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A modal stability analysis shows that plane Poiseuille flow of an Oldroyd-B fluid becomes
unstable to a ‘centre mode’ with phase speed close to the maximum base-flow velocity,
Umax. The governing dimensionless groups are the Reynolds number Re = ρUmaxH/η,
the elasticity number E = λη/(H2ρ) and the ratio of solvent to solution viscosity
β = ηs/η; here, λ is the polymer relaxation time, H is the channel half-width and ρ

is the fluid density. For experimentally relevant values (e.g. E ∼ 0.1 and β ∼ 0.9), the
critical Reynolds number, Rec, is around 200, with the associated eigenmodes being
spread out across the channel. For E(1 − β) � 1, with E fixed, corresponding to strongly
elastic dilute polymer solutions, Rec ∝ (E(1 − β))−3/2 and the critical wavenumber kc ∝
(E(1 − β))−1/2. The unstable eigenmode in this limit is confined in a thin layer near the
channel centreline. These features are largely analogous to the centre-mode instability
in viscoelastic pipe flow (Garg et al., Phys. Rev. Lett., vol. 121, 2018, 024502), and
suggest a universal linear mechanism underlying the onset of turbulence in both channel
and pipe flows of sufficiently elastic dilute polymer solutions. Although the centre-mode
instability continues down to β ∼ 10−2 for pipe flow, it ceases to exist for β < 0.5
in channels. Whereas inertia, elasticity and solvent viscous effects are simultaneously
required for this instability, a higher viscous threshold is required for channel flow. Further,
in the opposite limit of β → 1, the centre-mode instability in channel flow continues
to exist at Re ≈ 5, again in contrast to pipe flow where the instability ceases to exist
below Re ≈ 63, regardless of E or β. Our predictions are in reasonable agreement with
experimental observations for the onset of turbulence in the flow of polymer solutions
through microchannels.
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1. Introduction

The onset of turbulence in the flow of Newtonian fluids through pipes and channels is now
known to be dominated by nonlinear processes (Eckhardt et al. 2007; White & Mungal
2008), with the actual transition being preceded by the emergence of three-dimensional
solutions of Navier–Stokes equations, dubbed ‘exact coherent states’ (ECS) (Waleffe 1998,
2001; Wedin & Kerswell 2004), and with a concomitant reduction in the basin of attraction
of the laminar state. Experimentally, transition typically occurs at a Reynolds number
Re ≈ 2000 for pipe flows (Avila et al. 2011) and Re ≈ 1100 for channel flows (Patel &
Head 1969). In contrast, linear stability theory predicts channel (plane Poiseuille) flow
of a Newtonian fluid to become unstable at Re ≈ 5772 (Schmid & Henningson 2001),
and pipe flow to be stable at all Re (Meseguer & Trefethen 2003), implying that the
presence or absence of a linear instability has no relevance to the observed subcritical
transition. The mechanisms underlying transition in pipe and channel flows of viscoelastic
polymer solutions has, however, received much less attention. Although the addition of
polymers (∼10 ppm onward) is well known to result in drag reduction in the fully turbulent
regime (Virk 1975; Toms 1977; White & Mungal 2008; Graham 2014; Xi 2019), the
onset of turbulence in polymer solutions has attracted attention only recently. In their
experiments on pipe flow of polymer solutions, Samanta et al. (2013) showed that, for
concentrations greater than 300 ppm, transition occurs at an Re lower than 2000, and the
ensuing flow state was referred to as ‘elasto-inertial turbulence’ (EIT). Recent experiments
by Choueiri, Lopez & Hof (2018), Chandra, Shankar & Das (2018) and Chandra, Shankar
& Das (2020) have corroborated these findings using micro particle image velocimetry
(PIV) and pressure-drop measurements. Although most of the experiments on viscoelastic
transition have been carried out in the pipe geometry, the study of Srinivas & Kumaran
(2017) showed, using PIV measurements, that transition in the flow of dilute polymer
solutions (with concentrations in the range 30–50 ppm), through a rectangular channel
with a gap width of 160 μm and a cross-sectional aspect ratio of 1 : 10, occurred at
Re ∼ 300, again significantly lower than the Newtonian threshold. Importantly, Samanta
et al. (2013) showed that, for concentrations greater than 300 ppm, turbulence onset in
pipe flow occurred at the same Re irrespective of whether the flow is perturbed or not,
implying that the flow becomes unstable to infinitesimal disturbances. This suggests a
common linear mechanism underlying transition in the flow of polymer solutions through
both pipes and channels, particularly for sufficiently concentrated polymer solutions for
which the transition occurs at Re much lower than those corresponding to the Newtonian
transition. The proposed linear scenario for viscoelastic pipe and channel flows is thus in
direct contrast with the Newtonian transition in these geometries, wherein the common
underlying mechanism has a nonlinear subcritical character.

The notion of a linear mechanism underlying the viscoelastic transition was reinforced
by our recent discovery (Garg et al. 2018) of pipe flow of an Oldroyd-B fluid being linearly
unstable, in sharp contrast to the Newtonian scenario, with the critical Re being as low
as 100 for strongly elastic dilute solutions; a more detailed account of this instability
is provided by Chaudhary et al. (2021). The unstable eigenmode identified belongs to a
class of elasto-inertial (axisymmetric) ‘centre modes’ with phase speed approaching the
maximum base-flow velocity. In Garg et al. (2018), we had alluded to the existence of a
similar centre-mode instability in pressure-driven channel flow. In the present study, we
show that an analogous instability does indeed exist for channel flow, and for Re much
lower than 1000. We provide a comprehensive picture on the origin of the instability
and the domain of its existence in the parameter space consisting of Re = ρUmaxH/η,
elasticity number E = λη/(ρH2) and the ratio of solvent to solution viscosity β = ηs/η.

915 A43-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.60


Instability of viscoelastic plane Poiseuille f low

Here, λ is the microstructural relaxation time, Umax is the maximum base-flow velocity, ρ

is the fluid density, H is the channel half-width and η = ηp + ηs is the solution viscosity,
which is a sum of the polymer (ηp) and solvent (ηs) contributions. In addition, we discuss
the similarities and differences between the centre-mode instabilities of pipe and channel
flows, in the aforementioned Re–E–β space, ending with a discussion of the possible
transition scenarios for viscoelastic channel flow. We also show that our predictions are
in good agreement with the observations of Srinivas & Kumaran (2017).

1.1. Stability of rectilinear viscoelastic shearing flows
We first provide a brief overview of relevant previous work on stability of viscoelastic
channel flow; a detailed survey of this subject can be found in Chaudhary et al. (2019).
Most earlier studies have employed the upper-convected Maxwell (UCM)/Oldroyd-B class
of models to analyse the modal stability of both plane Couette and Poiseuille flows.
Recall that the dimensionless parameters governing the stability of an Oldroyd-B fluid
are Re, E and β, with β = 0 and 1 being the UCM and Newtonian limits, respectively
(note that, in lieu of E, one may also use the Weissenberg number W = ERe). To begin
with, it is useful to keep in mind the broad features of the Newtonian spectrum for plane
Poiseuille flow. At sufficiently high Re, the spectrum has a characteristic ‘Y-shaped’ locus
with three distinct branches: the ‘A branch’ comprising ‘wall modes’ with phase speeds
cr → 0; the ‘P branch’ comprising ‘centre modes’ with phase speeds cr → 1; and the ‘S
branch’, which forms a vertical line in the cr–ci plane comprising modes with a phase
speed equalling two-thirds of the maximum base-flow velocity. A wall mode belonging
to the A-branch, referred to as the Tollmien–Schlichting (TS) mode, becomes unstable
for Re > 5772 (Schmid & Henningson 2001). Although viscoelastic plane Poiseuille flow
was found to be stable at low Reynolds number (less than one) by Ho & Denn (1977)
and Lee & Finlayson (1986a), Denn and co-workers (Porteous & Denn 1972; Ho & Denn
1977) used the UCM model and showed that, for sufficiently high Re (>2000) and E,
two new unstable wall modes appear in the eigenspectrum in addition to the elastically
modified TS mode and one of these new modes is the most unstable mode at sufficiently
high E. Sureshkumar & Beris (1995b) used an Arnoldi algorithm to identify the most
unstable eigenmodes in plane Poiseuille flow of a UCM fluid, and showed that the critical
Re (Rec) for the elastically modified TS mode showed a non-monotonic behaviour with
increasing E. Consistent with the findings of Porteous & Denn (1972), at sufficiently
high E, Sureshkumar & Beris (1995b) identified an unstable mode that is absent in
Newtonian channel flow. However, the new unstable mode was found to be suppressed
on account of a finite solvent viscosity (using the Oldroyd-B model) or finite extensibility
(using the FENE-CR model; see Chilcott & Rallison 1988). Subsequently, Sadanandan &
Sureshkumar (2002) carried out a modal stability analysis to explore the effect of fluid
elasticity on the TS mode at different β and showed a non-monotonic dependence of Rec
on E, similar to the UCM limit. A similar non-monotonic behaviour was also reported by
Zhang et al. (2013) using the FENE-P model which, like the FENE-CR model, accounts for
the finite extensibility of polymer chains. The recent effort of Brandi, Mendonça & Souza
(2019) also explored the role of elasticity on the TS (wall) mode using the Oldroyd-B
model, focusing on smaller range of E (0 < E < 0.003). Both linear stability analysis
(using a shooting procedure) and direct numerical simulations (DNS) were used to analyse
the unstable flow structures corresponding to the wall mode, and good agreement was
found between the two.

As mentioned previously, viscoelastic plane Poiseuille flow is stable in the limit of
low Re, and Kumar and co-workers (Hoda, Jovanovic & Kumar 2008, 2009; Jovanovic &
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Kumar 2010, 2011) have therefore explored the possibility of non-modal (transient) growth
in these flows, with the non-modal mechanism being purely elastic, and therefore operative
in the inertialess limit. Zhang et al. (2013), in contrast, examined non-modal growth in
inertially dominated channel flows of both Oldroyd-B and FENE-P fluids, and found that
stream-wise elongated structures exhibit the largest transient growth in the subcritical
regime. There have also been many studies that used a weakly nonlinear approach (Bertola
et al. 2003; Meulenbroek et al. 2004; Morozov & van Saarloos 2005; Pan et al. 2013) to
identify a subcritical instability in the inertialess limit. These studies were motivated by
a hoop-stress-driven mechanism operative at the nonlinear order, which is caused by a
curvature of the infinitesimally perturbed streamlines. However, these nonlinear analyses
were predicated on the rather simplistic structure of the viscoelastic spectrum in the
inertialess limit, and as pointed out by Chaudhary et al. (2021), may not be applicable
at higher Re.

In a recent effort, Chaudhary et al. (2019) employed a numerical shooting procedure
along with the spectral method (over a wide range of Re and E) to provide a comprehensive
picture of the stability of both plane Couette and Poiseuille flows in the UCM limit.
In contrast to the earlier efforts mentioned previously, Chaudhary et al. (2019) also
analysed the structure of the elasto-inertial spectrum in detail, in addition to examining the
unstable discrete modes found in earlier studies. In doing so, at sufficiently high Re and
E, the authors demonstrated the existence of a possibly infinite hierarchy of elasto-inertial
instabilities in Poiseuille flow that are absent in the Newtonian limit. Further, both sinuous
and varicose modes were shown to be unstable, in contrast to the Newtonian case where
only the sinuous mode is unstable. For Re � 1, the unstable modes found by Chaudhary
et al. (2019) belong to the class of wall modes, and the minimum Reynolds number at
which the flow is unstable (at any E) was found to be O(1000) in the UCM limit. It
has recently been found (Khalid et al. 2020) that the inclusion of a solvent (viscous)
contribution, corresponding to a small but finite β, has a strong stabilizing effect on these
unstable modes, an effect that may be attributed to the presence of fine-scaled structures
in the higher-order elasto-inertial modes. Thus, the wall mode instabilities examined in
earlier studies do not pertain to the transition observed in channel flow of dilute polymer
solutions with β ∼ 0.9 (Srinivas & Kumaran 2017).

Whereas the aforementioned efforts focused on wall modes, Garg et al. (2018) reported
a hitherto unexplored linear instability in pipe Poiseuille flow of an Oldroyd-B fluid, which
exists only in the presence of solvent viscous effects, and is surprisingly absent in the UCM
limit. This implies a destabilizing role of solvent viscosity on the centre mode, in direct
contrast to its stabilizing effect on the aforementioned wall-mode instabilities in channel
flow. Further, the threshold Re for transition is significantly lower than the Newtonian
threshold even for relatively modest E; for instance, Rec ∼ 500 for β = 0.8 and E ∼ 0.1.
As was briefly reported in Garg et al. (2018), a similar centre-mode instability exists in
plane channel flow of an Oldroyd-B fluid. The central objective of the present work is
to expand further on the origin and nature of this centre-mode instability in viscoelastic
channel flow, and to identify its domain of existence in the Re–E–β space.

1.2. Computational bifurcation studies and DNS
We may classify computational efforts towards understanding viscoelastic transition and
drag reduction into two broad categories: (i) bifurcation studies that have explored the role
of viscoelasticity on the three-dimensional Newtonian ECS solutions that helped shed light
on the Newtonian transition scenario; and (ii) DNS. Both classes of investigations almost
exclusively use the FENE-P equation to model the polymer dynamics. In direct contrast to
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the experimental scenario which, as already seen, is dominated by a focus on pipe flows,
almost all of the computational studies (except that of Lopez, Choueiri & Hof (2019), as
described later) have been carried out for the channel geometry. Implicit in this focus on
the channel geometry is the assumption of an identical physical mechanism underlying the
transition in both the pipe and channel geometries. This is justified in the Newtonian case
owing to the structural similarities of the Newtonian ECS solutions in all of the canonical
rectilinear shearing flows including, in particular, the channel (Waleffe 2001) and pipe
(Wedin & Kerswell 2004) geometries; the ECS solutions in all cases are characterized
by a staggered arrangement of counter-rotating vortices and stream-wise streaks. Thus,
although Newtonian pipe and channel flows yield very different results with regard to
linear modal stability (Drazin & Reid 1981), they nevertheless exhibit similar subcritical
transitions to turbulence, with this transition in either case being understood now in terms
of a turbulent trajectory wandering chaotically amongst a multitude of the aforementioned
ECS solutions in an appropriate phase space. A series of papers by Graham and co-workers
(Stone, Waleffe & Graham 2002; Stone & Graham 2003; Stone et al. 2004; Li, Xi &
Graham 2006; Li & Graham 2007) have shown that elasticity has a stabilizing effect on the
simplest of the three-dimensional ECS solutions (travelling waves) in viscoelastic plane
Couette and Poiseuille flows, in terms of delaying the bifurcation birthing these solutions
to a higher Re; the results for sufficiently high E are suggestive of the ECS being fully
suppressed by elasticity. This, in turn, is suggestive of a delay in transition due to elasticity,
a prediction that has some experimental support wherein the onset of turbulence, in pipe
flow of polymer solutions, was delayed at lower polymer concentrations (Samanta et al.
2013; Chandra et al. 2018; Choueiri et al. 2018).

Starting from the pioneering work of Sureshkumar, Beris & Handler (1997), there have
been many DNS investigations (De Angelis, Casciola & Piva 2002; Sibilla & Baron 2002;
Dubief et al. 2004; Xi & Graham 2010, 2012; Xi 2019) carried out to study the mechanisms
underlying turbulent drag reduction. These efforts were able to successfully capture the
moderate drag reduction regime (at Re below the so-called maximum drag reduction
regime), and showed that turbulence production in the buffer layer is modified by the
addition of polymers, as originally predicted by Virk (1975). All of these early studies
incorporated an additional diffusive term in the constitutive equation in order to preserve
the positive definiteness of the polymer conformation tensor. However, the diffusivity D
used is orders of magnitude larger than the Brownian diffusivity of a polymer molecule.
The Schmidt number Sc = ν/D should be O(106) (where ν is the kinematic viscosity of
the fluid) for realistic values of the polymer diffusivity, but the aforementioned simulations
used Sc ∼ 0.5. Recently, Dubief and co-workers (Dubief, Terrapon & Soria 2013; Samanta
et al. 2013; Sid, Terrapon & Dubief 2018) have carried out DNS of viscoelastic channel
flow in the absence of stress diffusion to show that the deviation of friction factor from the
laminar value occurred at Re ∼ 700 (whereas it does so for Re ∼ 5000 for the Newtonian
case in their computations), thereby demonstrating the early onset of EIT, in direct
contradiction to the conclusions of Graham and co-workers based on their investigation
of the elastically modified ECS. Crucially, the structures that dominated the onset of EIT
were two-dimensional (span-wise elongated and stream-wise varying), in direct contrast
with the three-dimensional ECS structures (stream-wise elongated and span-wise varying)
that dominate the Newtonian (and weakly elastic) transition. The recent work of Sid et al.
(2018) has shown that the two-dimensional EIT structures are suppressed for Sc < 9, thus
demonstrating the spurious stabilizing role played by the large stress diffusivities used in
the earlier DNS studies (It is pertinent here to add a caveat that the aforementioned results
of Graham and co-workers on the stabilization of the simplest ECS were also obtained

915 A43-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.60


M. Khalid and others

using artificially large stress diffusivities, and it would therefore be prudent to revisit
the original conclusions of the authors, at Sc ∼ O(1), in light of the recent findings for
Sc = ∞). Another recent DNS study (Lopez et al. 2019), the only one that pertains to
the pipe geometry, showed that the onset to EIT is dominated by axisymmetric vortices
oriented along the azimuthal direction (the analogue of the span-wise direction in the pipe
geometry). The qualitative similarity between the nature of elasto-inertial structures seen
in the aforementioned DNS of viscoelastic channel and pipe flows is, in fact, consistent
with our earlier report (Garg et al. 2018) of an analogous linear instability in these flows,
thereby suggestive of a generic linear mechanism for turbulence onset in viscoelastic
channel and pipe flows. Note, however, that the analogy is qualitative because the pipe
centre-mode eigenfunctions, even when confined to the neighbourhood of the centreline,
as happens at large Re (see Chaudhary et al. 2021, and § 4 of this work), do not still lend
themselves to a two-dimensional approximation. Thus, as demonstrated in the following,
there remain some important differences in the behaviour of the threshold parameters for
the pipe and channel flow cases.

As mentioned previously, the ECS-driven three-dimensional transition mechanism is
suppressed for quite modest E and, on the other hand, it is shown in the present work
that the centre-mode instability exists only for sufficiently high E. Thus, for intermediate
E, there must be new (subcritical) nonlinear mechanisms that underlie the viscoelastic
transition. In this regard, two very different mechanisms have been advanced in the
recent literature. The first by Shekar et al. (2019) and Shekar et al. (2020) proposes
a two-dimensional nonlinear mechanism that entails strongly localized polymer stretch
fluctuations near the ‘critical layer’ (the transverse location where the phase speed
of disturbances equals the local laminar velocity) corresponding to the (least-stable)
elastically modified, TS (wall) mode. The second by Page, Dubief & Kerswell (2020) (see
also Dubief et al. 2020) is rooted in a novel nonlinear elasto-inertial coherent structure
that originates (subcritically) from the critical point corresponding to the centre-mode
instability. We demonstrate, in appendix B, that although the centre mode is invariably
the least-stable mode for high E, even in the Newtonian or weakly elastic limit, there
exist parameter regimes (based on the perturbation wavenumber and the elasticity number)
where the centre mode is less stable than all the wall modes, including the aforementioned
TS mode. Thus, the two-dimensional nonlinear mechanism rooted in the TS mode (Shekar
et al. 2019) is likely to be valid only in restricted parts of the Re–E parameter space,
even for smaller E for which the centre mode is linearly stable. Nevertheless, given the
relevance of the least-stable eigenmode(s) in the elasto-inertial spectrum to both of the
aforementioned nonlinear mechanisms, in § 5, we demarcate regions in the Re–E plane
where the centre and wall modes are least stable. In light of the rather high-dimensional
parameter space required even for a minimal description of viscoelastic shearing flow,
such a demarcation should serve as a useful guide in the search for nonlinear transition
mechanisms in the Re–E plane, where the flow is linearly stable.

The rest of this paper is structured as follows. Section 2 provides the linearized
governing equations for viscoelastic channel flow, along with a discussion and validation
of the numerical methods used in this study. In § 3.1, we discuss the general features
of the Oldroyd-B eigenspectrum and contrast it with its Newtonian counterpart. Section
3.2.1 demonstrates the origin of the unstable centre mode with increasing E at fixed β.
Section 3.2.2 examines the deviation from the Newtonian limit at a fixed E, but with β

decreasing from unity, the focus again being on the emergence of the centre mode below
a threshold β. Neutral stability curves in the Re–k plane are presented in § 4. Section
4.1 shows the collapse of the neutral stability curves in the limit E � 1 for a given β,
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and in the limit E(1 − β) � 1 for fixed E. The variation of the critical parameters (Rec,
kc) with E(1 − β) is discussed in § 4.2, whereas the absence of this instability at lower β is
demonstrated in § 4.3. In § 4.4, the threshold Re for the centre-mode instability is shown to
remain virtually unaltered for realistic polymer diffusivities, although the artificially large
stress diffusivities used in many DNS has a stabilizing effect. Our theoretical predictions
are shown to agree well with the observations of Srinivas & Kumaran (2017) in § 4.5. In
§ 5, we discuss the possible transition scenarios in viscoelastic channel flows by showing
our results for the onset of transition via linear instability, alongside the results of Li &
Graham (2007) for the ECS-mediated nonlinear transition, in the Re–E plane. The salient
conclusions of the present study are provided in § 6. Appendices A.1 and A.2 focus on an
overall comparison of the Newtonian and Oldroyd-B spectra. Appendix A.1 shows how
the Oldroyd-B spectrum deviates from the Newtonian one as E is increased from zero at
fixed β, and appendix A.2 examines the evolution of the spectrum as β is increased from
zero at fixed E. The relative importance of centre modes, wall modes and modes belonging
to the continuous spectrum (CS) in viscoelastic channel flow is discussed in appendix B,
where it is argued that at sufficiently high E, it is either the CS or the centre mode which
is least stable (or even unstable, in case of the centre mode).

2. Problem formulation

2.1. Governing equations
We consider pressure-driven flow of an incompressible viscoelastic fluid in a channel
with walls separated by a distance 2H (figure 1). The viscoelastic fluid is modelled
using the Oldroyd-B constitutive equation (Larson 1988), which is applicable to dilute
polymer solutions wherein the polymer chains are assumed to be non-interacting, and
each chain is modelled as an elastic dumbbell with beads connected by a linear infinitely
extensible entropic spring. This model predicts a shear-rate independent viscosity and
first normal stress difference in viscometric shearing flows. Many authors have used
this model in the past to analyse instabilities in the flow of dilute polymer solutions in
rectilinear (Sureshkumar & Beris 1995b; Wilson, Renardy & Renardy 1999; Morozov
& Saarloos 2007; Zhang et al. 2013; Garg et al. 2018), curvilinear (Shaqfeh 1996) and
cross-slot (Poole, Alves & Oliveira 2007) geometries with considerable success. To render
the governing equations dimensionless, we use the centreline maximum velocity of the
laminar base state Umax as the velocity scale, channel half-width H as the length scale,
H/Umax as the time scale, ηUmax/H as the scale for the stresses and pressure and η is the
total solution viscosity. The dimensionless continuity and momentum equations are given
by

∇ · u = 0, (2.1)

Re
(

∂u
∂t

+ (u · ∇)u
)

= −∇p + β∇2u + ∇ · τ . (2.2)

Here, Re = ρUmaxH/η is the Reynolds number based on the solution viscosity and
β = ηs/η. The Oldroyd-B constitutive relation for the polymeric stress tensor, τ , in
dimensionless form is given by

τ + W
(

∂τ

∂t
+ (u · ∇)τ − (∇u)ᵀ · τ − τ · (∇u)

)
= (1 − β) (∇u + ∇uᵀ) . (2.3)

Here, W = λUmax/H is the Weissenberg number and λ is the microstructural relaxation
time. The UCM model, which ignores the solvent contribution to the stress, is obtained
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2H

z = H

z = –H

x

z

Figure 1. Schematic representation of the configuration consisting of pressure-driven flow in a channel of
half-width H.

from the Oldroyd-B model by setting β = 0, whereas the limit of a Newtonian fluid is
obtained by setting β = 1.

2.2. Base flow
The laminar base state whose stability is of interest here is the steady fully developed
pressure-driven channel flow of an Oldroyd-B fluid, with the base-state velocity profile
U(z) = 1 − z2 being identical to that of plane Poiseuille flow of a Newtonian fluid.
However, unlike its Newtonian counterpart, the Oldroyd-B fluid exhibits a nonzero first
normal stress difference (Txx − Tzz) = 8(1 − β)Wz2. Here, and in what follows, the
velocity and stress fields corresponding to the base flow are denoted by uppercase letters.

2.3. Linearized governing equations
A temporal linear stability analysis of the aforementioned base flow is carried out by
imposing infinitesimal perturbations (denoted by primes) to the base flow: u = U +
u′, p = P + p′, τ = T + τ ′. As Squire’s theorem is valid for plane Poiseuille flow of
an Oldroyd-B fluid (Bistagnino et al. 2007), we restrict our analysis to two-dimensional
perturbations, which are considered as elementary Fourier modes of the form f ′(x, z, t) =
f̃ (z) exp[ik(x − ct)], where f ′ is the relevant disturbance field, f̃ (z) is the eigenfunction, k is
the dimensionless wavenumber and the eigenvalue c = cr + ici is the complex wavespeed
of perturbations. If ci > 0, the perturbations grow exponentially with time leading to an
instability. Substituting the Fourier mode representation for perturbations in the linearized
governing equations yields, with dz = d/dz, and primes on the base velocity profile U(z)
denoting derivatives with respect to z:

dzṽ(z) + ikũ(z) = 0, (2.4)

Re[ik(U − c)ũ(z) + ṽ(z)U′] = −ikp̃(z) + β(d2
z − k2)ũ(z)

+ikτ̃xx(z) + dzτ̃xz(z), (2.5)

Re ik(U − c)ṽ(z) = −dzp̃(z) + β(d2
z − k2)ṽ(z)

+ikτ̃xz(z) + dzτ̃zz(z), (2.6)

[1 + ikW(U − c)]τ̃xx(z) = (1 − β)[2ikũ(z) + 4ikW2(U′)2ũ(z) + 2WU′dzũ(z)

−4W2U′U′′ṽ(z)] + 2WU′τ̃xz(z), (2.7)

[1 + ikW(U − c)]τ̃zz(z) = 2(1 − β)[dzṽ(z) + ikWU′ṽ(z)], (2.8)

[1 + ikW(U − c)]τ̃xz(z) = (1 − β)[dzũ(z) + ikṽ(z) + 2ikW2(U′)2ṽ(z)

−WU′′ṽ(z)] + WU′τ̃zz(z). (2.9)
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N Re, k, E, β Sureshkumar and Beris Present

257 1990, 1.2, 0.003, 0 0.34580 + 1.01 × 10−4i 0.34580 + 9.81 × 10−6i
129 1990, 1.2, 0.003, 0 0.34580 + 9.81 × 10−5i 0.34580 + 9.81 × 10−6i
129 3960, 1.15, 0.001, 0.5 0.29643 + 1.71 × 10−7i 0.29643 + 1.73 × 10−7i

Table 1. Validation of UCM (β = 0) and Oldroyd-B (β = 0.5) results with those of Sureshkumar & Beris
(1995b) for viscoelastic channel flow.

2.4. Numerical procedure
In order to determine the complex eigenvalue (c), we use a spectral collocation method
(Boyd 1999; Weideman & Reddy 2000), where the dynamical variables (velocity, pressure
and stress perturbations) are expanded as a finite sum of Chebyshev polynomials and
substituted in the above linearized differential equations. In our spectral formulation, we
discretize all of the six (2.4)–(2.9), and the resulting generalized eigenvalue problem is of
the form

Ax = cBx, (2.10)

where A and B are coefficient matrices, and x = (ũ, ṽ, p̃, τ̃xx, τ̃xz, τ̃zz)
ᵀ is the vector

comprising of the coefficients of the spectral expansion at the collocation points. The
size of the A matrix is 6N × 6N, where N is the number of Gauss–Lobatto collocation
points. The generalized eigenvalue problem is solved using the ‘polyeig’ eigenvalue solver
of Matlab. To filter out the spurious eigenvalues associated with the spectral method,
we run our spectral code for two different values of N, say, 400 and 500, and eliminate
those eigenvalues that do not satisfy a prescribed tolerance criterion. In the following
discussion, we usually use N between 400 and 600 for k, E < 1. However, for the highest
E, we use N = 900 to obtain convergence of the unstable mode. In addition, a numerical
shooting procedure (Ho & Denn 1977; Lee & Finlayson 1986b; Schmid & Henningson
2001) is used for further validation by providing the results from the spectral method
as initial guesses. The numerical shooting procedure involves an adaptive Runge–Kutta
integrator coupled with a Newton–Raphson iterative scheme to solve for the eigenvalues.
Only physically genuine modes from the spectral method converge with the shooting code.
To benchmark the implementation of our numerical methodology, we compare (table 1)
results from our procedure with those of Sureshkumar & Beris (1995b) for both UCM
and Oldroyd-B fluids. The unstable eigenvalues are in good agreement for N = 129 and
N = 257. In addition, we have benchmarked our results with those of Chaudhary et al.
(2019) for the UCM case.

3. Emergence of the unstable centre mode in the elasto-inertial eigenspectrum

3.1. The Newtonian and Oldroyd-B spectra
We first discuss the key differences between the Oldroyd-B and Newtonian eigenspectra.
Note that the Oldroyd-B eigenspectrum reduces to the Newtonian eigenspectrum when
either E = 0 (for any β) or β = 1 (for any E). As mentioned in § 1, the Newtonian
eigenspectrum for plane Poiseuille flow (see figure 2a), at sufficiently high Re, has a
characteristic ‘Y-shaped’ structure. For Re > 5772, a wall mode belonging to the ‘A’
branch becomes unstable (Schmid & Henningson 2001), this being the TS instability.
The eigenspectrum at Re = 800, E = 0.1, β = 0.8 and k = 1.5 (figure 2b) shows that
in addition to the elastic modification of the discrete modes of the Newtonian spectrum,
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Figure 2. Eigenspectra for plane Poiseuille flow of (a) Newtonian (E = 0) and (b) Oldroyd-B (E = 0.1) fluids
at Re = 800, k = 1.5 and β = 0.8. The A, P, and S branches of the Newtonian spectrum are indicated in (a).
The inset in (b) zooms over the region near the unstable eigenvalue.

the spectrum for the Oldroyd-B fluid has a pair of CS ‘balloons’ (Graham 1998; Wilson
et al. 1999; Chaudhary et al. 2019). The exact locations of the two continuous spectra are
obtained in the following manner (Wilson et al. 1999; Chokshi & Kumaran 2009). The
linearized governing equations and constitutive relations (2.4)–(2.9) can be recast into a
single fourth-order differential equation for ṽz, wherein the coefficient of the highest-order
derivative vanishes when [1 + ikW(U − c)] = 0 and [1 + iβkW(U − c)] = 0. This yields
ci = −1/(kW) and ci = −1/(βkW), with cr = U(z), for the two CS; the latter condition
implies cr ∈ [0, 1]. The CS with ci = −1/(kW) is present even in the absence of solvent
(i.e. the UCM limit), and henceforth will be referred to as ‘CS1’. The second continuous
spectrum (abbreviated as CS2), characterized by modes with ci = −1/(βkW), is present
only for non-zero β. Theoretically, both the CS are ‘lines’ in the cr–ci plane with the
aforementioned ci. As the eigenfunctions corresponding to the CS eigenvalues are singular,
these are resolved only approximately by the finite number of collocation points used in
the spectral method. Thus, both the CS appear as balloons whose spread only decreases
slowly with increasing N. In addition to the elastically modified Newtonian discrete modes
and the CS balloons, new discrete modes (absent in the Newtonian spectrum) also appear,
of which one of the centre modes is unstable at E = 0.1 (see the inset of figure 2b); all
other discrete modes, including the continuation of the TS (wall) mode, remain stable for
Re = 800. An analogous centre-mode instability for viscoelastic pipe flow (over a similar
range of parameters) was first reported by Garg et al. (2018), and has since been examined
in more detail by Chaudhary et al. (2021). The presence of a centre-mode instability in
both channel and pipe flows of an Oldroyd-B fluid is in direct contrast to the Newtonian
scenario, where pipe flow is stable at any Re.

3.2. Evolution of the unstable elasto-inertial centre mode
In this section, we discuss the emergence and trajectory of the elasto-inertial centre mode
(henceforth labelled ECM-1) that turns unstable for large enough E, and a few of the
least-stable discrete stable modes, by following two different paths in parameter space,
both starting from the Newtonian limit: (i) increasing E (from zero) at fixed β and (ii)
decreasing β (from unity) at fixed E; we also examine the non-trivial effect of changing β

on the spectrum in the complementary UCM limit (β → 0).
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Figure 3. Eigenspectra for Re = 650, k = 1, β = 0.96 at different E. (a) The full spectrum. (b) Enlarged
view of (a) near the unstable eigenvalue expressed using the scaled growth rate kWci. The continuous (blue)
line showing the trajectory of ECM-1 is obtained using shooting method, whereas symbols show results from
the spectral method.

3.2.1. Effect of varying E at fixed β

The focus of the ensuing discussion is on the aforementioned centre mode; a detailed
depiction of the overall features of the elasto-inertial spectrum, as a function of both E
and β, is provided in appendix A. In general, when E is increased from zero at fixed β,
Re and k, the two CS moves up towards the ci = 0 line (the cr axis), and the continuation
of the centre modes originally present in the Newtonian P-branch (termed the NCM-i,
i being the mode number), merge with CS1 (located at ci = −1/(kE Re)); new discrete
modes also emerge from below the CS1 in this process (see appendix A.1). We further
demonstrate (see appendix A.2) that the distinct class of discrete modes, comprising the
shear waves in the UCM spectrum (β = 0), referred to here as the ‘HFGL’ (high-frequency
Gorodtsov–Leonov) class of modes (Gorodtsov & Leonov 1967), are strongly stabilized
at finite β. Hence, the continuation of the HFGL modes are not relevant in determining
the stability of plane-Poiseuille flow in the dilute and semi-dilute regimes of relevance
to experimental studies. At higher E, all the Newtonian centre modes have merged with
the CS, and the CS-modes are, therefore, the least stable. Crucially, beyond a threshold
E, a new ‘elasto-inertial’ centre mode emerges above the CS, and this mode becomes
eventually unstable at sufficiently high E (see figure 21 of appendix A.1).

Figures 3(a) and 3(b) present the eigenspectra for different E varying over the interval
(0.4, 1.1) for β = 0.96, with figure 3(b) being plotted in terms of the scaled growth
rate kWci, which ensures that the locations of the two CS are fixed as E is changed
(for a given β). Figure 3(a) tracks the paths taken (with increasing E) by the first few
discrete modes, whereas the continuous line in figure 3(b) represents the trajectory of the
unstable elasto-inertial centre mode (ECM-1) alone obtained from the shooting method
(the superposed symbols correspond to results obtained using the spectral method). The
new elasto-inertial centre mode, which emerges above the CS1 at E ≈ 0.4, becomes
unstable for 0.48 < E < 1.04, but becomes stable again for E > 1.04, with |ci| eventually
scaling as 1/E for large E, quite similar to pipe flow (Chaudhary et al. 2021). However,
unlike pipe flow, the cr for the unstable mode exceed unity over some ranges of E.

Figure 4 shows the velocity eigenfunctions (ṽx, ṽz) for different E, corresponding to
some of the unstable centre modes shown in figure 3. The ṽx eigenfunctions are symmetric
about the channel centreline (and are therefore shown only over one half of the channel),
in marked contrast with the TS (wall) and NCM-1 modes, which are antisymmetric about

915 A43-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.60


M. Khalid and others

0
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Figure 4. Velocity eigenfunctions corresponding to unstable eigenvalues in figure 3 for Re = 650, k = 1,
β = 0.96 and at different E: (a) axial velocity, ṽx; (b) wall-normal velocity, ṽz. The ṽx eigenfunctions are
symmetric about the channel centre, and are shown over the half-domain 0 ≤ z ≤ 1. The eigenvalues for which
the eigenfunctions are shown here are E = 0.7, c = 0.99856712 + 0.00204187i; E = 0.9, c = 1.00087623 +
0.00130115i; E = 1.0, c = 1.00121782 + 2.88573410 × 10−4i.

the channel centreline; note that NCM-1 refers to the first (least-stable) mode originally on
the P-branch of the Newtonian spectrum. The eigenfunctions have their peak amplitudes
closer to the channel centreline, but are nevertheless spread across the entire channel
for the moderate Re considered here, similar to the centre-mode instability in pipe flow
(Chaudhary et al. 2021). This latter fact, that the unstable eigenfunctions for moderate Re
and E are not localized near the channel centreline despite the phase speed being close
to the maximum velocity of the base flow, needs to be emphasized since this contradicts
earlier interpretations of our original report on the centre-mode instability (Shekar et al.
2019). The contours corresponding to the velocity (v̂x(x, z), v̂z(x, z)) and stream-wise
component of the polymeric stress (τ̂xx(x, z)) eigenfunctions of the unstable mode are
shown in figure 5, and reinforce the relatively modest confinement (in the neighbourhood
of the centreline) at Re = 650.

Figure 6(a) shows the variation of ci for the TS mode (TSM), NCM-1 and ECM-1 modes
with E. In the near-Newtonian limit (E → 0), TSM is the least-stable mode followed by
NCM-1, whereas ECM-1 just emerges from the CS1 for E ≈ 0.01. For E ∼ 0.01, the decay
rates of TSM and ECM-1 cross each other, and for all higher values of E, ECM-1 is
the least-stable/unstable mode. For E > 0.02, both TSM and NCM-1 collapse into CS1
(figure 6a); we discuss this feature in more detail in appendix B where we compare the
relative stability of these two modes for different values of Re, k and β. Thus, the mode
ECM-1 is the least-stable discrete mode for E > 0.01, and, in fact, is the only discrete
mode that lies above the CS for E > 0.02; for E > 0.1, ECM-1 becomes unstable (inset
of figure 6a). The corresponding behaviour of the phase speeds of the three modes is
shown in figure 6(b), where the phase speeds for TSM and NCM-1 increase with E, before
eventually merging into CS1, whereas the phase speed of ECM-1 remains almost constant
(close to unity) over the range of E spanned.

Unlike elasto-inertial wall modes (Chaudhary et al. 2019), the elasto-inertial centre
mode remains stable in the UCM limit (β = 0) for channel flow, and remains so for β

below a finite threshold. Figure 7(a) explores the effect of varying E on ECM-1 for β = 0
and 0.5. In the UCM limit (β = 0), as E is increased from the Newtonian limit (E → 0),
|ci| eventually decreases to very small values (figure 7a). However, ci remains negative
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Figure 5. Contours of vx, vz and Txx for unstable (symmetric) centre mode in the x–z plane for Re = 650,
β = 0.96, k = 1 and E = 0.7. The unstable eigenvalue is c = 0.99856712 + 0.00204187i.
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Figure 6. Relative stability of the first three least stable eigenmodes, namely TS mode (TSM), elastically
modified Newtonian centre mode (NCM-1) and the new elasto-inertial centre mode (ECM-1) at Re = 800, k =
1.5 and β = 0.8. (a) Variation of ci with E (inset shows the range of E for which ECM-1 is unstable). (b) Phase
speed (cr) corresponding to the modes shown in (a). In the Newtonian limit (E → 0), TSM is the least stable
mode that governs the stability of the flow, whereas ECM-1 emerges from CS1 at E ∼ 0.01. However, as
E increases, both TSM and NCM-1 disappear into CS1 leaving behind ECM-1 as the least-stable mode for
E > 0.02, which eventually becomes unstable at E ≈ 0.1.

even for very large E and, therefore, no centre-mode instability is found in the UCM limit
for channel flow. An analogous behaviour is found for β = 0.5. At higher β, ECM-1 does
become unstable as explained in the following paragraph.

While discussing the evolution of the elasto-inertial centre mode (ECM-1) in pipe flow
at fixed β, and for different E, Chaudhary et al. (2021) identified two qualitatively different
trajectories of ECM-1 depending upon β: For β ≥ 0.85, ECM-1 collapses into CS1 in the
limit E → 0, and does not seem to have any connection with the Newtonian spectrum
(and with the least-stable Newtonian centre mode NCM-1, in particular). However, for
β < 0.85, the unstable centre mode smoothly continues to the least-stable centre mode
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Figure 7. Effect of increasing E on the elasto-inertial centre mode (ECM-1) for UCM and Oldroyd-B fluids.
(a) Variation of ci for Re = 800, k = 1.5 and β = 0 and 0.5. The centre mode remains stable for β < 0.5 even
at very large values of E, in stark contrast to pipe flow which remains unstable at much lower β. (b) Scaled
growth rate of ECM-1 for Re = 2500, k = 0.19, β = 0.58 and Re = 650, k = 1, β = 0.96. Regardless of the
value of β, ECM-1 in channel always emerges from CS1 (ci = −1/(kW)) in the limit E → 0.

of the Newtonian eigenspectrum (labelled NCM-1 in this study). For channel flow, in
marked contrast, the unstable elasto-inertial centre mode never smoothly continues to
its Newtonian counterpart with decreasing E, within the parameter regimes explored.
This is because ECM-1 and NCM-1 are modes with opposite symmetry (as will be seen
later in figure 27 of appendix B), the tangential velocity eigenfunction for NCM-1 is
antisymmetric about the channel centreline, while it is symmetric for ECM-1 as already
seen in figure 4, with the former emerging out of CS1 at a (non-zero) threshold E, and the
latter collapsing into CS1 at a smaller E, for any fixed β. For the pipe-flow case, the smooth
connection made possible by the axisymmetry of both modes. Figure 7(b) reinforces this
trend by showing the scaled growth rate of the least-stable elasto-inertial centre mode
for two different β, both greater than 0.5 (namely, 0.58 and 0.96). The range of E for
which elasto-inertial centre mode remains unstable increases with β. For both β, ECM-1
follows a trajectory similar to the one shown in figures 3 and 6(a). Thus, the elasto-inertial
centre mode, whether unstable or otherwise, is not the continuation/elastic modification of
least-stable Newtonian centre mode (NCM-1) for any β (regardless of Re or E).

3.2.2. Effect of varying β at fixed E
We considered the effect of varying β on the elasto-inertial spectrum both from the
Newtonian (β = 1) and UCM (β = 0) limits. The following discussion focuses on the
former limit; in appendix A.2, we examine the latter limit and show the qualitative changes
in the elasto-inertial spectrum as β is increased from zero.

In figure 8(a), we discuss the role of gradually decreasing β from unity at a fixed E on the
first few discrete modes. This figure shows the trajectories of the two leading Newtonian
centre modes (labelled NCM-1 and NCM-2); although these appear to emanate from the
same point for β = 1, a closer examination reveals two distinct, but closely-spaced modes
in the Newtonian spectrum. In addition to these Newtonian centre modes (NCM-1 and
NCM-2), four new modes emerge from CS1. These modes (labelled ECM-1 to ECM-4 in
figures 8(a) and 8b) arise because of the combined effect of polymer elasticity and solvent
viscosity at non-zero Re, and hence do not have counterparts in the Newtonian spectrum.
The unstable centre mode belongs to this class (ECM-1 in figure 8b). Except for ECM-1,
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Figure 8. Modification of Newtonian centre modes (NCM-1,-2) in the viscoelastic spectrum and the
emergence of new elasto-inertial centre modes (ECM-1,-2,-3,-4) as β is decreased from unity at Re = 800, k =
1.5, E = 0.1: (a) NCM-1 and -2 and ECM-3, ECM-4; (b) ECM-1 and ECM-2. All the new elasto-inertial
centre modes emerge from CS1 as β is reduced from unity. In (a), the modes NCM-1 and 2 are distinct, but
closely placed, in the Newtonian limit. The continuous lines represent results from the shooting method while
symbols denote results from the spectral method. For clarity, only the filtered eigenspectrum is shown (with
the CS balloons being absent). The theoretical location of CS1 is shown using dotted lines.

however, all the other elasto-inertial centre modes remain stable over the entire range of β,
from the Newtonian (β = 1) to the UCM (β = 0) limit, regardless of Re and E. Figure 8(b)
depicts the trajectory of ECM-1 with decreasing β, starting from its emergence out of CS1
at β ≈ 0.95, using the scaled growth rate Wkci (the continuous red line represents results
from the shooting method). Similar to the trend exhibited by ECM-1 for varying E (at
fixed β; see § 3.2.1), wherein the instability existed only over a finite range of E, the mode
is unstable only over a range of β at fixed E in figure 8(b), and becomes stable again below
a critical β. Thus, the trajectory of the unstable centre mode with varying β, at a fixed E,
is similar in both pipe (see figure 12 of Chaudhary et al. 2021) and channel (figure 8 of
the present work) flows. However, in contrast to the pipe case, the unstable centre mode in
channel flow persists even for Re ∼ O(1) in the limit β → 1, albeit at high E. We discuss
this in detail in § 4.2.

In figure 9(a), we exclusively focus on the centre mode ECM-1 to illustrate the
importance of the solvent viscous contribution in rendering this mode unstable, by
showing the variation of the scaled growth rate with β; figure 9(b) shows the variation
of the corresponding phase speeds. At a fixed Re, E and k, ECM-1 emerges from CS1
(ci = −1/kW) as β is decreased from the Newtonian limit (β → 1). At a critical β (close
to unity for higher E) the elasto-inertial mode becomes unstable, and the range of β in
which ECM-1 is unstable increases with decrease in E. However, the mode becomes
stable again as β is decreased below a threshold. Crucially, for β < 0.5, we find that
the centre mode always remains stable in channel flow, for any E and Re. The absence
of an instability for β < 0.5 reinforces our predictions from the spectral analysis (in the
previous section) that for the centre-mode instability, solvent viscosity is essential along
with inertia and elasticity, again in agreement with the pipe flow results of Garg et al.
(2018) and Chaudhary et al. (2021). However, for pipe flow, the centre mode becomes
unstable even as β ≈ 10−3, for sufficiently high Re. Intriguingly, this feature is not present
in viscoelastic channel flows.
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Figure 9. Effect of variation in β on the scaled growth rate (kWci) of unstable elasto-inertial centre mode
(ECM-1) for Re = 800, k = 1.5. (a) In the UCM limit (β → 0), the centre mode remains stable even at very
large values of E, illustrating the role of solvent viscosity in the centre-mode instability in channel flow. For a
fixed E = 0.1, as β is decreased from unity, ECM-1 emerges from CS1 and becomes unstable over a small range
of β (0.8–0.7). The unstable range of β shifts towards β → 1 for E = 0.6. (b) The corresponding variation of
cr with β.
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Figure 10. Neutral stability curves in the Re–k plane for different E at: (a) β = 0.65, and (b) β = 0.8.

4. Neutral stability curves

In figure 10, we present neutral stability curves (at fixed β, and with varying E) for the
channel-flow centre mode, which are in the form of loops in the Re–k plane, with the
region inside each neutral loop being unstable. For k � 1, we find Re ∼ k−1 along both
the upper and lower branches of the loops for β = 0.65 and 0.8 in figure 10, and for
other β (not shown). In contrast, for pipe flow, this scaling is valid along the lower branch
(regardless of β; see Garg et al. 2018; Chaudhary et al. 2021), with the upper branch
conforming to this scaling only for β < 0.9. Whereas the neutral loops for channel flow
shown in figure 10 remain single-lobed for any β, those for pipe flow display instead a
two-lobed structure for β > 0.9 (Chaudhary et al. 2021). For a fixed β and E, the critical
Reynolds number (Rec) is the minimum of the Re–k curve, and from figures 10(a) and
10(b), is seen to exhibit a non-monotonic variation with increasing E. For sufficiently
high E, increasing E is accompanied by a shrinking of the Re–k loop, leading to its
disappearance beyond a critical E. Thus, similar to pipe flow (Garg et al. 2018; Chaudhary
et al. 2021), the centre-mode instability ceases to exist at sufficiently high E. The phase
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Figure 11. Collapse of the neutral curves for small E and for β shown in figure 10: (a,b) rescaled neutral
stability curves in the ReE3/2–kE1/2 plane for (a) β = 0.65 and (b) β = 0.8; (c,d) corresponding rescaled
phase speeds in the (1 − cr)/E–kE1/2 plane for (c) β = 0.65 and (d) β = 0.8.

speeds corresponding to the Re–k neutral curves (not shown; see, however, figures 11(c)
and 11(d) for plots of (1 − cr)/E versus kE1/2) remain close to unity, with the range of cr,
for any given k, again exhibiting a non-monotonic dependence on E. Importantly, and in
sharp contrast to pipe flow, the phase speeds of the neutral modes along the upper branch
exceed unity.

4.1. Scaled neutral curves
Figure 10 is strongly suggestive of a collapse of neutral curves, especially for the smaller
E, on suitable rescaling. Figures 11(a) and 11(b) show a collapse of the different small-E
neutral loops onto a single master curve in the ReE3/2–kE1/2 plane, for the β chosen in the
aforementioned figures, implying that the threshold Reynolds number diverges as E−3/2

as one approaches the Newtonian limit E = 0. In figures 11(c) and 11(d), the phase speeds
along the neutral curve exhibit a similar collapse when plotted as (1 − cr)/E versus kE1/2,
suggesting that (1 − cr) ∼ O(E) along the neutral curve. A similar collapse was also
reported for pipe flow (Garg et al. 2018; Chaudhary et al. 2021). An alternate route to the
Newtonian limit, that of β approaching unity for a fixed E, also appears to yield a collapse
of the neutral curves when plotted in terms of Re[E(1 − β)]3/2 and k[E(1 − β)]1/2, in the
limit [E(1 − β)] � 1 (figure 12a). However, this collapse is not as perfect as that obtained
previously for small E, even in the limit β → 1. In particular, the upper branch of the
Re–k curves collapses very well for β ≈ 0.99, but the collapse is not perfect in the lower
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Figure 12. Collapse in the limit (1 − β) � 1 and E fixed. In (a), neutral stability curves at different E and
β plotted in terms of the scaled Reynolds number Re[E(1 − β)−3/2] and wavenumber k[E(1 − β)]−1/2. For
β → 1, the rescaled neutral curves exhibit a data collapse. In (b), rescaled critical parameters at different E and
β plotted as RecE3/2, kcE1/2 vs. (1 − β) fall on lines of slopes −3/2 and −1/2 respectively, indicating again
that, Rec ∝ [E(1 − β)]−3/2 and kc ∝ [E(1 − β)]−1/2.

branches and near the minimum of the neutral curves. Figure 12(b) shows the rescaled
critical Reynolds number, RecE3/2, and the corresponding rescaled critical wavenumber,
kcE1/2, as a function of (1 − β). This plot suggests that Rec and kc begin to approach the
scalings Rec ∝ (E(1 − β))−3/2, kc ∝ (E(1 − β))−1/2 only for β ≈ 0.99.

4.2. Critical parameters and scalings
The critical parameters (Rec, kc and crc) are plotted as a function of E(1 − β) in figure 13.
The variation of Rec (figure 13a) is non-monotonic with E(1 − β), with Rec scaling as
(E(1 − β))−3/2 for E(1 − β) � 1, but showing a nearly vertical rise beyond a threshold
E, denoted Emin, in a manner very similar to pipe flow (Garg et al. 2018; Chaudhary
et al. 2021). A similar non-monotonic behaviour of Rec with E has been obtained for
elasto-inertial wall mode instabilities in plane Poiseuille flow of Oldroyd-B (Sadanandan
& Sureshkumar 2002; Brandi et al. 2019) and FENE-P (Zhang et al. 2013) fluids. However,
because wall modes in channel flow are strongly stabilized by solvent viscous effects,
the minima in Rec–E curves shift towards higher Rec with increase in β for a fixed E
(see, for example, figure 1(a) of Sadanandan & Sureshkumar 2002). In stark contrast,
for the unstable centre modes (figure 13a), the Rec shift towards lower values as β

approaches unity, thereby illustrating the contrasting roles played by solvent viscous effects
on the centre- and wall-mode instabilities. Figure 13(b) further reinforces the effect of
β by showing the variation of the minimum Rec (obtained from figure 13a) and the
corresponding Emin with (1 − β). Unlike pipe flow, where the centre-mode instability
ceases to exist below Rec ≈ 60, the instability in channel flow persists down to Rec ∼ O(1)

for β → 1, albeit at very high E. Figure 13(c) shows that the critical wavenumber scales as
kc ∝ [E(1 − β)]−1/2 for E(1 − β) � 1, whereas figure 13(d) shows that the critical phase
speed scales as (1 − cr) ∝ [E(1 − β)], both similar to pipe flow.

Similar to the collapse of the neutral curves for E � 1, a collapse is also exhibited by the
eigenfunctions when plotted using a suitably rescaled wall-normal coordinate for Re � 1,
E � 1. In this regard, there are two possible asymptotic regimes: one in which (k, β) are
fixed and Re and E are varied so as to remain in the unstable region, and the other in which
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Figure 13. Variation of critical parameters with E(1 − β): (a) the critical Reynolds number scales as
Rec ∝ [E(1 − β)]−3/2 for E(1 − β) � 1; (b) the minimum Rec in (a) and the corresponding Emin; (c)
critical wavenumber kc ∝ [E(1 − β)]−1/2; and (d) phase speed, (1 − cr) ∝ [E(1 − β)]. As shown in (b), the
centre-mode instability persists in channel flow up to Re ≈ 5 for very high E ∼ 104 and for β ≈ 0.99.

β is fixed, and the eigenfunctions are tracked along different sets of critical parameters
(Rec, kc) for different E. For the latter case, figure 14 shows that the tangential and normal
velocity eigenfunctions are increasingly localized in the vicinity of the channel centreline,
within a boundary layer of thickness of O(Re−1/3); the Re-dependence of this boundary
layer thickness may be obtained using a scaling analysis, as outlined in Chaudhary et al.
(2021). Instead, if one considers a fixed k, and the limit Re, W → ∞, such that the ratio
W/Re1/2 ∼ O(1) in order to be in the unstable region, the eigenfunctions become localized
in a boundary layer of thickness of O(Re−1/4) in the vicinity of channel centreline.

4.3. Effect of solvent viscosity on critical parameters
The centre-mode instability in pipe Poiseuille flow discussed in our earlier works (Garg
et al. 2018; Chaudhary et al. 2021), rather counter-intuitively, required the presence of
solvent viscous effects, with the flow being stable in the UCM limit. Nevertheless, the
pipe-flow instability does continue to exist for very low β ∼ 0.001, with Rec exhibiting
a weak divergence for β → 0. In marked contrast, a finite solvent viscous threshold is
required for the channel flow instability, with the instability ceasing to exist below β ≈ 0.5
at E = 0.01 (figure 15a). We have further verified that this is, in fact, the lowest β for which
the instability is present for any E. Figure 15(a) also shows a non-monotonic behaviour of
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Figure 14. The collapse of stream-wise and wall-normal eigenfunctions corresponding to Rec and kc (at β =
0.8 and different E) when plotted against the rescaled wall-normal coordinate scaled using the viscous layer
thickness of O(Re−1/3): (a) axial and (b) wall-normal.
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Figure 15. Variation of (a) Rec and (b) critical wavenumber kc as a function of the viscosity ratio β at fixed
E. The minimum β required to sustain the centre-mode instability in channel flow is ≈0.5.

Rec with β, at fixed E ∼ O(1), rather similar to the variation of Rec with E (at fixed β). In
the limit of β → 1, Rec does diverge for channel flow, in a manner similar to that seen in
pipe flow (see figure 5 of Garg et al. 2018). The divergence of Rec for β → 1 appears, at
first sight, to contradict the results shown in figure 13(b), where Rec decreases in the same
limit. There is no inconsistency, however, because the parameters kept constant differ in
the two cases. In figure 15(a), E is fixed at 0.1, whereas in figure 13(b), E is allowed
to vary, and increases to very high values for β → 1. The eigenfunctions at the lowest
β for which the centre-mode instability is present are shown in figure 16. Interestingly,
the eigenfunctions at β = 0.6 (and Re = 800, k = 1.5) are qualitatively similar to the
eigenfunctions at a much higher β = 0.96 (and Re = 650, k = 1) shown in figure 4,
suggesting that the shape of the centre-mode eigenfunctions is rather robust over the entire
unstable range of β.

4.4. Role of diffusion on the centre-mode instability
In this section, we explore the role of stress diffusion on the centre-mode instability. The
underlying microscopic origin of stress diffusion is the Brownian (translational) diffusion
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Figure 16. Normalized eigenfunctions for (a) stream-wise ṽx and (b) wall-normal ṽz perturbation velocities
near the lowest value of β for which the centre-mode instability exists in viscoelastic channel flow. Data shown
for the eigenvalue c = 0.99778 + 5.78112 × 10−5i at Re = 800, k = 0.6, E = 0.1, β = 0.6.

of the polymer molecules, with a diffusivity D ∼ 10−12 m2 s−1, and a corresponding
Schmidt number Sc = ν/D ∼ 106, with ν being the kinematic viscosity of the polymer
solution. To this end, the Oldroyd-B constitutive equation is now augmented with a stress
diffusion term, whose importance, in dimensionless terms, is characterized by Dλ/H2

(Chaudhary et al. 2021). Although many older (Sureshkumar & Beris 1995a; Sureshkumar
et al. 1997) and a few recent (Lopez et al. 2019) DNS studies have incorporated an
artificially large diffusion coefficient with Sc ∼ O(1), the work of Sid et al. (2018)
has demonstrated that the two-dimensional EIT structures are suppressed for Sc < 9. It
therefore behooves us to examine whether stress diffusion has a similar effect on the
centre-mode instability analysed in this study, especially because of our premise that
the centre-mode instability is the mechanism underlying the onset of EIT. Based on the
D given previously, a typical relaxation time λ ∼ 10−3 s, and with channel half-width
H ∼ 1 mm, the dimensionless diffusivity Dλ/H2 ∼ 10−9. Note that, with the stress
diffusion term included, boundary conditions need to be prescribed for the polymeric
stress. Following earlier efforts (Sureshkumar & Beris 1995a), these are obtained by
using the constitutive equation without diffusion at the two boundaries. Figure 17 shows
the threshold Re for the centre-mode instability as a function of Dλ/H2, for fixed sets
of E, β and k. For Dλ/H2 → 0, the threshold Re for instability for the model with
stress diffusion approaches that of the Oldroyd-B model without diffusion; importantly,
Rec remains virtually unaltered for the aforementioned estimate of Dλ/H2 ∼ O(10−9).
However, similar to pipe flow (Chaudhary et al. 2021), Rec increases steeply for Dλ/H2

greater than a threshold that is a function of E and β. For (β, E, k) ≡ (0.8, 0.16, 1),
this threshold is O(10−3), corresponding to Sc = E/(Dλ/H2) ∼ 100 for E = 0.1. This
stabilization of the linear centre-mode instability beyond a threshold stress diffusivity is
broadly consistent with the disappearance of the span-wise structures in the fully nonlinear
simulations of Sid et al. (2018) discussed previously.

4.5. Comparison with experiments
We compare our theoretical predictions with the experiments of Srinivas & Kumaran
(2017), who studied the flow of 30 and 50 ppm polyacrylamide (PAAm) solutions
(molecular weight 5 × 106) through a rectangular microchannel with cross-sectional
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Figure 17. The effect of stress diffusion coefficient Dλ/H2 on the threshold Re required for centre-mode
instability at different E, β and k.

dimensions 160 μm × 1.5 mm, resulting in a cross-sectional aspect ratio of 9.375. Srinivas
& Kumaran (2017) characterized the transition using the increase in the standard deviation
of velocity fluctuations, as inferred from PIV. On account of the large cross-sectional
aspect ratio, the flow in the channel is expected to be quasi-two-dimensional, and
have a parabolic (plane-Poiseuille) form with the characteristic scale in the gradient
direction being the shorter of the two cross-sectional dimensions (160 μm). Therefore,
for the purposes of comparison with our predictions, we identify the experimental
channel half-width (see figure 1) to be H = 80 μm. We estimated the elasticity numbers
(E ≡ λν/ρH2, λ being the longest relaxation time of polymer, whereas ν and H are
the kinematic viscosity of the solution and channel half-width), respectively, for these
experiments using the Zimm relaxation time of the polymer solution. The longest
relaxation time from the Zimm model is given by λZimm = ηsR3

g/(kBT) ((4.83) of Doi &
Edwards 1986), where Rg is the radius of gyration of a polymer molecule, T is the absolute
temperature, kB is the Boltzmann constant and ηs is the solvent viscosity. It is important
to note here that the Zimm relaxation time of λZimm = 30 ms used in Srinivas & Kumaran
(2017) is overestimated by a factor of around 20 owing to the use of end-to-end distance
in the expression given previously. However, if Rg = 0.184 × 10−6 m corresponding to
a molecular weight of 5 × 106 g mol−1 is used (Kulicke, Kniewske & Klein 1982), we
obtain λZimm = 1.4 ms, for ηs = 0.001 Pa s. Using these estimates, we obtain E = 0.22
for H = 80 μm corresponding to the flow conditions of Srinivas & Kumaran (2017). The
Rec from our stability analysis are in reasonable agreement with the threshold Ret inferred
from experiments (table 2).

A point, made on more than one occasion in this paper, is that viscoelastic channel
flow continues to be linearly unstable even at Re ∼ O(1), provided the elasticity number
is sufficiently large. In figure 13(b), Rec dips down to about 5 at an E of O(200) (with
β = 0.99). In this regard, it is worth mentioning the recent experiments of Steinberg and
co-workers (Varshney & Steinberg 2017, 2018a,b), which demonstrate the feasibility of
achieving very high E with dilute polymer solutions. The experiments involve a channel

915 A43-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.60


Instability of viscoelastic plane Poiseuille f low

E β Cp(ppm) Rec (theory) Ret (experiment)

0.22 0.915 50 289 200–233
0.22 0.92 30 333 233–266

Table 2. Comparison of present theoretical predictions for Rec with the experimentally inferred transition
Reynolds number Ret of Srinivas & Kumaran (2017) for the flow of PAAm solutions in rectangular
microchannels. Note that the Re defined in Srinivas & Kumaran (2017) was based on the average velocity
and channel-full width, and hence must be multiplied by 3/4 to obtain the Re used in the present work, which
is based on the maximum base-flow velocity and channel half-width. Here, Cp denotes the concentration of the
polymer solutions used.

flow set-up, although the focus is entirely different; the authors analyse elasticity-induced
transitions in the free-shear flow set up between a pair of cylindrical obstacles embedded in
the imposed pressure-driven flow. Importantly, the experiments access W in excess of 103

with Re still being substantially smaller than unity. Note that the polymer concentration in
the previous experiments is quite low (c = 80 ppm, with the overlap concentration c∗ ≈
200 ppm), and shear thinning effects are therefore negligible. In contrast, there have been
other reports of instabilities (Bodiguel et al. 2015; Poole 2016; Picaut et al. 2017; Chandra
et al. 2019) in channel/tube flows of highly shear-thinning concentrated solutions (β <

0.2), but these observations cannot be explained by the centre-mode instability which is
absent for β ≤ 0.5.

5. Linear versus nonlinear transition scenarios in viscoelastic channel flow

As mentioned in the introduction, transition to turbulence in canonical parallel shear
flows of Newtonian fluids has a subcritical character, being preceded by the emergence
and proliferation of nonlinear three-dimensional solutions (including travelling waves),
termed ECS, in an appropriate phase space. Motivated by this Newtonian picture, Li
& Graham (2007) studied the effect of viscoelasticity (using a FENE-P model) on the
simplest ECS solutions in plane Poiseuille flow, namely, the nonlinear travelling waves
originally found for the Newtonian case by Waleffe (2001), with the aim of inferring the
effect of viscoelasticity on transition. The results from figure 2 of Li & Graham (2007)
for the Reynolds number Remin required for the existence of the travelling-wave ECS are
shown in figure 18(a) for β = 0.9 and in figure 18(b) for β = 0.97; the results have been
replotted as a function of E, rather than W used by those authors. The first effects of
viscoelasticity, extending up to E ≤ 0.01, manifest as a slight decrease (not visible on the
scale of the plot) in Remin from the Newtonian value. This initial decrease arises because
the polymer molecules see a (weak) Lagrangian unsteady flow as they are convected by
the ECS velocity field. A part of the shear work is thereby stored as elastic energy, in turn
leading to a reduced polymer contribution to the shear viscosity. Regarding the threshold
Reynolds number for the existence of ECS, defined in terms of the aforementioned reduced
viscosity, to be unchanged, implies that the original threshold based on the (zero-shear)
solution viscosity decreases by a factor equal to the viscosity ratio. A similar argument,
in fact, explains the initial reduction in the drag coefficient, as a function of the Deborah
number, for a sphere translating in a viscoelastic fluid (James 2009).

For E > 0.03, however, Remin increases abruptly owing to (nonlinear) stretching of the
polymers, implying a rapid shrinking (and subsequent disappearance) of the regime of
existence of the simplest ECS. Assuming this stabilizing effect to hold for the other ECS
with a non-trivial time dependence (for instance, relative periodic orbits), one may infer
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Figure 18. Boundaries demarcating the existence of elastically-modified ECS solutions (black squares; Li &
Graham 2007), the elastically-modified linear TS mode (blue stars; present study) and the linear centre-mode
instabilities (red circles; present study) in the Re–E plane for (a) β = 0.9 and (b) β = 0.97. The lack of points
on the centre-mode threshold curve is only an apparent one, because the numerics have begun conforming to
the small-E asymptote (the red dashed line represents the Rec ∝ E−3/2 scaling for the centre mode, extrapolated
down to E ∼ 0.01). The black dotted line represents the experimental threshold for Newtonian turbulence (NT).

that viscoelasticity tends to suppress the subcritical Newtonian transition. Figure 18 also
shows the threshold Reynolds number, Rec, for the onset of the centre-mode instability.
For completeness, we show, in addition, the Rec for the elastically modified TS mode
(recall that Rec in this case equals 5772 for E = 0). Note that whereas the results of Li &
Graham (2007) are for a FENE-P fluid and the present results have been obtained using
the Oldroyd-B model, our preliminary stability calculations for a FENE-P fluid show that
the present results are not qualitatively altered by finite extensibility.

Figure 18 allows one to rationally infer the transition scenario pertinent to a
given viscoelastic channel flow configuration, and should serve as a guide for future
experimental efforts probing transition in the flow of polymer solutions through
rectangular channels. Note that two types of transition experiments have been carried out
in the literature: the ‘forced transition’, wherein the inlet was subjected to a disturbance
of fixed finite amplitude (for instance, a commonly used forcing mechanism is via fluid
injection at the walls; see Darbyshire & Mullin 1995; Hof, Juel & Mullin 2003), and the
‘natural transition’ that ensues in the absence of any imposed disturbances. Based on this,
one may clearly differentiate between two extreme scenarios for channel-flow transition.
The first is that of a ‘noisy’ experimental set-up, where the subcritical forced transition
occurs at an Rec ≈ 1000 in the Newtonian limit (correlated to the emergence of the ECS
at a slightly lower Re). The viscoelasticity-induced suppression of the ECS then leads to
a steep increase in Rec with increasing E and, finally, at much higher E, a rapid decrease
in Rec results corresponding to the onset of the linear centre-mode instability. At the other
extreme, for a sufficiently refined set-up, the Newtonian transition would be the natural
one, occurring at Rec = 5772 for E = 0, with Rec exhibiting a relatively gentle increase
with E thereafter, along the TS-wall mode branch, until the point of intersection with the
centre-mode branch. This intersection corresponds to a fairly modest E of O(10−2) for
β = 0.9 (see figure 18a), after which Rec begins to decrease owing to the centre-mode
instability, similar to the forced transition described previously. For intermediate noise
levels, one expects the transition scenario to interpolate between these two extremes.
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Interestingly, figure 18 bears a qualitative resemblance to that obtained by Samanta
et al. (2013) for their pipe-flow experiments (see figure 3(a) therein). Note that E in
figure 18 may be treated as a surrogate for the polymer concentration used in Samanta et al.
(2013); in either case, a given experiment corresponds to a vertical line in figure 18. For
Newtonian pipe flow, the forced transition is again subcritical (and related to the emergence
of ECS similar to those for channel flow), and in the experiments of Samanta et al. (2013),
this transition occurred at Rec ≈ 2000 (an exact critical point of Rec = 2040 ± 10 has
been identified in this regard based on the timescales associated with the emergence and
subsequent splitting of the ECS; see Avila et al. 2011). However, the linear stability of
pipe flow implies that the natural transition, although at a higher Rec, is again subcritical
and, therefore, in contrast to the channel flow case. Thus, although the natural transition
in the Newtonian limit can, in principle, be delayed to very high Reynolds numbers
in suitably refined set-ups (Pfenniger 1961), it occurred at Rec ≈ 6500 for Samanta
et al. (2013). For the forced transition, Samanta et al. (2013) did observe an increase
in Rec with polymer concentration, similar to the role played by E in the subcritical
channel-flow transition discussed previously, and that may be rationalized based on the
elasticity-induced suppression of the underlying ECS solutions. However, the Rec for the
natural transition decreased from 6500 with increasing E (although the authors explicitly
state the Newtonian threshold, as is also evident from their figure 2(a), their figure 3(a)
nevertheless does not connect to this Newtonian threshold, and is instead suggestive of an
apparent divergence of the threshold Re in the limit of zero concentration). As mentioned
in Chaudhary et al. (2021), this runs counter to the stabilizing role of elasticity on the
simplest ECS predicted by Li & Graham (2007), and implies a differing role of elasticity
on the more complex set of ECS that presumably determine the turbulent trajectory at the
higher Re. This behaviour for pipe flow suggests that the effect of an increasing E on the
channel flow transition, in cases where the transition occurs at Re greater than O(1000)

(and until close to the linear TS-mode threshold), might depend on the relative influences
of the TS wall-mode with regards to the ECS solutions that, in turn, might depend both
on the Re and on the detailed nature of the induced disturbance. When the ECS solutions
play a dominant role for small E, similar to Samanta et al. (2013), one expects the Rec to
decrease with increasing E to begin with, with a subsequent more rapid decrease at higher
E arising owing to the centre-mode instability.

In the context of the forced transition scenario, we mentioned the suppression of the
ECS at a fairly modest E, and the emergence of the centre-mode-mediated transition
only at higher E, implying the existence of an intermediate E-interval where neither
mechanism might be operative. For instance, considering a fixed-Re path, with Re ≈
1500 in figure 18(a) for β = 0.9, the ECS solutions are restricted to E below an
(approximate) threshold of 0.04; in contrast, the two-dimensional centre-mode instability
is only operative for E > 0.09. Thus, there is the possibility of transition in the interval
0.04 < E < 0.09 being controlled by novel subcritical mechanisms. In this regard, as
briefly mentioned in the introduction and discussed in the following, two very different
mechanisms, with their origins in the centre and wall modes of the elasto-inertial
spectrum, have recently been proposed.

The first proposal, by Shekar et al. (2019), is rooted in the least-stable TS wall mode,
as already mentioned in § 1. However, our discussion in § 3.2 (e.g. figure 6) shows that, at
higher E, one of the centre modes is the least stable. Thus, it is necessary to demarcate the
E-intervals in which the TS (TSM) and centre (NCM-1 and ECM-1) modes is the most
dominant one in the elasto-inertial spectrum. To this end, in appendix B, we examine,
within the linear stability framework, the decay/growth rates of each of these modes as E
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Figure 19. Regions in the Re–E plane where the TS, CS and ECM-1 are the least stable/unstable for k = 0.4π

and (a) β = 0.9 and (b) β = 0.97. The TS mode is the least stable in the region to the left of the red curve,
whereas the CS modes are the least stable in the region between the red and black curves. The centre mode
(ECM-1) is the least stable in the region between the black and pink curves and is unstable in the region to the
right of the pink curves.

is varied (at fixed Re, β and k). It is demonstrated therein that the continuation of the TS
mode is no longer present in the elasto-inertial spectrum as E is increased. Indeed, there
is a range of E for which there are no discrete stable modes above the CS, the latter being
the least stable in this range. The centre mode eventually emerges above the CS, being the
least-stable or least-unstable mode for all higher E. Clearly, beyond the smallest E, even
a nonlinear (subcritical) mechanism underlying the transition must necessarily involve the
signatures, either of the least-stable centre mode or the stable CS. This scenario is further
illustrated in figure 19, where we demarcate regions in the Re–E plane for a fixed k = 0.4π
(and for β = 0.9 and 0.97, the values used in Li & Graham 2007) where the TS, CS and
the centre modes are least stable or unstable. For k = 0.4π and Re = 1500, the TS mode
is the least stable only for sufficiently small E (E < 0.015 for β = 0.9 and E < 0.02 for
β = 0.97 in figure 19); for an intermediate range of E, a range that increases in extent as β

approaches unity, there are no discrete modes above the CS in the elasto-inertial spectrum,
with the CS dominating the dynamics. At higher E, the centre mode emerges above the
CS, and is either the least-stable (E > 0.06 for β = 0.9 and E > 0.5 for β = 0.97) or
least-unstable (E > 0.2 for β = 0.9 and E > 0.7 for β = 0.97) mode. The least-stable
nature of the TS mode at the lowest E (for k = 0.4π) in figure 19 is, however, sensitive to
the wavenumber chosen, and as discussed in appendix B, for k > 2, the centre mode is the
least stable even in the Newtonian limit. The second mechanism, proposed by Page et al.
(2020), is based on a novel elasto-inertial coherent state that bifurcates subcritically from
the centre-mode instability, and therefore continues to exist even in regimes where the
centre mode is stable (thereby being relevant to the aforementioned intermediate range of
E). In particular, Page et al. (2020) carried out DNS using the FENE-P model, and used an
arc-length procedure to continue the centre-mode eigenfunction to the subcritical regime.
Their study identified a structure with polymer stretch contours resembling an ‘arrow head’
configuration, and shares similarities with the structures seen transiently in DNS of the
EIT regime (Dubief et al. 2020). These two-dimensional elasto-inertial coherent states
owe their origin to both inertia and elasticity, and thus are absent in the Newtonian limit,
unlike the elastically modified three-dimensional ECS analysed by Graham and co-workers
which are, essentially, of a Newtonian origin.
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6. Conclusions

The present study provides a comprehensive account of the linear stability of plane
Poiseuille flow of an Oldroyd-B fluid, and shows that in the limit of sufficiently elastic
(E ∼ 0.01 and higher) and moderate-to-highly dilute (β ∼ 0.6 and higher) solutions, the
flow becomes unstable to a two-dimensional centre mode with phase speed close to
the maximum base-flow velocity, and at a critical Reynolds number, Rec, much lower
than the typical Newtonian threshold of ∼ 1100. We also provide a detailed account
of the emergence of the unstable centre mode in the elasto-inertial spectrum. Several
features of the instability predicted here for channel flow are analogous to those for
viscoelastic pipe flow (Garg et al. 2018; Chaudhary et al. 2021), including the scalings
of the critical Reynolds Rec ∝ (E(1 − β))−3/2 and wavenumbers kc ∝ (E(1 − β))−1/2

in the limit E(1 − β) � 1 for fixed E. Although the disturbances in the aforementioned
asymptotic limit are strongly localized near the channel centreline, this is no longer true
for experimentally relevant values of β and E. In fact, after correctly accounting for the
relaxation times, our theoretical predictions for Rec are in reasonable agreement with the
observations of Srinivas & Kumaran (2017) for transition in rectangular microchannels.

There are a few crucial differences between the centre-mode stability characteristics
of viscoelastic channel and pipe flows, the most important being the absence of the
centre-mode instability for β < 0.5 in channel flow, in contrast to its persistence down
to β ∼ 10−3 in pipe flow. In either case, the destabilizing role of solvent viscous effects on
the centre-mode instability is in contrast to their stabilizing role for wall-mode instabilities
(Sadanandan & Sureshkumar 2002; Khalid et al. 2020). In the opposite limit of β → 1,
the instability persists down to Re ≈ 5 for channel flow, while being restricted to Re > 63
in pipe flow. Thus, whereas the channel centre-mode instability requires a finite solvent
viscous threshold, the pipe centre-mode instability requires a finite inertial threshold for
its existence. It is also worth noting that the prediction of a linear instability for Re ∼ O(1),
for channel flow, is a significant departure from the prevailing viewpoint of such rectilinear
shearing flows being linearly stable at low Re, wherein a nonlinear subcritical mechanism
was hitherto considered to be the only route to instability (Meulenbroek et al. 2004;
Morozov & van Saarloos 2005; Pan et al. 2013).

Despite the differences for β < 0.5 and β → 1, for the intermediate range of β,
there does appear to be a universal linear mechanism underlying the onset of EIT in
both viscoelastic channel and pipe flows. Thus, the viscoelastic scenario stands in stark
contrast to the profound differences between the modal stabilities of Newtonian pipe and
channel flows, with pipe flow being linearly stable for all Re and channel flow exhibiting
a linear instability at Re = 5772. The Newtonian transition observed in experiments
is now known to be dominated by nonlinear processes, and is similar for both the
channel and pipe flow geometries. Theoretically speaking, the transition is attributed
to the emergence and subsequent proliferation of ECS solutions of the Navier–Stokes
equations, with increasing Re, in the neighbourhood of the laminar state, and that drive
the nonlinear transitional dynamics. The close analogy between the Newtonian pipe and
channel transition scenarios, despite the aforementioned contrast in the linear stability
characteristics, arises from the structural and dynamical resemblance of the underlying
ECS solutions in the two cases. On the other hand, linear stability theory appears broadly
consistent with observations for the viscoelastic case, both for pipe and channel flows.
However, as discussed in the following, more work needs to be done with regard to the
nonlinear dynamics of the transition.

It is worth mentioning that the two-dimensional centre-mode instability predicted
here and the axisymmetric instability predicted in our earlier work (Garg et al. 2018;
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Chaudhary et al. 2021) are also consistent with the nature of the nonlinear state observed
in simulations in these geometries: see Dubief et al. (2013), Samanta et al. (2013) and Sid
et al. (2018) for the channel case and Lopez et al. (2019) for the pipe geometry. In both
cases, the nonlinear elasto-inertial turbulent state is dominated by span-wise structures
in sharp contrast to stream-wise oriented, span-wise varying structures that dominate
Newtonian transition. This contrast between the Newtonian ECS and the EIT structures has
recently found some support in a bifurcation study (Page et al. 2020), where the authors
used an arc-length method to continue the centre-mode solutions subcritically, identifying
a continuous pathway from the linear threshold. Although this shows the relevance of
the centre-mode even in the linearly stable regime, the so-called arrowhead EIT structure
found does not bear a close resemblance to the centre-mode eigenfunctions, presumably
owing to the (strong) subcriticality. However, one expects a closer connection between
the DNS structures and the linear (centre-mode) eigenfunctions in parameter regimes
where the bifurcation is supercritical (Garg, Shankar & Subramanian 2020). The structure
identified by Page et al. (2020), presumably along with other new elasto-inertial structures,
are likely to underlie the dynamics of the EIT state, with the EIT trajectory sampling
these novel elasto-inertial coherent states, akin to how the Newtonian turbulent trajectory
samples the multitude of Newtonian ECS (Budanur et al. 2017). Identifying the nature of
the nonlinear transition mechanisms in the intermediate range of E, where the (Newtonian)
ECS are suppressed and the flow is linearly stable, is likely to be an important area for
future research.
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Appendix A. The elasto-inertial spectrum of an Oldroyd-B fluid

In this appendix, we discuss the generic features of the elasto-inertial eigenspectrum of an
Oldroyd-B fluid with the Newtonian spectrum as a reference. The emergence and trajectory
of the elasto-inertial centre mode and other stable discrete modes are depicted with the aid
of eigenspectra. Appendix A.1 examines the spectra as E is increased from zero at fixed β,
whereas in appendix A.2, the evolution of spectra is shown as β is varied at fixed E.

A.1. Varying E at fixed β

Figures 20 and 21 show the unfiltered eigenspectra for Re = 800, k = 1.5 and β = 0.8 for
E ranging from 10−4 to 10−1, with figure 20 focusing on the subinterval E ∈ 10−4–7.5 ×
10−3. The Newtonian eigenspectrum (E = 0) is shown in each figure as a reference.
The original Y-shape of the Newtonian spectrum is modified only slightly for very low
values of E (inset (B) in figure 20a), although there is the appearance of an additional
inverted Y-shape just above CS1 (inset (A) in figure 20a). In addition to this modified
Newtonian locus, the two CS balloons, discussed in § 3.1 of the main text, are encircled
by a set of discrete modes which form an approximate ring-like structure (figures 20(a)
and 20b). We have verified (illustrated further in figure 22c) that these modes are the
continuation, to finite-β, of a class of damped shear waves in the UCM limit, termed the
HFGL modes (after Gorodtsov & Leonov 1967). The locus of these modes corresponds to
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Figure 20. Elasto-inertial spectra for plane channel flow as E is increased from zero, with Re = 800, k =
1.5, β = 0.8: (a) E = 10−4; (b) E = 5 × 10−4; (c) E = 10−3; (d) E = 2.5 × 10−3; (e) E = 5 × 10−3; and ( f )
E = 7.5 × 10−3. In (a,b), the HFGL line bends back as an elliptical ring so as to merge with the S branch
below the CS; in (c) further increment in E leads to collapsing of HFGL line with discrete modes wrapping
near cr ≈ 1 of the CS; in (d–f ), as E is increased, both the CS move up and the elastically-modified NCMs
disappear into the CS. The insets (A) and (B) in (a) show an enlarged view of the region near CS1 and the
modified Y-shaped structure respectively. The insets in (d,e) shows the zoomed-in regions showing the second
least-stable wall mode (WM-2) and NCM-1. The inset in ( f ) shows the two least-stable NCMs. Here, CS1 and
CS2 denote the two continuous spectra.
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Figure 21. Elasto-inertial spectra at Re = 800, k = 1.5 and β = 0.8 as E is varied in the range 0.009–0.1: (a)
E = 0.009; (b) E = 0.01; (c) E = 0.05; and (d) E = 0.1. For higher E, both NCM-1 and 2 merge with CS1
(a,b), and a new elasto-inertial centre mode (ECM-1) emerges above CS1 (b,c); (d) ECM-1 becomes unstable
at E = 0.1.

ci = −1/(2kW) for β = 0 (Kumar & Shankar 2005; Chaudhary et al. 2019), but this line
bends downwards upon increase in β, leading to the ring-like structure seen in figure 20(a).
For E > 0.001, the bent locus collapses onto the two CS, except for a small portion near
the cr ≈ 1 (figure 20c). Further, the discrete centre modes belonging to the Newtonian
P-branch are also modified with an increase in E. Figures 20(d)–20( f ) show that the
elastically modified Newtonian centre modes (referred to as ‘NCMs’, with an index that
labels them in order of increasing |ci|) only change a little with increasing E, but both
CS1 and CS2 move up and in this process, all the NCMs disappear into CS1 beyond a
threshold E (∼ 7.5 × 10−3) for Re = 800 in figure 20( f ). It is well known that CS1 is a
branch cut for any Re, with plane Couette flow being an exception (Wilson et al. 1999),
allowing modes to collapse into it (crossing onto a different Riemann sheet in the process),
and likewise, new modes to appear from it, with increasing E. This behaviour mimics that
found earlier in viscoelastic pipe flow (Chaudhary et al. 2021).

Figure 21 shows the spectra for a higher range of E, wherein all of the NCMs have
collapsed into CS1. For E = 0.009 and 0.01 (figures 21(a) and 21(b)), the lone discrete
mode that remains above the CS is the elastically modified TS mode. This feature differs
from that of the elasto-inertial spectrum for pipe flow, wherein there is no analogue
of the TS mode, and the centre modes remain the least stable, even for smallest E.
However, even in the channel case, the elastically modified TS mode merges with CS1 for
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Figure 22. Eigenspectrum of plane Poiseuille flow for Re = 800, k = 1.5: (a) UCM model for E = 0.1; (b)
Oldroyd-B model for β = 0.001, E = 0.1 showing the bending of HFGL; (c) bending of HFGL with increasing
β illustrated for a very low value of E = 0.00025; (d) zoomed-in version of (c) showing the spectra at the
higher β. Here: (a) β = 0, E = 0.1; (b) β = 0.001, E = 0.1; (c) β ∈ (0, 0.8), E = 2.5 × 10−4; and (d) β =
0.6, 0.8; E = 2.5 × 10−4.

higher E (the absence of the TS mode is illustrated, for example, in figure 21(c) for E =
0.05). Importantly, for E ∼ 0.01, a new elasto-inertial centre mode (labelled ECM-1) with
phase speed close to the maximum base-state velocity, having no Newtonian counterpart,
emerges above CS1 (figure 21b). This centre mode (ECM-1) becomes unstable as E is
increased beyond 0.1 (figure 21d). New elasto-inertial centre modes (labelled ECM-2, -3,
and -4) also appear below CS1, but they remain stable as E is increased.

A.2. Varying β at fixed E
In figure 22, we examine the role of increasing β from zero (β = 0 being the UCM
limit) on the elasto-inertial spectrum at a fixed E. The structure of the elasto-inertial
spectrum in the UCM limit (figure 22a) is now well understood (Chaudhary et al. 2019),
comprising the HFGL class of modes (with ci = −1/(2kW) and cr ∈ [−∞, ∞]) and the
ballooned-up CS1 (with ci = −1/(kW) and cr ∈ [0, 1]). In addition, at sufficiently high
Re and E, Chaudhary et al. (2019) also showed the existence of an hourglass-like structure
which, however, is not prominent for the moderate Re and E considered in figure 22. The
centre mode (ECM-1) remains stable for β = 0 in figure 22(a). As β is increased to 0.001
in figure 22(b), the HFGL modes are seen to be heavily damped even at this small β.
Thus, for E = 0.1, the continuation of the HFGL modes are not important in determining
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the stability of the flow in the (experimentally relevant) dilute limit (β ∼ 0.8 and higher).
As pointed out earlier in § 3.2.1, for non-zero β, the HFGL line in the UCM limit bends
leading to the formation of an ellipse. The formation of the ellipse-like structure is best
illustrated at a lower E = 2.5 × 10−4 (figure 22c). The extent of the ellipse shrinks as β

is increased to 0.4, leading to an enhanced stability of the HFGL modes. Thus, regardless
of E, in the limit of dilute polymer solutions, the continuation of the HFGL modes are
not relevant in determining the stability. Accordingly, the focus in the main text is on
the least-stable centre modes. Finally, in our earlier study on viscoelastic channel flow
(Chaudhary et al. 2019), we showed that an increasing number of wall modes belonging to
the upper bulb of the ‘hourglass’ structure (see figure 2 of Chaudhary et al. 2019) become
unstable in the UCM spectrum with increasing Re and E. The effect of non-zero β on
these elasto-inertial wall modes, however, was found to be strongly stabilizing (Khalid
et al. 2020), akin to its stabilizing effect on the continuation of the TS mode found in
earlier studies (Sureshkumar & Beris 1995b; Sadanandan & Sureshkumar 2002; Zhang
et al. 2013). This stabilizing role of β on wall modes is in direct contrast to its destabilizing
effect on the elasto-inertial centre mode examined in the present study.

Appendix B. Relative stability of centre and wall modes

In the limit E → 0, as demonstrated by the spectra in figures 20 and 21 of appendix A.1,
the first few least-stable modes in the viscoelastic channel spectrum are the elastically
modified TS wall mode and Newtonian centre mode (NCM-1) with former being the
least stable (the second wall mode becomes more stable than NCM-1 (figure 20(d) of
appendix A.1) as E is increased, and is not considered in this discussion). However,
this picture of relative stability does not hold as E is increased, a point we demonstrate
with the aid of figure 6 and also briefly address in § 5 of the main text. We have further
established in § 3.2 and appendix A that the unstable ECM-1 in channel flow is not merely
a continuation of the least-stable Newtonian centre mode (NCM-1), on account of their
differing symmetries. The unstable ECM-1 is also not related to the continuation of the TS
mode owing to the disparity in the phase speeds and symmetries of these modes. Instead,
the mode ECM-1 was shown to emerge out of CS1 beyond a threshold E. In the present
work, we propose that it is this unstable centre mode that underlies the early transition
to EIT observed in both pipe and channel flow experiments, involving polymer solutions,
discussed in § 1.

In contrast, a recent DNS effort (Shekar et al. 2019) has shown a resemblance between
the phase-matched, ensemble-averaged structures of polymer stretch contours that emerge
in the simulations and the elastically modified TS mode. The authors carried out DNS
for channel flow of a FENE-P fluid in the elasto-inertial turbulent regime (Re = 1500,
β = 0.97; the Newtonian flow is turbulent at this Re), and for W in the range 0–50,
where the flow is linearly stable. With increasing W, the simulations showed a reduction
in drag from the Newtonian turbulent value, eventually approaching the laminar value at
W ≈ 10, suggesting complete relaminarization, in agreement with observations (Choueiri
et al. 2018). For W greater than 20, the simulations showed a weak increase in drag,
and the authors attributed this mild increase to an instability via a two-dimensional
nonlinear mechanism. In this regime, simulation results showed very strong and localized
polymer stretch fluctuations similar to those in the vicinity of the ‘critical layer’ (the
transverse location where the phase speed of the perturbation equals the base-flow velocity,
in linear stability theory) of the elastically modified TS mode. Thus, the suggestion is
that the fluctuating velocity field corresponding to the self-sustaining EIT state closely
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Figure 23. Eigenspectra of viscoelastic channel flow for Re = 1500, k = 0.4π, β = 0.97 and varying E: (a)
E = 0.002; (b) E = 0.005; (c) E = 0.015; (d) E = 0.02; (e) E = 0.35; and ( f ) E = 0.4. For E ≤ 0.015 (or
W ≤ 22, similar to the regime considered by Shekar et al. 2019), the elastically modified TS mode is the least
stable. For 0.015 < E < 0.35, there is no discrete mode above the CS. However, for E = 0.35, ECM-1 emerges
above the CS to become the least-stable mode, turning unstable at E ≈ 0.4. The corresponding Newtonian
eigenspectrum (E = 0) for these set of parameters is shown for comparison. In (c–f ), only the region near the
CS is shown to illustrate the collapse and emergence of discrete modes from the CS.

resembles the near-Newtonian velocity field of the TS (wall) mode for the small E under
consideration (0 < E < 0.03), and that drives the polymer stretch, and the resulting large
axial polymeric stresses, near the critical layer.
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Figure 24. Eigenspectra for viscoelastic channel flow for Re = 500, k = 0.8π (2.5), β = 0.97 and varying E:
(a) E = 0.002; (b) E = 0.005; (c) E = 0.01; and (d) E = 0.02. For k > 2, NCM-1 is the least-stable mode even
in the Newtonian limit (E → 0). In (c,d), only the region near the CS is shown to illustrate the collapse and
emergence of discrete modes from the CS.

Thus, there are two qualitatively different mechanisms being put forward for transition
(to EIT) in viscoelastic channel flow, based on two different modes in the elasto-inertial
spectrum: the centre mode (that has recently been shown, for a set of parameters, to
continue subcritically to a novel EIT coherent structure; see Page et al. 2020), and
that advocated previously by Shekar et al. (2019) based on the wall mode. A rigorous
demonstration as to which mode would be dominant would require a weakly nonlinear
analysis leading to the determination of the first Landau coefficient; such an analysis, for
the centre mode, will be reported in a future communication. For the time being, it is useful
to examine, within the linear stability framework, the decay/growth rates of centre (NCM-1
and ECM-1) and wall (TSM) modes as E is varied (at fixed Re, β and k), and demarcate
the E intervals in which each of these modes is the most dominant in the elasto-inertial
spectrum. Figure 23 focuses on the relative stability of TSM and NCM-1 modes as E is
varied (for the Oldroyd-B model), for Re = 1500, k = 0.4π and β = 0.97, these parameter
values being identical to those used by Shekar et al. (2019) for the FENE-P model. Recall
from § 3.2 that, as E is increased, the NCMs merge with CS1, and new modes appear from
it. For 0 ≤ E ≤ 0.015, which includes the range of E considered by Shekar et al. (2019),
the elastically modified TS mode (i.e. TSM) is the least stable (see the inset of figure 23c).
For E = 0.015, NCM-1 has already collapsed onto CS1, and as E is increased further to
0.02, TSM also disappears into CS1 (figure 23d), and concomitantly, new elasto-inertial
centre modes (ECM-3 and ECM-4; ECM-2 lies very close to the CS, and hence is not
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Figure 25. Eigenspectra of viscoelastic channel flow at the same Re = 500 and β = 0.8 as in figure 24 but
with k = 0.4π, and varying E: (a) E = 0.002; (b) E = 0.006; (c) E = 0.01; (d) E = 0.012; (e) E = 0.018; and
( f ) E = 0.02. For E < 0.02, the elastically modified TS mode is the least stable, whereas ECM-1 just emerges
from CS1. However, for E > 0.02, the TS mode merges with CS1 and ECM-1 becomes the least-stable mode
dictating the stability of the system. The corresponding Newtonian eigenspectrum (with E = 0) is also shown
for reference. In (c–f ), only the region near the CS is magnified to illustrate the collapse and emergence of
discrete modes from the CS.

visible at this scale) appear from the lower side of CS1 (see the inset of figure 23d).
Although these new elasto-inertial centre modes are not unstable at this parameter range,
nonetheless, these are the least-stable discrete modes at this value of E. Importantly, there
are no discrete modes above the CS for 0.02 < E < 0.35, and thus the CS modes are the
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Figure 26. Relative stability of centre (NCM-1) and least-stable wall (TS) modes in Newtonian channel flow
at Re = 1500: variation of ci for these modes with k. The wall mode is the least stable for k < 2, whereas the
centre mode becomes least stable for k ≥ 2.
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Figure 27. Contours of the vx, vz and Txx eigenfunctions for (a) wall (TS), c = 0.484998 − 0.10376i, and
(b) centre (NCM-1), c = 0.894151 − 0.0865i, modes in the x–z plane for Re = 500, β = 0.8, k = 0.8π and
E = 0.002.

least stable in this range. It is only at a much higher E ≈ 0.35 that ECM-1 emerges above
CS1. Subsequently, ECM-1 becomes unstable at E ≈ 0.4, and thereby, dictates the stability
for all higher E (see the insets of figures 23(e) and 23( f )).

In figures 24 and 25, we investigate the relative stability of TSM and the centre modes
at a lower Re = 500, β = 0.8 and for two different k = 0.8π and k = 0.4π, respectively.
Surprisingly, for the larger k (figures 24(a) and 24(b)), NCM-1 is less stable than TSM
(red circles) even in the Newtonian limit. Figure 24(c) shows that TSM has already
collapsed into CS1, whereas NCM-1 lies just above it, in contrast to the behaviour seen in
figure 23(c). As soon as both the TSM and NCM-1 merge into CS1, the new elasto-inertial
centre mode (ECM-1) emerges above CS1 (figure 24c), eventually becoming unstable at
higher E. The spectra at the lower k = 0.4π (figure 25) but at the same Re and β as in
figure 24, however, show that the TS mode remains the least stable for E < 0.02 before
merging into the CS. The ECM-1 mode emerges above the CS for E > 0.02, as the least
stable in the spectrum. Note, however, that the E intervals in which the CS modes are
the least stable in figures 24 and 25 are substantially lower compared with those shown
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Figure 28. Contours of vx, vz and Txx for unstable (symmetric) centre mode in the x–z plane for Re = 500,
β = 0.8, k = 0.8π and E = 0.12. The unstable eigenvalue is c = 0.9995 + 2.3197 × 10−4i.

in figures 19(a) and 19(b) of the main text. This is due, respectively, to the higher k in
figure 24 and lower β in figure 25 compared with the k and β values used in figures 19(a)
and 19(b).

Thus, at sufficiently high E, the centre mode ECM-1 is always the least-stable/unstable
mode in the elasto-inertial spectrum, but even for smaller E (where ECM-1 has not yet
emerged from the CS), one could have the original Newtonian centre mode (NCM-1) to
be less stable than the wall mode (TSM), depending on k. In light of this, the relative
stability of the wall (TS) and centre (NCM) modes in Newtonian channel flow at different
k, for Re = 1500, is shown in figure 26. This demonstrates the change in the relative
stability of the TS-mode and NCM-1 with increasing k, the latter being the least-stable
mode k ≥ 2. An important inference from figures 23–26 is that, even in parameter regimes
where channel flow is linearly stable, there are intervals where the centre mode (ECM-1
or NCM-1) or the CS is the least stable, and are likely to influence the (subcritical)
nonlinear dynamics of the transition. Indeed, in figure 23 alone, there is a significant range
of E for which there is no discrete mode above the CS, a fact that might be attributed
to the near-unity β (=0.97) considered. Thus, the connection between the least-stable
wall (TSM) mode in Newtonian channel flow and the (two-dimensional) elasto-inertial
turbulent structures noted by Shekar et al. (2019) may not be generic in the Re–E–β space.

Finally, the contours corresponding to the velocity (v̂x(x, z), v̂z(x, z)) and stream-wise
component of the polymeric stress (τ̂xx(x, z)) eigenfunctions of the TS and NCM-1 modes
are shown in figures 27(a) and 27(b). Although both these modes are antisymmetric
about the channel centreline, the structures of the TS mode are confined near the wall,
with the NCM-1 structures displaying the maximum variation away from the walls;
in both cases, the confinement is prominent in the tangential velocity and stream-wise
polymer stress eigenfunctions. For the small E considered, the velocity contours are quite
reminiscent of their Newtonian counterparts (not shown). For the higher E = 0.12, the
elasto-inertial centre mode has become unstable, and the two-dimensional contour plots
of v̂x(x, z), v̂z(x, z) and τ̂xx(x, z) corresponding to this mode are shown in figure 28.
In contrast to the TS mode, the ECM-1 is a symmetric mode; further, the confinement,
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in the neighbourhood of the centreline, of ECM-1 is less pronounced compared with
the near-wall confinement of the TSM, and the near-centre confinement of the NCM-1.
As indicated in § 5, the proposal of the centre mode underlying EIT dynamics seems
to have support from the recent finding of a novel EIT structure (Page et al. 2020) that
bifurcates subcritically from the centre-mode instability, and has the same symmetry about
the channel centreline.
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