4.9)

5. HITTING TIMES

We now consider the hitting timestx5 inf $t . 06Wt 5x% +Note thattx can be infinite
with positive probability+ Let C , `+ We want to compute the Laplace–Stieltjes
transform~LST! fi ~a, x,s! 5 E~e2stx 6W0 5 a, J0 5 i !+
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The usual arguments yield

fi ~a, x,s! 5 ~12 qi «!e2s«fi ~a 1 ri ~a!«, x,s!

1 (
jÞi

qij «e2s«fj ~a, x,s! 1 o~«!+ (5.1)

It follows that

ri ~a!
]

]a
fi ~a, x,s! 5 ~qi 1 s!fi ~a, x,s! 2 (

jÞi

qij fj ~a, x,s!, i 5 1, + + + , n+ (5.2)

If a . x, the boundary conditions are

fi ~x, x,s! 5 1 if ri ~{! , 0 on~0,C!, (5.3)

]

]a
fi ~C, x,s! 5 0 if ri ~{! . 0 on~0,C!+ (5.4)

For a , x, the corresponding conditions are similar+
Let us return to the two-state case of Section 3 to arrive at some explicit results+

Setw~a, x,s!5f1~a, x,s! andc~a, x,s!5f2~a, x,s!+ In this example, ~5+2! is easily
seen to lead to the second-order differential equation forc~{, x,s!:

r ~a!~c 2 r ~a!!c ''~a, x,s!

2 @~r '~a! 1 2s1 l 1 µ!r ~a! 2 ~s1 l 1 r '~a!!c#c '~a, x,s!

2 s~s1 l 1 µ!c~a, x,s! 5 0+ (5.5)

A prime means differentiation with respect toa+ Note the similarity, and the differ-
ences, between~3+3! and~5+5!+ The functionw can be expressed in terms ofc as
follows:

w~a, x,s! 5 l21 @~s1 l!c~a, x,s! 1 r ~a!c '~a, x,s!# + (5.6)

We now solve the equations for the special rate functions considered in Section 3+

Example 4: r~ y! 5 y,c 5 1,W0 [ ~0,1!, andC $ 1+ The content will always be in
~0,1!, never reaching 0 or 1+ Solving~5+5!, we find thatc is of the form

c~a, x,s! 5 C~x,s!F~s,s1 l 1 µ,s1 l 1 1,a!

1 D~x,s!a2s2lF~2l,µ,12 s2 l,a! (5.7)

for a, x [ ~0,1!, whereF is the hypergeometric function+ The coefficient functions
C~x,s! andD~x,s! can be computed from the boundary conditions

c~x, x,s! 5 1, w '~1, x,s! 5 0

~w being given by~5+6!! and can thus be expressed in terms of hypergeometric
functions and their derivatives+
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Example 5: r~ y! [1 andc . 1+ Let us consider the casex5 0+ The general solution
of ~5+5! is now a linear combination of the two exponential functions exp$e1~s!a%
and exp$e2~s!a% , where

e6~s! 5
1

2d
@~12 d!s2 dl 1 µ

6 ~@~12 d!s2 dl 1 µ# 2 1 4d2s~s1 l 1 µ!!102# +

~Recall thatd 5 c 2 1+! The boundary conditions are

c~0,0,s! 5 1, w '~C,0,s! 5 0+

After tedious calculations, we arrive at the exact solutions

w~a,0,s! 5 l21 @l 1 s1 e2~s!#H~s!exp$e2~s!a%

1 l21 @l 1 s1 e1~s!# ~12 H~s!!exp$e1~s!a% (5.8)

and

c~a,0,s! 5 H~s!exp$e2~s!a% 1 ~12 H~s!!exp$e1~s!a%, (5.9)

where

H~s! 5 F12
e2~s!~l 1 s1 e2~s!!

e1~s!~l 1 s1 e1~s!!
exp$C~e2~s! 2 e1~s!!%G21

+ (5.10)

In the case of infinite capacity, it turns out that the LSTsw~a,0,{! andc~a,0,{! can
be inverted in closed form+ If C 5`, we haveH~s! [ 1 and, thus,

w~a,0,s! 5 l21 @l 1 s1 e2~s!# exp$e2~s!a%, (5.11)

c~a,0,s! 5 exp$e2~s!a%+ (5.12)

Let p 5 s1 l 1 c21~µ2 l!+ After some algebraic manipulations, these LTs can be
written as

c~a,0,s! 5 expH2a~s1 l! 1
ca

2~c 2 1!
~ p 2 @ p2 2 4lµc22~c 2 1!#102!J ,

(5.13)

w~a,0,s! 5
c

2l~c 2 1!
~ p 2 @ p2 2 4lµc22~c 2 1!#102!c~a,0,s!+ (5.14)

By ~5+13!, c is of the form

c~a,0,s! 5 e2ale2as 1 e2ale2asg~s1 b!,
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whereb 5 l 1 c21~µ2 l! and

g~ p! 5 expH ca

2~c 2 1!
~ p 2 @ p2 2 4lµc22~c 2 1!#102!J 2 1, p [ @0,`!+

However, g~ p! is the LT of the function

f ~t ! 5
ca

2~c 2 1!
S 4lµc22~c 2 1!

t 2 1 ca~c 2 1!21t
D102

3 I1~ @4lµc22~c 2 1!~t 2 1 ca~c 2 1!21t !#102!, t [ ~0,`!

~see, e+g+, @14, p+ 263, formula~5+122!# !, where, of course,

I1~x! 5 (
i50

` ~x02! i12

~i!!2

is the modified Bessel function of the first kind and of order 1+Hence,c~a,0,{! is the
LST of the subprobability measure which has an atom of weighte2la at a and
densityc2ale2b~t2a!f ~t 2 a! on ~a,`!+ The density is thus given by

f ~t 6a,0! 5
~lµ!102ae2lt2c21~µ2l!~t2a!

@~t 2 a!~a 1 ~c 2 1!t !#102

3 I1~2c21~lµ!102 @~~t 2 1!a 1 ~c 2 1!t !#102!, t [ ~a,`!+

This measure is a probability if and only ifP~t0 , `6W0 5 a, J0 5 2! 5 1, which
holds if and only if~c 2 1!l # µ+ Indeed, it follows from ~5+13! that

P~t0 , `6W0 5 a, J0 5 2! 5 c~a,0,0!

5 He2a~l2~c21!21µ! if ~c 2 1!l . µ

1 if ~c 2 1!l # µ+

Finally, consider the casea5 x5 0+ GivenW0 5 0 andJ0 51, the hitting timet0 is
the length of the time interval from leaving level 0 until returning to it+ Note that
w~0,0,s! [ 1, so that, by ~5+14!,

E~e2st0 6W0 5 0, J0 5 1! 5 w~0,0,s!

5
c

2l~c 2 1!
~ p 2 @ p2 2 4lµc22~c 2 1!#102! (5.15)

with p defined as above+ Now, note thatp ° p 2 @ p2 2 a2#102, a . 0, is the LT of
t ° at21I1~at ! @14, p+ 232, formula~3+46!# + Thus, the inverse of the LT~5+15! ~i+e+,
the density of a busy period! is given by

t ° S µ

~c 2 1!l
D102

t21e2@l1c21~µ2l!# tI1~2c21 @~c 2 1!lµ#102t !, t [ ~0,`!+
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The busy period is almost surely finite if and only if~c 2 1!l # µ+ Note that this
distribution coincides with that of a busy period for a standardM0M01 queue with
arrival and service intensitiesc21~c 2 1!l and c21µ, respectively~see@7, Sect+
II +2+2# !+
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