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Abstract

We consider an open problem of obtaining the optimal operational sequence for the
1-out-of-n system with warm standby. Using the virtual age concept and the cumulative
exposure model, we show that the components should be activated in accordance with
the increasing sequence of their lifetimes. Lifetimes of the components and the system
are compared with respect to the stochastic precedence order and its generalization. Only
specific cases of this optimal problem were considered in the literature previously.
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1. Introduction

As an introductory reasoning, consider first one component that starts operating at t = 0.
Assume that in the process of production it acquires an initial unobserved resource R; see [6].
For mechanical or electronic items, for instance, it can be a ‘distance’ between the initial value
of the key parameter and the boundary that defines a failure of the component. It is natural to
assume that it is a continuous random variable with the cumulative distribution function

F(r) = P(R ≤ r).

A similar notion of a random resource (hazard potential) was considered in [17]. Suppose that,
for each realization of R, the component’s remaining resource is monotonically decreasing with
time. Therefore, the run-out resource, to be called wear, monotonically increases. The wear in
[0, t) can be defined as

W(t) =
∫ t

0
w(u) du, (1.1)

where w(t) denotes the rate of wear. Thus, the value of R is an intrinsic property of a
manufactured item, whereas the rate w(t) defines the ‘depletion’ of R in a given environment.
The larger rate corresponds to a more severe environment, whereas w(t) ≡ 1 can be often

Received 19 October 2017; revision received 29 October 2018.
∗ Postal address: Department of Mathematical Statistics and Actuarial Science, University of the Free State, 339
Bloemfontein 9300, South Africa, and ITMO University, Saint Petersburg, Russia.
∗∗ Postal address: Department of Mathematics, Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, Chennai 600127, Tamil Nadu, India.
∗∗∗ Postal address: Department of Statistics, Ewha Womans University, Seoul 120-750, Republic of Korea.
Email address: jhcha@ewha.ac.kr

1014

https://doi.org/10.1017/jpr.2018.67 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:jhcha@ewha.ac.kr?subject=J. Appl. Prob.%20paper%2016846
https://doi.org/10.1017/jpr.2018.67


Warm standby system 1015

considered as a baseline one. The failure occurs when the wear W(t) reaches R. Denote the
corresponding random time by T . Then

P(T ≤ t) ≡ P(R ≤ W(t)) = F(W(t)). (1.2)

Therefore, the described survival model can be interpreted in terms of the accelerated life
model (ALM); see [1] and [13]. Our reasoning in what follows is based on the ALM (1.2),
whereas the discussion above can be considered as a useful interpretation.

In applications, the most common specific case of the described setting is the cumulative
exposure model; see [13], which corresponds to the case when the scale transformation in (1.2)
is linear, i.e.

P(T ≤ t) ≡ P(R ≤ wt) = F(wt). (1.3)

Engineering systems, especially those that are used in mission-critical applications such as
aerospace, power generation, flight control, and computing, are often designed with redundan-
cies in order to meet the stringent safety and reliability requirements; see [10] and [11]. One of
the widely-applied redundancy techniques in various applications is the standby redundancy,
when one or several components operate and redundant components serve as the standby spares.
In the case of failure of an operating component, a replacement procedure is initiated to activate
a standby component and to replace the failed one so that a system continues to operate.

According to its failure characteristics before the activation, a standby component can be
categorized as ‘hot’, ‘cold’, or ‘warm’. A hot standby component works concurrently with the
online primary component and thus is ready to take over at any time for fast recovery. In this
case, the standby component is fully exposed to the operating stress and is characterized by
the same failure rate as the online one. A cold standby component is unpowered and shielded
from operation and environmental stresses. As a more general option that, e.g. we can take
into account the nonideal standby mode conditions or/and partial loading, a warm standby
component is characterized by the failure rate that is smaller than that for the fully operational
component; see [9]–[11], [18], and [19]. Obviously, the former two types of loading are the
special cases of the warm standby mode.

Reliability analysis of the warm standby systems is much more challenging than that for
cold and hot standby systems. Indeed, the lifetime of a cold standby system is just the sum
of lifetimes of all components; the lifetime of a hot standby system is just the maximum of
individual lifetimes, whereas in the warm standby case, a switch of the regimes from the warm
standby to the operational mode should be taken into account. In accordance with the linear
cumulative exposure model based on the scale transformation (1.3) with w < 1 , the equivalent
lifetime (virtual age) of a warm standby component having spent some time in this mode before
switching to the active mode is this time reduced by the lifetime deceleration factor w plus the
lifetime spent in the active mode afterwards. More general models that are not restricted to
the case of a linear scale transformation are usually based on the notion of the ‘virtual age’.
See, e.g. [4] and [5] for applications of the virtual age concept to regimes switching of the
described type.

Remark 1.1. Note that we can arrive at (1.2) formally without employing the notion of re-
source. Indeed, let the baseline environment be more severe and denote the corresponding
lifetime in it by F(t). Thus, the lifetime of a component operating in a milder environment
should be longer. Assume that this ordering is in the sense of the usual stochastic ordering,
i.e. Fm(t) < F(t), which implies that

Fm(t) = F(W(t)),
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where W(0) = 0 and the time dependent scale transformation function is increasing and
W(t) = t for all t > 0.

Optimal (in terms of maximizing reliability characteristics of a system) activation sequence
for components obviously does not exist in a hot standby system, it is trivial (no difference)
for the cold standby systems and is meaningful for general warm standby systems. Only some
special cases (see [4] and [19]) for the latter case were considered in the literature. In this paper,
we discuss the problem in much more generality and, therefore, under certain assumptions,
solving an open problem of theoretical reliability.

Before stating the problem formally, for the sake of completeness we give the formal
definitions of stochastic orders that will be used in this paper; see [3] and [16].

Definition 1.1. Let X and Y be two continuous nonnegative random variables with respective
supports (lX, uX) and (lY , uY ), where uX and uY may be positive infinite, and lX and lY may
be 0. Further, let F̄X(·) and F̄Y (·) be the survival functions of X and Y , respectively. Then X

is said to be smaller than Y in

(i) usual stochastic (st) order, denoted as X ≤st Y , if

F̄X(x) ≤ F̄Y (x) for all x ∈ (0, ∞);
(ii) hazard rate (hr) order, denoted as X ≤hr Y , if

F̄Y (x)

F̄X(x)
is increasing in x ∈ (min(lX, lY ), ∞);

(iii) stochastic precedence (sp) order, denoted as X ≤sp Y , if

P(X ≤ Y ) ≥ 1
2 .

2. Problem formulation

We want to obtain an optimal sequence of activation of the standby components for a
heterogeneous system of n components, with one active component and others in a warm
standby mode. We assume that in a standby mode all components are characterized by the
same deceleration factor w < 1. Generalization to the general case w(t) will be also discussed.
Intuitive reasoning based on the notions of resource of the components prompts us to first
activate the weakest component, then the weakest from the remaining, and so on. Specific
cases in the literature support this intuition. However, the type of stochastic ordering for the
components and other assumptions of the model are crucial for our discussion.

Denote the lifetimes of the components of the system in the active (operational) regime by
Ti, i = 1, 2, . . . , n. Assume that they are ordered in some, nonspecified for now, stochastic
sense, i.e.

T1 ≤ T2 ≤ · · · ≤ Tn. (2.1)

If the operating component fails, the next operable one (that did not fail in the warm standby
mode) is activated, and so on. The question is to define a sequence of activation for standby
components that will maximize the lifetime of the whole system (in some stochastic sense).
Some important specific cases were studied in [4] and [19], as follows.

• The hazard rate ordering was considered for the lifetimes of two components. Then it
was proved that one should start with the weaker in this sense component, which results
in the maximum expected lifetime of a system.
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• For the 1-out-of-n system, only the specific case of exponentially distributed lifetimes
and linear model (1.3) was considered. Then, under the assumption of the hazard rate
ordering, it was proved that if activation starts with the weakest component, and the next
weakest is chosen from the remaining components, and so on, reliability of the system
will be maximal in the sense of the usual stochastic order.

Our aim is to consider this problem in more generality for arbitrary lifetime distributions
which is a challenging problem. Arguably, the choice of stochastic ordering in the previous
works was a barrier to obtaining more general results. In what follows, we use the stochas-
tic precedence order, which is natural in many reliability settings and, in spite of this, not
sufficiently explored in the literature so far.

The problem we consider is based on the definition of the warm standby mode via the general
model (1.2) or its specific case (1.3). It should be noted that this is an assumption itself (note
that all previous specific studies of reliability of the warm standby systems relied on these or
similar expressions). However, in order to consider switching from one regime to another, one
must have a stochastic model for that. The virtual age concept based on the ALM in (1.2) and
(1.3) is well established in the literature as a way to deal with this.

3. Two components

Let us consider first the system with two components with lifetimes in an operational mode
ordered as T1 < T2 in some stochastic sense to be defined below. Thus, Ti, i = 1, 2, denotes
the time to failure of the component i. Let Z ≡ T2 − T1, and let ti be the realizations of Ti,

i = 1, 2, and z = t2 − t1 be the corresponding realization of Z. Then

P(Z ≥ 0) = P(T2 ≥ T1)

defines the probability of the event T2 ≥ T1. Denote by Y12 the lifetime of a system when the
first component is activated first and by Y21 when the second is activated first, and y12 and y21
the corresponding realization. We will show later that under given assumptions

z ≥ 0 �⇒ y12 − y21 ≥ 0,

which, as each realization of Z corresponds to the realization of Y12 − Y21, implies that

Z ≥ 0 �⇒ Y12 − Y21 ≥ 0.

Thus, specifically, if P(Z ≥ 0) ≥ 1
2 then

P((Y12 − Y21) ≥ 0) ≥ 1
2 ,

which, in fact, is also the definition of the stochastic precedence (sp) order for the components
P(Z ≥ 0) ≥ 1

2 and for the variants of the system P((Y12 − Y21) ≥ 0) ≥ 1
2 (see [3] and [7]), i.e.

T2 ≥sp T1 �⇒ Y12 ≥sp Y21.

Thus, the stochastic precedence order for two random variables X >sp Y means that P(X ≥
Y ) ≥ 1

2 and it seems to be natural in some reliability settings, e.g. for stress-strength reliability
modeling; see [7]. It is also consistent for the current problem, as the components and the
variants of the system will be ordered only in the sense of this order. Note that for the independent
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random variables, the stochastic precedence order is weaker than the usual stochastic order;
see [3]. On the other hand, comparison with the ordering of expectations depends on parameters
involved; see [7].

In spite of its obvious attractiveness the stochastic precedence order has attracted much less
attention in the literature and only a few papers are devoted to it; see [3] and [7]. However, it
may be the most natural one in some reliability settings (e.g. stress/strength problems). In fact,
it was even suggested in [7] to call it (at least at some instances) the stress-strength order, which
naturally compares two random variables as in structural reliability. For recent advances,
see [12] and [15]. Further, to avoid any confusion caused by the different definitions of the
stochastic precedence order (see [3]), and as we are considering lifetimes of engineering items,
we assume that the corresponding distribution functions are absolutely continuous.

We will first prove the following result.

Theorem 3.1. Let the following stochastic precedence order hold for the two component system
described above:

T2 ≥sp T1.

Then the corresponding order of components achieves the maximum lifetime of a system in the
sense of the stochastic precedence order, i.e. Y12 ≥sp Y21.

Proof. Let the event {T1 < T2} occur, and ti be the realization of Ti, i = 1, 2 (t1 < t2). If
the first component starts first then the corresponding realization of a lifetime of a system in
accordance with the linear cumulative exposure model (1.3) with w < 1 for a milder regime is

Y12 = t1 + (t2 − wt1) = t2 + (1 − w)t1 > t2, (3.1)

where wt1 is the virtual (equivalent) age of the second component just after switching into
activation (from a warm standby mode) and, therefore, the remaining lifetime in this realization
is (t2 − wt1).

Now let the second (better) component start first. We have two specific cases.
Case I: αt1 < t2, (where α = 1/w). This means that the first component (in a warm standby

mode) will fail before the active second component (in realizations). Note that as t1 is the age
of the first component at failure (in an active mode), in accordance with the model, αt1 is the
age of the first component at failure if it operates all the time in the warm standby mode. Thus,
the lifetime of a system in this case is just Y21 = t2.

Case II: t2 < αt1. This means (in realizations) that the active second component fails before
the warm standby one and that the switching should be performed at t2. Then the lifetime of a
system in this realization is the sum

Y21 = t2 + αt1 − t2

α
= t1 + t2(1 − w), (3.2)

where (αt1 − t2) is the time that the first component should operate (after t2), if it were operating
in the warm standby mode. However, it was switched to the active mode and this time should
be recalculated as (αt1 − t2)/α.

Thus, we must compare (3.1) with (3.2). Then

t2 − wt1 > t2(1 − w),

which holds as t1 < t2, meaning that Y12 ≥ Y21. The above reasoning means that the event
{T1 ≤ T2} implies the event {Y12 ≥ Y21} and, accordingly, P(Y12 ≥ Y21) ≥ P(T1 ≤sp T2) ≥ 1

2 ,
completing the proof. �

https://doi.org/10.1017/jpr.2018.67 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.67


Warm standby system 1019

Thus, it is most beneficial to activate at first the first component with a smaller lifetime in
each realization.

Remark 3.1. As the virtual age concept is well defined for a general model ((1.1) and (1.2))
and the function W(t) is monotonically increasing (therefore, the inverse function exists),
Theorem 3.1 can be generalized to this case. Indeed, we compare the relations that correspond
to (3.1) and (3.2) in this case. Relationship (3.1) becomes

t1 + (t2 − W(t1)),

whereas (3.2) can now be written as

t2 + W(W−1(t1) − t2), (3.3)

where W−1 denotes the inverse function which exists due to the monotonicity of W(t). Assume
additionally that W(t) is concave, i.e. W ′′(t) = w′(t) ≤ 0, which means that the rate of wear
in (1.1) is decreasing (nonincreasing). Then we can proceed with (3.3), which results in the
inequalities

t2 + W(W−1(t1) − t2) ≤ t2 + t1 − W(t2) ≤ t1 + t2 − W(t1).

The first one obviously follows from our sufficient condition w′(t) ≤ 0, whereas the second
follows from monotonicity of W(t) and t1 ≤ t2. It seems that the assumption of concavity is
essential for the stochastic precedence order in this case as it is easy to see via the counterexample
(W(t) = t2) that the corresponding ordering for the system does not always hold.

4. n components

Consider the 1-out-of-n components warm standby system. It is a coherent system meaning
that each component is relevant and its structure function is monotone. It is well known (see [2])
that in this case improving the reliability of any of the components will improve the reliability
of a system, which means the usual stochastic order both on the level of components and of
the system. On the other hand, it can also be easily seen that increasing the mean lifetime of a
component does not necessarily lead to an increase in the mean lifetime of a system. Similarly,
if we decrease the failure rate of a component, then it does not always imply that the system
failure rate will also decrease. This means that the result is sensitive to the employed type
of stochastic ordering. The following results contribute to our discussion of the stochastic
precedence order.

Lemma 4.1. If the lifetime of a component in a coherent system is improved in the sense of the
stochastic precedence order, then the lifetime of the coherent system will also be improved in
the same sense.

Proof. Denote a lifetime of a coherent system of (n+ 1) components by τ = τ(T1, T2, . . . ,

Tn, T ) where for notational convenience, the lifetime of the (n + 1)th component is denoted
just by T . Let us replace this component with another one with lifetime T ∗, whereas all
other lifetimes stay the same and denote the system lifetime τ ∗ = τ(T1, T2, . . . , Tn, T

∗). For
convenience, we will call the defined systems τ and τ ∗, respectively. Since τ ∗ is the same
as τ except T is replaced by T ∗, the set of all minimal path sets for both systems will be the
same (for a given system, the minimal path set is a set of minimum number of components
whose functioning ensures the functioning of the system). Let {P1, P2, . . . , Pm} be the set of
all minimal path sets for both systems. Further, let TPi

denote the lifetime of the minimal path
set Pi for i = 1, 2, . . . , m.
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For 1 ≤ k ≤ m and {j1, j2, . . . , jk} ⊆ {1, 2, . . . , m}, let {Pj1 , Pj2 , . . . , Pjk
} ⊆ {P1,

P2, . . . , Pm} be the set of minimal path sets that contain the component T (for convenience we
denote the component and its lifetime by the same letter). Similarly, let {P ∗

j1
, P ∗

j2
, . . . , P ∗

jk
} ⊆

{P1, P2, . . . , Pm} be the set of minimal path sets that contain the component T ∗. Note that, for
1 ≤ r ≤ k, TPjr

and TP ∗
jr

may not be the same even though Pjr ≡ P ∗
jr

. In fact, for 1 ≤ r ≤ k,

TPjr
= min{Sr, T }, TP ∗

jr
= min{Sr, T

∗},

where Sr = minl∈Pjr
{Tl} = minl∈P ∗

jr
{Tl}.

As before, denote by the lower case letters the realizations of the corresponding random
variables. Let us assume that t ≤ t∗, meaning that the realization of the replaced component is
larger than that for the initial component. Then, for 1 ≤ r ≤ k,

tPjr
= min{sr , t} ≤ min{sr , t∗} = tP ∗

jr
,

which implies that

max{tPj1
, tPj2

, . . . , tPjk
} ≤ max{tP ∗

j1
, tP ∗

j2
, . . . , tP ∗

jk
}. (4.1)

Let τ(t1, t2, . . . , tn, t) and τ(t1, t2, . . . , tn, t
∗) be the realizations of τ(T1, T2, . . . , Tn, T ) and

τ(T1, T2, . . . , Tn, T
∗), respectively. Then

τ(t1, t2, . . . , tn, t) = max{tP1 , tP2 , . . . , tPm}
= max

{
max

1≤r≤k
{tPjr

}, max
z∈{1,2,...,m}\{j1,j2,...,jk}

{tPz}
}

≤ max
{

max
1≤r≤k

{tP ∗
jr

}, max
z∈{1,2,...,m}\{j1,j2,...,jk}

{tPz}
}

= τ(t1, t2, . . . , tn, t
∗),

where the inequality follows from (4.1). Thus, in realizations,

t ≤ t∗ �⇒ τ(t1, t2, . . . , tn, t) ≤ τ(t1, t2, . . . , tn, t
∗),

which is similar to the results in the previous section; hence,

P(T < T ∗) ≥ 1
2 �⇒ P(τ ≤ τ ∗) ≥ 1

2 . �

Remark 4.1. The proof of the above lemma can be explained intuitively as follows. Denote by
φy(t1, t2, . . . , tn, t) the realization of the state function (0 or 1) of τ at time y > 0. Similarly, let
φy(t1, t2, . . . , tn, t

∗) denote the realization of the state function of τ ∗ at time y > 0 for t < t∗.
It is clear that φy(t) = φy(t

∗) for y ∈ [0, t] and y ∈ [t∗, ∞), whereas for y ∈ (t, t∗), we have
φy(t) ≤ φy(t

∗) as the system is coherent and the state function of the (n + 1)th component
has been improved in this interval. Thus, the lifetime of a system with t∗ in each realization is
longer than that with t if t < t∗.

In the following example (suggested by the anonymous reviewer) we illustrate Lemma 4.1.
We show that this lemma holds, whereas the improvement of the mean of the component does
not result in the improvement of the mean of the system.
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Example 4.1. Let us consider a parallel system with lifetime S = max{T1, T2}, where T1 = 1
almost surely, and T2 follow an exponential distribution with parameter λ (greater than 1).
Suppose that T2 is replaced by another component with lifetime T3, where T3 = 1 almost
surely. Let S∗ = max{T1, T3} be the lifetime of the new system. Assume also that T1, T2, and
T3 are independent. Note that

P(T2 ≤ T3) = P(T2 ≤ 1) = 1 − e−λ ≥ 1
2 ,

and, hence, T2 ≤sp T3. Now

P(S < S∗) = P(max{T1, T2} < max{T1, T3})
= P(max{T1, T2} < max{T1, T3}|T1 = 1, T3 = 1)P(T1 = 1)P(T3 = 1)

= P(max{1, T2} < 1)

= 0.

Similarly,

P(S > S∗) = P(max{1, T2} > 1) = 1 − P(max{1, T2} ≤ 1) = 1 − P(T2 ≤ 1) = e−λ,

and
P(S = S∗) = P(max{1, T2} = 1) = P(T2 ≤ 1) = 1 − e−λ.

Thus, P(S ≤ S∗) = 1 − e−λ and P(S ≥ S∗) = 1, and both are greater than 1
2 . Hence, both

inequalities S ≤sp S∗ and S ≥sp S∗ hold. Further, we note that E(S) ≥ E(S∗) even though
E(T2) < E(T3).

Let us now specify the ordering in (2.1) as

T1 ≤sp T2 ≤sp · · · ≤sp Tn. (4.2)

However, the stochastic precedence order is the pairwise order and due to the possible non-
transitivity in the sequence (4.2) (see [15]), the lifetime Tn, for instance, is not necessarily greater
than some of T1, T2, . . . , Tn−1. To account for this ‘deficiency’, let us define the corresponding
multivariate generalization that reduces to the sp order for two variables. The sequential
stochastic precedence (ssp) order for the sequence of independent lifetimes, T1, T2, . . . , Tn

is the new order that gives the maximal probability to, e.g. the event T1 ≤ T2 ≤ · · · ≤ Tn, as
compared with all other permutations of these random variables, i.e.

P12...n ≡ P(T1 ≤ T2 ≤ · · · ≤ Tn) ≥ P{J }, (4.3)

where P{J }, {J } ≡ {j1j2 · · · jn}, denotes the corresponding probability for any other permuta-
tion (sequence) J . It is easy to see, e.g. that when the lifetimes are distributed exponentially
with parameters λn ≤ λn−1 ≤ · · · ≤ λ1 (pairwise hazard rate order), (4.3) holds. Using the
ssp, we can now formulate the following theorem.

Theorem 4.1. Let the sequential stochastic precedence order (4.3) hold for the 1-out-of-n
warm standby system described above. Then the corresponding sequence of the activation
of components achieves the maximum lifetime of a system in the sense of the stochastic
precedence order.
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Proof. Let the lifetimes of components of our system be ordered in accordance with (4.3).
Denote the arbitrary sequenced realizations of these lifetimes by t{J }. Assume that the system
had started operation with the component having the smallest realization from t{J }. Consider
the ith and the (i + 1)th components in this sequence of realizations, i = 1, 2, . . . , n − 1.
If the realization of the lifetime of the first component from this pair is smaller than that of
the second, we do nothing. Otherwise, we change the sequence of activation of these two
components. We can do it with all ‘nonproperly’ sequenced components and eventually arrive
at the realizations sequence ascending from the smallest to the largest. Denote by S12···n and
S{J } the system’s lifetimes achieved by the sequences that correspond to notation in (4.3) and
by s12···n, s{J } their realizations, respectively.

The reasoning provided below generalizes the discussion in Theorem 3.1 to the case of n

components. In essence, it means that if for the realizations of lifetimes of components
T1, T2, . . . , Tn ordered in accordance with (4.3), we have t1 ≤ t2 ≤ · · · ≤ tn, then the
corresponding realizations for the system’s lifetimes are ordered as s12···n ≥ s{J }. On the
other hand, it is clear that, as P12···n is the maximal probability, we have

P(S12···n ≥ S{J }) = P12···n
P12···n + P{J }

≥ 1

2
,

which means that the system lifetime for the activation sequence defined in (4.3) is longer than
any other activation sequence in the sense of the stochastic precedence order.

As in the rest of the paper, our justification of the proposed procedure is based on considering
the corresponding realizations. At each step, it is similar to the case of two components
considered in the previous section. The difference to be discussed, however, is that the initial
activation time in the case of only two components was 0 and now it is some arbitrary ta .
Let ti < ti+1 and the ith component start first if activated. We emphasize once more the fact
that ti are realizations of Ti, i = 1, 2, . . . , n, which are the lifetimes in the activated mode.
An event αti+1 < ta means that both components have failed before the prospective activation
and the corresponding comparison is irrelevant. Another possibility is that the ith component
fails before the activation whereas the (i + 1)th does not. In this case, the lifetime of the pair
(after activation) is, in accordance with the cumulative exposure model, (ti+1 −wta). The final
possibility is when both of them do not fail before activation. In this case, the lifetime of a pair
after activation is (compare with (3.1) corresponding to the ta = 0 case)

ti − wta + (ti+1 − w(ti − wta)), (4.4)

wherewta is the virtual age of the ith component just after activation and, therefore, its remaining
lifetime in this realization is (ti − wta). As the (i + 1)th component was operating during the
time since activation till the failure of the ith component in the warm standby mode, this time
should be recalculated to end up with the remaining lifetime of the (i + 1)th component after
its activation as (ti+1 − w(ti − wta)).

Now let the (i + 1)th component start first. Reasoning similar to the above results in a
smaller (in realizations) lifetime of a pair as compared with the initial sequence. For instance,
obviously, the term (ti+1 − wta), which corresponds to the case when the ith component fails
before the activation whereas the (i + 1)th does not, stays the same. We also have two specific
cases for the case when the components do not fail (in the warm standby mode) before ta (see
cases I and II of the previous section). But we can just adjust properly our previous reasoning
by considering the remaining lifetimes after activation, which are ti − wta and ti+1 − wta
(ti − wta < ti+1 − wta), then the reasoning and the comparison with (4.4) will be exactly the
same as the comparison of (3.2) with (3.1). �
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Note that, as follows from Lemma 4.1, at each step we are also improving the lifetime of a
system with respect to the sp order, which can be important in practice and can be considered as
an independent result. However, we eventually need the best solution, which is not guaranteed
by the reasoning within the frame of the sp order due to possible nontransitivity. For that we
need the ssp order (4.3).

Remark 4.2. Generalization to the model in (1.1) and (1.2) can be performed by reasoning
similar to that in Remark 3.1.

5. Concluding remarks

In this paper we have shown that the optimal operational sequence for the 1-out-of-n system
with warm standby is when the components are activated in accordance with the increasing
sequence of their lifetimes. It turns out that from our reasoning the natural stochastic ordering
for comparing lifetimes of the system is the stochastic precedence order and its generalization-
for comparing the lifetimes of components.

When the warm standby component is activated, its age should be ‘recalculated’. This
recalculation is performed using the virtual age concept and the cumulative exposure model.

The proofs were carried out for the linear cumulative exposure model. Generalization to the
time-dependent case was also discussed.

Previously, only specific cases of the problem were considered in the literature. In [4]
and [19], the case of two components was considered and the sequence was justified (in terms
of expected lifetimes of a system) for the case when the components were ordered in the sense
of the hazard rate ordering. Moreover, the corresponding sequence was justified in [19] for
1-out-of-n system but only for the exponentially distributed lifetimes of components.
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