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Consider a tandem queuing network with an infinite supply of jobs in front of the first
station, infinite room for completed jobs after the last station, finite buffers between
stations, and a number of flexible servers who are subject to failures. We study the
dynamic assignment of servers to stations with the goal of maximizing the
long-run average throughput. Our main conclusion is that the presence of server
failures does not have a major impact on the optimal assignment of servers to
stations for the systems we consider. More specifically, we show that when the
servers are generalists, any nonidling policy is optimal, irrespective of the
reliability of the servers. We also provide theoretical and numerical results for
Markovian systems with two stations and two or three servers that suggest that the
structure of the optimal server assignment policy does not depend on the reliability
of the servers and that ignoring server failures when assigning servers to stations
yields near-optimal throughput. Finally, we present numerical results that illustrate
that simple server assignment heuristics designed for larger systems with reliable
servers also yield good throughput performance in Markovian systems with three
stations and three failure-prone servers.
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1. INTRODUCTION

We study a tandem queuing network with N stations and M flexible servers who are
subject to failures. There is an infinite amount of raw material in front of station 1,
infinite room for finished jobs after station N, and a finite buffer between stations j
and j þ 1, for j[f1, . . . , N21g, whose size is denoted by Bj. We assume that at
any given time, there can be at most one job at each station and that each server
can work on at most one job. Moreover, each server i[f1, . . . , Mg works at a deter-
ministic rate mij [[0, 1) at each station j[f1, . . . , Ng. Thus, server i is trained to
work at station j if mij . 0. We assume that several workers can work together on a
single job, in which case their service rates are additive (i.e., the service mechanism
is collaborative). The service requirements of different jobs at station j[f1, . . . , Ng
are independent and identically distributed (i.i.d.) random variables with rate m( j),
which we take to be equal to 1 without loss of generality, and the service requirements
at different stations are independent of each other. The lifetimes and repair times of
server i[f1, . . . , Mg are i.i.d. random variables with rates ai � 0 and bi . 0, respect-
ively, and are independent of service requirements (ai ¼ 0 implies that server i never
fails, and the repair rates are assumed to be positive to avoid uninteresting cases). For
simplicity, we assume that travel and setup times are negligible. Under these assump-
tions, our objective is to determine the dynamic server assignment policy that maxi-
mizes the long-run average throughput.

There is a significant amount of literature on queues with flexible servers. In the
interest of space, we do not provide an overview of the entire literature on this subject
but refer the interested reader to Andradóttir, Ayhan, and Down [2, 4] and Hopp and
Van Oyen [8] for detailed literature reviews. Similarly, there is much of work in the
literature on queues with unreliable servers. One can refer to Doshi [7] and Takagi
[11] for a survey of the related literature. However, to the best of our knowledge,
there are only three articles on queues with flexible unreliable servers, even though
server failures are present in many real-life settings. For example, if the servers are
humans, failures would correspond to sicknesses, injuries, breaks, and so forth. On
the other hand, if the servers are not humans, failures could refer to the instances
such as breakdowns and maintenance. Our results indicate that, in certain cases,
the optimal server assignment policy is insensitive to server failures and, hence,
that plans for the effective usage of servers that do not take server failures into
account can be implemented in these cases without incurring substantial deleterious
effects.

We now review the previous research on queuing systems with flexible, failure-
prone servers and contrast this work with our results. In particular, Wu, Lewis, and
Veatch [14] determined the allocation of flexible servers in a clearing system with
dedicated and flexible servers, where the dedicated servers are subject to failures.
Wu, Down, and Lewis [13] extended these results to serial lines with external arrivals
and two stations under the discounted and average cost criteria and developed heur-
istics for larger systems. Finally, Andradóttir, Ayhan, and Down [3] considered the
dynamic assignment of servers to maximize the long-run average throughput of
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queuing networks with infinite buffers and failure-prone servers and stations. Note
that both Wu et al. [14] and Wu et al. [13] assumed that only a subset of the
servers are flexible and subject to failures, and both Wu et al. [13] and Andradóttir
et al. [3] focused on systems with infinite buffers.

Let P be the set of all server assignment policies under consideration and let
Dp (t) denote the number of departures under policy p by time t � 0. Define

Tp ¼ lim sup
t!1

E[Dp(t)]
t

as the long-run average throughput corresponding to the server assignment policy p

[ P. Our goal is to solve the following optimization problem:

max
p[P

Tp: (1)

For two-station tandem lines with M ¼ 2 (3) reliable servers and exponentially
distributed service times, the optimal server assignment policy was characterized in
Andradóttir et al. [2] (Andradóttir and Ayhan [1]). Our results indicate that, for these
systems, the structure of the optimal policy remains unchanged when the servers are
subject to failures. In particular, when M ¼ 2, both servers have primary assignments
and leave their primary assignments only to avoid idleness. In other words, we have the
somewhat counterintuitive result that the server failures have no effect on the optimal
assignment of available servers; (that is, there is no need to compensate for server fail-
ures by assigning servers differently to tasks when they are available). For two-station
tandem lines with M ¼ 3 flexible servers, the optimal policy assigns one of the servers
to station 1 unless station 1 is blocked, another server to station 2 unless station 2 is
starved, and the third (moving) server to station 1 if the number of the jobs in the
buffer is less than a certain value (which could depend on the status of the other
servers), and to station 2 otherwise. Thus, the optimal policy is of threshold type
both when the servers are always available and also when they might fail. However,
the threshold value at which the moving server switches from station 1 to station 2
now also depends on the status of the other servers. For longer tandem lines with gen-
eralist servers, Andradóttir et al. [4] showed that any nonidling server assignment
policy is optimal. We generalize this result and prove that any nonidling policy (in
which servers idle only when they are down) is still optimal when the servers are
subject to failures. On the other hand, for longer lines with arbitrary service rates,
Andradóttir et al. [2] developed simple server assignment policies for systems in
which the number of stations equals the number of (reliable) servers. Our numerical
results indicate that these heuristic policies yield good throughput performance even
when servers are subject to failures.

The remainder of the article is organized as follows: In Section 2 we provide the
optimal server assignment policy for systems with generalist servers. Section 3
focuses on Markovian lines with two stations and two or three servers. In Section 4
we present simple server assignment heuristics for tandem lines with an equal
number of servers and stations and use numerical results for Markovian networks
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with three stations to illustrate that these simple heuristics, in general, yield good
throughput performance. Section 5 concludes the paper.

2. SYSTEMS WITH GENERALIST SERVERS

In this section we consider a tandem queue with M � 1, N � 1, and generalist servers,
so that mij ¼ migj for all i ¼ 1, . . . , M and j ¼ 1, . . . , N. Hence, the service rate of
each server at each station can be expressed as the product of two constants: one repre-
senting the server’s speed at every task and the other representing the intrinsic diffi-
culty of the task at the station. We have the following result.

THEOREM 2.1: Assume that for each j ¼ 1, . . . , N, the service requirements Sk,j of job
k � 1 at station j are i.i.d. with mean 1. Moreover, assume that for all t � 0, if there is
a job in service at station j at time t, then the expected remaining service requirement
at station j of that job is bounded above by a scalar 1 � S̄ , 1. Finally, assume that
service is either nonpreemptive or preemptive-resume. If mij ¼ migj for all i ¼ 1, . . . ,
M and j ¼ 1, . . . , N, the lifetimes of server i form a sequence of i.i.d. random vari-
ables with rate 0 � ai , 1, the repair times of server i form a sequence of i.i.d.
random variables with rate 0 , bi , 1 and all service requirements, lifetimes,
and repair times are independent of each other, then for all 0 � B1, B2, . . . ,
BN21 , 1, any nonidling server assignment policy p (in which a server idles only
when he is down) is optimal, with long-run average throughput

Tp ¼

PM
i¼1

mibi
(aiþbi)

PN
j¼1

�
1
gj

� :

PROOF: Let Ap(t) be the number of jobs that have entered the system by time t
under policy p [ P. Then

Ap(t) ¼ Qp(t)þ Dp(t);

where Qp (t) denotes the number of customers in the system at time t under policy p

[ P. Since Qp(t) �
P

j¼1
N21 BjþN for all t � 0 and for all p [ P, we have

Tp ¼ lim sup
t!1

E[Dp(t)]
t

¼ lim sup
t!1

E[Ap(t)]
t

: (2)

Our model is equivalent to one in which the service requirements of successive jobs at
station j [ f1, . . . , Ng are i.i.d. with mean 1/gj and the service rates depend only on
the server (i.e., mij ¼ mi for all i [ f1, . . . , Mg). Let p be a nonidling server assign-
ment policy and define Wp,p(t) as the total work performed by time t for all servers
under the policy p. Then Wp,p(t) ¼

P
i¼1
M miUi(t), where Ui(t) denotes the total

amount of time that server i [ f1, . . . , Mg is up in the interval [0, t]. Let Sk ¼
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P
j¼1
N Sk, j/gj be the total service requirement (in the system) of job k for all k � 1. Let

Wp(t) ¼
P

k¼1
Ap (t)Sk and let Wp,r (t) ¼ Wp(t)2Wp,p(t) be the total remaining service

requirement (work) at time t for the jobs that entered the system by time t. We have

E[Wp;r(t)] � N þ
XN�1

j¼1

Bj

 !
�S
XN

j¼1

1
gj

,

which implies that limt!1 E[Wp, r(t)]/t ¼ 0 and

lim
t!1

E[Wp(t)]
t

¼ lim
t!1

E[Wp;p(t)]
t

¼
XM
i¼1

mi lim
t!1

E[Ui(t)]
t
¼
XM
i¼1

mibi

ai þ bi
, (3)

where the last equality follows from a renewal reward process argument when ai . 0
(see, e.g., Ross [10, Sect. 3.6]). For all n � 0, let Zn ¼ (Sn,1, . . . , Sn,N). Since the event
fAp(t) ¼ ng is completely determined by the random vectors Z1, Z2, . . . , Zn-1 (and
independent of Zn, Znþ1,. . .), Ap (t) is a stopping time for the sequence of random
vectors fZng. Moreover, for all t � 0, Ap(t) � K(t)þ1, where K(t) is the number of
jobs departing station 1 by time t if all servers work at station 1 at all times, there
is unlimited room for completed jobs after station 1, and all servers are up at all
times. Since fK(t)g is a nondecreasing process with limt!1 E[K(t)]/t ¼P

i¼1
M mig1 , 1 (which follows from the elementary renewal theorem), we have

E[Ap(t)] , 1 for all t � 0. Then, from Wald’s lemma, we have

E[Wp(t)] ¼ E
XAp(t)

k¼1

Sk

" #
¼ E[Ap(t)]

XN

j¼1

1
gj
: (4)

From (2)–(4), we now have

XM
i¼1

mibi

ai þ bi
¼ lim

t!1

E½WpðtÞ�
t

¼ lim
t!1

E½ApðtÞ�
t

XN

j¼1

1
gj
¼ Tp

XN

j¼1

1
gj

,

which yields the desired throughput. The optimality of this throughput follows from
(2)–(4) and the fact that Wp,p(t) �

P
i¼1
M miUi(t) for all t � 0 and for all server assign-

ment policies p [ P. B

Theorem 2.1 shows that for systems with generalist unreliable servers, any non-
idling server assignment policy is optimal. This generalizes the corresponding results
for reliable servers provided by Andradóttir et al. [2,4]. Note that the proof of
Theorem 2.1 is slightly different and simpler than the proofs of the similar results
in Andradóttir et al. [2,4] since we made use of the relationship given in (2).
Unfortunately, in general (when the servers are not all generalists), assigning
servers to tasks in a way that maximizes the throughput is more complex. This
issue is addressed in the next two sections.
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3. TWO-STATION MARKOVIAN SYSTEMS WITH TWO OR THREE
SERVERS

For the remainder of the article we assume that the service requirements, server lifetimes,
and server repair times are all exponentially distributed. In this section we consider
systems with N ¼ 2 stations. For notational convenience, we set B ¼ B1. For all p [
P and t � 0, let Xp(t) ¼ fXp,0(t), Xp,1(t), . . . , Xp,M(t)g, where Xp,0 (t) ¼ 0 if there is
a job to be processed at station 1, the number of jobs waiting to be processed between
stations 1 and 2 is zero, and station 2 is starved at time t; Xp,0 (t) ¼ i for 1 � i � Bþ1
if there are jobs to be processed at both stations 1 and 2 and there are i21 jobs waiting
to be processed in the buffer at time t; Xp,0 (t) ¼ B þ 2 if station 1 is blocked, B jobs
are waiting to be processed in the buffer, and there is a job to be processed at station 2
at time t; and Xp, j(t) [ f0, 1g for j ¼ 1, . . . , M denotes the status of server j at time t,
where 0 refers to the down state and 1 refers to the up state. Let

S ¼ {(i, l1, . . . , lM) : i ¼ 0, 1, . . . , Bþ 2, lj ¼ 0, 1 for j ¼ 1, . . . , M}

denote the state space of fXp (t): t � 0g. From now on, we assume that the class P of
server assignment policies under consideration consists of Markovian stationary policies
corresponding to the state space S. Then it is clear that fXp (t) : t � 0g is a continuous-
time Markov chain and that there exists a scalar qp �

P
i¼1
M (maxfai, bigþmax1�j�2

mij) , 1 such that the transition rates fqp (s, s0)g of fXp (t)g satisfy
P

s0[S,s0=sqp
(s, s0) � qp for all s [ S. Hence, fXp (t)g is uniformizable. Let fYp (k)g be the corre-
sponding discrete-time Markov chain, so that fYp (k)g has state space S and transition
probabilities pp (s, s0) ¼ qp (s, s0) / qp if s0=s and pp (s, s) ¼ 1 2

P
s0[S,s=sqp (s, s0)

/ qp for all s [ S. Using the analysis in Andradóttir et al. [2, Sect. 3], one can show
that the original optimization problem in (1) can be translated into an equivalent (discrete-
time) Markov decision problem. More specifically, for all (i, l1, . . . , lM) [ S, let

Rp(i, l1, . . . , lM) ¼ qp((i, l1, . . . , lM), (i� 1, l1, . . . , lM)) if i [ {1, . . . , Bþ 2}
0 if i ¼ 0

�

be the departure rate from state (i, l1, . . . , lM) under policy p. Then the optimization
problem (1) has the same solution as the Markov decision problem

max
p[P

lim
K!1

E
1
K

XK

k¼1

Rp(Yp(k � 1))

" #
:

In other words, maximizing the steady-state throughput of the original queuing
system is equivalent to maximizing the steady-state departure rate for the associated
embedded (discrete-time) Markov chain.

In Section 3.1, we characterize the optimal server assignment policy for tandem
lines with two stations and two servers, and in Section 3.2 we provide the structure of
the optimal policy for tandem lines with two stations and three servers. In particular,
Theorem 3.1 states the optimal policy for a Markovian system of two stations with one
reliable server, one unreliable server, and 0 � B � 10, and Theorem 3.2 describes the
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optimal policy for a Markovian system of two stations with two unreliable servers,
and B ¼ 0. Note that under a Markovian stationary policy p, fXp(t)g not only has
a much larger state space than the corresponding continuous-time Markov chain for
the same system with reliable servers but also is no longer a birth–death process
(unlike for systems with reliable servers). Hence, it is difficult to quantify the
expressions required in the proofs of Theorems 3.1 and 3.2 for general B. Using
our computational resources, we were able to obtain closed-form expressions for
these quantities up to buffer size B ¼ 10 and B ¼ 0 in Theorems 3.1 and 3.2, respect-
ively. Moreover, we performed a large number of numerical experiments to verify that
the policy described in Theorems 3.1 and 3.2 is optimal for systems with 0 , B , 1.

3.1. Systems with Two Servers

In this section, we consider a two-station tandem queue with two servers. First,
assume that only one of the servers is subject to failures. We now specify the
server assignment policy that maximizes the long-run average throughput in this
setting for systems with 0 � B � 10. Note that our proof of the optimality of the
server assignment policy described in Theorem 3.1 differs from the proof of the cor-
responding result for reliable servers (see Andradóttir et al. [2]) in that we use a linear
program rather than the policy iteration algorithm approach to prove the optimality of
the server assignment policy.

THEOREM 3.1: For a Markovian system of two stations with one reliable server, one
unreliable server, and 0 � B � 10, if m11m22 � m21m12, then the policy that assigns
server 1 to station 1 and server 2 to station 2 unless station 1 is blocked or station 2 is
starved and assigns both servers to station 1 (station 2) when station 2 (station 1) is
starved (blocked) is optimal. Moreover, this is the unique optimal policy in the class
of Markovian stationary policies if the inequality is strict.

The uniqueness of the optimal policy in Theorem 3.1 is subject to the interpret-
ation that when a server is down, assigning him to any one of the stations is equivalent
to idling him, assigning a server to a station where there is no work is equivalent to
idling him, and when mij ¼ 0, where i, j [ f1, 2g, assigning server i to station j is
equivalent to idling server i. Note also that the optimal policy does not depend on
which server is subject to failures. By relabeling the servers, it is clear that
Theorem 3.1 shows that when m21m12 � m11m22, then the policy that assigns server
1 to station 2 and server 2 to station 1 unless station 1 is blocked or station 2 is
starved and assigns both servers to station 1 (station 2) when station 2 (station 1) is
starved (blocked) is optimal. Moreover, this is the unique optimal policy in the
class of Markovian stationary policies if the inequality is strict.

PROOF: We only provide the proof when server 1 is subject to failures since the
proof of the case when server 2 is unreliable is similar and yields the same optimal
policy. First, suppose that m1j

¼ m2j
¼ 0 for some j [ f1, 2g (i.e., there is at least one
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station at which no server is capable of working). Then the long-run average throughput
is zero under any policy and the policy described in Theorem 3.1 is optimal. On the other
hand, ifmi1 ¼ mi2 ¼ 0 for some i [ f1, 2g (i.e., server i is not capable of working at any
station), then Theorem 2.1 shows that any nonidling policy, including the one defined in
Theorem 3.1, is optimal. Thus, we can assume without loss of generality that there exist
j1, j2 [ f1, 2g, j1=j2, such that m1j1

. 0 and m2j2
. 0.

Since only server 1 is subject to failures, the state space of the Markov chain fYp(k)g
reduces to S ¼ f(0, 1), (0, 0), (1, 1), (1, 0), . . . ,(B þ 2, 1), (B þ 2, 0)g. We use the nota-
tion as1

s2 to define the possible actions, where, for i ¼ 1, 2,si [ fI, 1, 2g is the status of
server i, with si ¼ I if server i is idling and si ¼ j [ f1, 2g if server i is assigned to
station j. Then the set As of allowable actions in state s is given as

As ¼

{aII , aI1, a1I , a11} for s ¼ (0, 1)
{a1I , a11} for s ¼ (0, 0)
{aII , aI1, aI2, a1I , a2I , a11, a12, a21, a22} for s ¼ (i, 1), i ¼ 1, . . . , Bþ 1
{a1I , a11, a12} for s ¼ (i, 0), i ¼ 1, . . . , Bþ 1
{aII , aI2, a2I , a22} for s ¼ (Bþ 2, 1)
{a2I , a22} for s ¼ (Bþ 2, 0);

8>>>>>><
>>>>>>:

where we have taken advantage of the equivalence of actions mentioned following the
statement of Theorem 3.1. Since the number of possible states and actions are both finite,
the existence of an optimal Markovian stationary deterministic policy follows from
Theorem 9.1.8 of Puterman [9].

Under our assumptions on the service rates (m11m22 � m21m12 and there exist j1, j2
[ f1, 2g, j1=j2, such that m1j1

. 0 and m2j2
. 0), neither m11 nor m22 can be equal to

zero. Combining this with the assumption that b1 . 0, one can deduce that the policy
described in Theorem 3.1 corresponds to an irreducible Markov chain and, conse-
quently, that we have a communicating Markov decision process. Thus, one can use
the material in Sections 8.8.2 and 9.5.2 of Puterman [9] to prove the optimality of the
policy in Theorem 3.1.

Consider the following linear program (P):

maximize
X
s[S

X
a[As

r(s, a) x (s, a)

s.t. X
a[As0

x(s0, a)�
X
s[S

X
a[As

p(s0js, a) x (s, a) ¼ 0 for all s0 [ S,

X
s[S

X
a[As

x(s, a) ¼ 1,

x(s, a) � 0 for all s [ S, a [ As,

where for all s [ S and a [ As, r (s, a) is the immediate reward obtained when action a is
chosen in state s and p (s0|s, a) is the probability of going to state s0 in one step when action
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a is chosen in state s (see Eqs. 8.8.2), (8.8.3), and (8.8.4) of Puterman [9]). Then Corollary
8.8.7 in Puterman [9] implies that for every basic feasible solution x, there exists at most a
single action as [ As for each s [ S such that x(s, as) . 0. Consequently, let x* be a basic
feasible optimal solution to (P) and define the decision rule dx* (which prescribes a pro-
cedure for action selection in each state) as

dx� (s) ¼ a if x�(s, a) . 0 for s [ Sx�

arbitrary for s [ S n Sx� ,

�

where Sx* ¼ fs [ S:
P

a[As
x(s, a) . 0g. Then Corollary 8.8.8 and the discussion on

page 483 of Puterman [9] yields that the stationary policy (dx*)1 (corresponding to the
decision rule dx*) is optimal. (Note that when using the unichain linear program in com-
municating models, one cannot select the actions arbitrarily in the states in S \ Sx*.
However, as we show below, the optimal solution of our linear program yields that
Sx* ¼ S.)

Define

d(s) ¼
a11 if s ¼ (0, 1) or s ¼ (0, 0)
a12 if s ¼ (i, 1) or s ¼ (i, 0) for i ¼ 1, . . . , Bþ 1
a22 if s ¼ (Bþ 2, 1) or s ¼ (Bþ 2, 0):

8<
:

Since the Markov chain fYp(k)g under policy p ¼ d1 is irreducible and has finite state
space, its stationary distribution hd exists. Set x((0, 1), a11)¼ hd((0, 1)), x((0, 0), a11)¼
hd((0, 0)), x((i, 1), a12)¼ hd((i, 1)), and x((i, 0), a12)¼ hd((i, 0)), for all i ¼ 1, . . . ,
Bþ1, x((Bþ 2, 1), a22)¼ hd((B þ 2, 1)), x((Bþ 2, 0), a22)¼ hd((B þ 2, 0)), and x(s,
a)¼ 0 for all other s [ S and a [ As. Then Sx¼ S, dx¼ d, and we know from
Corollary 8.8.7.b of Puterman [9] that x is a basic feasible solution of (P). In the interest
of space, we do not provide the closed-form expressions for the components of x but
note that

T(dx)1 ¼m22

XBþ1

i¼1

(x((i, 1), a12)þ x((i, 0), a12))þ x((Bþ 2, 1), a22)þ x((Bþ 2, 0), a22)

" #

þm12x((Bþ 2, 1), a22):

To prove the optimality of the policy described in Theorem 3.1, it suffices to show that x is
an optimal solution of (P). In order to do this, we verify that condition (3.6) of Bazaraa,
Jarvis, and Sherali [6, p. 94] is satisfied for all nonbasic variables. Using the notation in
Bazaraa et al. [6], let cB be the vector of the coefficients of the positive elements of x in
the objective function of (P) and B be the matrix of the coefficients of the positive elements
of x in the constraint matrix of (P). We have

cB ¼ [0, 0, m22, . . . , m22, m12 þ m22, m22],

where the first component corresponds to the coefficient of x((0, 1), a11), the second
component corresponds to the coefficient of x((0, 0), a11), the (iþ 2)th component
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corresponds to the coefficient of x(((i þ 1)/2, 1), a12) if i is odd and to the coefficient of x((i/
2, 0), a12) if i is even, for i¼ 1, . . . , 2(Bþ 1), and the last two components correspond to
the coefficients of x((Bþ 2, 1), a22) and x((B þ 2, 0), a22), respectively, in the objective
function of (P). Similarly, we have

B ¼

(a1 þ m11 þ m21)=q �b1=q �m22=q 0
�a1=q (b1 þ m21)=q 0 �m22=q

�(m11 þ m21)=q 0 (a1 þ m11 þ m22)=q �b1=q
0 �m21=q �a1=q (b1 þ m22)=q
0 0 �m11=q 0
0 0 0 0

..

. ..
. ..

. ..
.

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

2
66666666666666666664

�

. . . 0 0

. . . 0 0

. . . 0 0

. . . 0 0

. . . 0 0

. . . 0 0

. . . 0 0

. . . 0 0

. . . �(m12 þ m22)=q 0

. . . 0 �m22=q

. . . (a1 þ m12 þ m22)=q �b1=q

. . . 1 1

3
7777777777777777775

,

where we have ordered the states in the same manner as in cB and q is the uniformization
constant. Note that the equation corresponding to state (Bþ 2, 0) is eliminated in (P) since
it is redundant (see also Puterman [9, p. 392]). We need to show that

cBB�1vy � cy � 0 (5)

for each nonbasic variable y, where vy is the column of the constraint matrix of (P) corre-
sponding to nonbasic variable y and cy is the coefficient of nonbasic variable y in the objec-
tive function of (P). We have obtained closed-form expressions for the difference in (5) for
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systems with 0 � B� 10. In particular, we have

cBB�1vx((0,1),aII ) � cx((0,1),aII ) ¼ T(dx)1 . 0,

cBB�1vx((0,1),aI1) � cx((0,1),aI1) ¼
m11j1

j
. 0,

cBB�1vx((0,1),a1I ) � cx((0,1),a1I ) ¼
m21j1

j
� 0,

where j and j1 are strictly positive quantities whose expressions depend on B and
are omitted in the interest of space. Note that in the last equation we have the
expression equal to zero only when m21¼ 0, in which case, a11 is equivalent to a1I.
Similarly,

cBB�1vx((0,0),a1I ) � cx((0,0),a1I ) ¼ T(dx)1 . 0:

Now, consider state (i, 1) for i¼ 1, . . . , B þ 1. In what follows, jj, j ¼ 2, 3, . . . , 9, are
strictly positive quantities that depend on i and B, but their explicit expressions are omitted
to conserve space. We have

cBB�1vx((i,1),aII ) � cx((i,1),aII ) ¼ T(dx)1 . 0,

cBB�1vx((i,1),aI1) � cx((i,1),aI1) ¼
(m11m22 � m21m12)j2 þ m11j3

j
. 0,

cBB�1vx((i,1),aI2) � cx((i,1),aI2) ¼
m11j3

j
. 0,

cBB�1vx((i,1),a1I ) � cx((i,1),a1I ) ¼
m22j4

j
. 0,

cBB�1vx((i,1),a2I ) � cx((i,1),a2I ) ¼
(m11m22 � m21m12)j5 þ m22j4

j
. 0,

cBB�1vx((i,1),a11) � cx((i,1),a11) ¼
(m11m22 � m21m12)j6

j
� 0,

cBB�1vx((i,1),a21) � cx((i,1),a21) ¼
(m11m22 � m21m12)j7

j
� 0,

cBB�1vx((i,1),a22) � cx((i,1),a22) ¼
(m11m22 � m21m12)j8

j
� 0:

Note that the last three expressions are equal to zero only when m11m222m21m12¼ 0. For
state (i, 0), we have

cBB�1vx((i,0),a1I ) � cx((i,0),a1I ) ¼ T(dx)1 . 0,

cBB�1vx((i,0),a11) � cx((i,0),a11) ¼
(m11m22 � m21m12)j9

j
� 0:
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Note that the equality in the second expression holds only when m11m222m21m12¼ 0.
Now, consider state (Bþ 2, 1). We have

cBB�1vx((Bþ2,1),aII ) � cx((Bþ2,1),aII ) ¼ T(dx)1 . 0,

cBB�1vx((Bþ2,1),aI2) � cx((Bþ2,1),aI2) ¼
m12j10

j
� 0,

cBB�1vx((Bþ2,1),a2I ) � cx((Bþ2,1),a2I ) ¼
m22j10

j
. 0,

where j10 (whose expression is omitted in the interest of space) is a function of B and
is strictly positive. Note that the equality in the second expression holds only when
m12¼ 0, implying that aI2¼ a22. Finally,

cBB�1vx((Bþ2,0),a2I ) � cx((Bþ2,0),a2I ) ¼ T(dx)1 . 0:

This shows that when m11m222m21m12 � 0, x is an optimal basic feasible solution of (P)
and, hence, the policy described in Theorem 3.1 is optimal. It follows from the discussion
in Bazaraa et al. [6, p. 104] and the above expressions that ifm11m222m21m12 . 0, then x is
the unique optimal solution of (P). Combining this with Sx¼ S, we have the uniqueness of
the optimal policy in the class of Markovian stationary deterministic policies. B

The next theorem states that the policy described in Theorem 3.1 remains optimal
for systems with B ¼ 0 when both servers are subject to failures. The proof of
Theorem 3.2 is omitted since it is similar to the proof of Theorem 3.1 (except that
we have only characterized the difference in (5) for systems with B ¼ 0 since for
systems with B � 1 the state space is large and the structure of the matrix B is
more complicated than for systems with only one unreliable server).

THEOREM 3.2: For a Markovian system of two stations, two unreliable servers, and
B ¼ 0, if m11m22 � m21m12, then the policy that assigns server 1 to station 1 and
server 2 to station 2 unless station 1 is blocked or station 2 is starved and assigns
both servers to station 1 (station 2) when station 2 (station 1) is starved (blocked)
is optimal. Moreover, this is the unique optimal policy in the class of Markovian
stationary policies if the inequality is strict.

The uniqueness of the optimal policy in Theorem 3.2 is subject to the interpret-
ations mentioned after the statement of Theorem 3.1. Moreover, by relabelling the
servers, we have the optimal policy when m21m12 � m11m22.

In order to determine if the policy described in Theorems 3.1 and 3.2 is optimal
for two-station Markovian systems with two servers and arbitrary buffer size 0 � B ,

1, we performed four sets of numerical experiments. In the first two sets of numerical
experiments, we considered systems with two stations with one reliable server, one
unreliable server, and buffer of size B [ f15, 20g between the two stations (recall
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that B values between 0 and 10 are covered by Theorem 3.1), whereas in the third and
fourth sets of numerical examples, we focused on two-station tandem lines with M ¼
2 unreliable servers and buffer size B [ f1, . . . , 5, 10, 15, 20g (recall that B ¼ 0 is
covered by Theorem 3.2). In the first (third) set of numerical examples, the service
rate mij of each server i [ f1, 2g at each station j [ f1, 2g, the failure rate a1 of
server 1 (ai of each server i [ f1, 2g), and the repair rate b1 of server 1 (bi of
each server i [ f1, 2g) are drawn independently from a uniform distribution with
range [0, 100]. In the second (fourth) set of examples, we generated the service
rate mij of each server i [ f1, 2g at each station j [ f1, 2g from a uniform distribution
with range [0, 100], the failure rate a1 of server 1 (ai of each server i [ f1, 2g) from a
uniform distribution with range [0, 1], and the repair rate b1 of server 1 (bi of each
server i [ f1, 2g) from a uniform distribution with range [0, 10] (all rates were gen-
erated independently of one another). Consequently, the first and third sets of
examples are concerned with systems in which the relationship among the service
times, lifetimes, and repair times is arbitrary, which we will refer to as systems with
common timescales for the remainder of the article, and the second and fourth sets
of examples focus on systems where these three quantities generally happen on differ-
ent timescales, which will be referred to as systems with different timescales for the
rest of the article. In each set of examples, we generated 1,000,000 sets of rates inde-
pendently yielding 1,000,000 different systems for each buffer size B. We then com-
puted the optimal policy for each system considered in the four sets of numerical
experiments using the policy iteration algorithm for communicating Markov chains
(described in Puterman [9, pp. 479–480]) with the policy given in Theorems 3.1
and 3.2 as the initial policy. In each case, the policy iteration algorithm terminated
after one iteration, which implies that no further improvement on throughput is poss-
ible. These extensive numerical results demonstrate that the policy described in
Theorems 3.1 and 3.2 appears to be optimal for systems with 0 � B , 1 (at least
with high probability). Since this policy is identical to the optimal server assignment
policy for a Markovian system of two stations and two reliable servers (see
Andradóttir et al. [2, Thm. 4.1], our results suggest that the optimal server assignment
policy is insensitive to server failures.

3.2. Systems with Three Servers

In this section we consider a two-station tandem queue with three unreliable servers.
The service times, lifetimes, and repair times of all servers are independent and expo-
nentially distributed random variables. The optimal policy for this system when the
servers are reliable is given in Andradóttir and Ayhan [1]. We conjecture that the
structure of the optimal policy remains unchanged when the servers are subject to
failures.

More specifically, we assume that for all i [ f1, 2, 3g, either mi1 . 0 or mi2 . 0.
(If there exists a server i such that mi1 ¼ mi2 ¼ 0, then the problem reduces to having
two servers, which is discussed in the previous section.) Without loss of generality,
we also assume that there exist i, k [ f1, 2, 3g such that mi1 . 0 and mk2 . 0.
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(Note that if m11 ¼ m21 ¼ m31 ¼ 0 or m12 ¼ m22 ¼ m32 ¼ 0, then the throughput is
zero and any policy is optimal.) For i ¼ 1, 2, 3, define

ri ¼
mi1

mi2
,

with the convention that a positive real number divided by zero is equal to 1. Note
that ri can be interpreted as the relative skill of server i [ f1, 2, 3g at station 1 (as
compared to the skill of the server at station 2). Let d, m, and u be such that fd, m,
ug ¼ f1, 2, 3g and rd � rm � ru. Then we conjecture that for each three-tuple (l1,
l2, l3), where li [ f0, 1g denotes the status (down or up) of server i [ f1, 2, 3g,
there exists s* (l1, l2, l3) such that an optimal server assignment policy (d*)1 is
given by

d�((i, l1, l2, l3)) ¼

servers d, m, and u work at station 1

servers m and u work at station 1, server d works at station 2

server u works at station 1, servers d and m work at station 2

servers d, m, and u work at station 2

8>>><
>>>:

for i ¼ 0

for 1 � i � s�(l1, l2, l3)� 1

for s�(l1, l2, l3) � i � Bþ 1

for i ¼ Bþ 2:

:

(6)

Note that the above policy generalizes the one in Andradóttir and Ayhan [1] in the
sense that the optimal switch point s* (l1, l2, l3) for server M (where server m
moves from station 1 to station 2) can depend on the status of servers d and u.
Clearly, if (l1, l2, l3) is such that lm ¼ 0, then s* (l1, l2, l3) can be chosen arbitrarily.

Proving the optimality of the threshold policy (6) is difficult because the state
space S is large even for systems with small buffer sizes, the structure of the
matrix B defined in the proof of Theorem 3.1 is more complicated than for systems
with two servers, and the characterization of the optimal switch point is challenging
even for systems with reliable servers; see Andradóttir and Ayhan [1]. Consequently,
we performed two sets of numerical experiments aimed at determining the structure of
the optimal policy for systems with three unreliable servers. More specifically, the first
set of numerical examples is concerned with systems with common timescales, and
the second set of numerical examples considers systems with different timescales
as described in Section 3.1. In each set of examples, the number of replications
(sets of service, failure, and repair rates) was again 1,000,000 for systems with
B [ f0, 1, . . . , 5, 10, 15g and 100,000 for systems with B ¼ 20. (We performed a
smaller number of replications for B ¼ 20 because the amount of computer time
required to find the optimal policy for systems with B ¼ 20 is large.) Using the
policy iteration algorithm for communicating Markov chains, we computed the
optimal policy for each system considered in the two sets of numerical experiments
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starting with the optimal policy for systems with reliable servers. In each case, the
policy iteration algorithm yielded an optimal policy with the structure described
in (6). These extensive numerical results demonstrate that policies of this form
appear to be optimal for systems with three unreliable servers.

Using the numerical experiments discussed above, we also studied the loss in
optimal throughput if one were to choose s* (l1, l2, l3) independently of l1, l2, l3
(i.e., the switch point for server m does not depend on the status of the servers). To
this end, we compared the throughput of the optimal policy with two other policies
that are easier to implement. The first policy (d1)1 is given by

d1((i, l1, l2, l3)) ¼

servers d, m, and u work at station 1

servers m and u work at station 1, server d works at station 2

server u works at station 1, servers d and m work at station 2

servers d, m, and u work at station 2

8>>><
>>>:

for i ¼ 0

for 1 � i � s� � 1

for s� � i � Bþ 1

for i ¼ Bþ 2,

:

where s* is the optimal switch point for the corresponding system with reliable
servers. The second policy (d2)1 is given by

d2((i, l1, l2, l3)) ¼

servers d, m, and u work at station 1

servers m and u work at station 1, server d works at station 2

server u works at station 1, servers d and m work at station 2

servers d, m, and u work at station 2

8>>><
>>>:

for i ¼ 0

for 1 � i � s�c � 1

for s�c � i � Bþ 1

for i ¼ Bþ 2,

:

where sc* is the (constant) switch point that yields the best throughput among the
threshold-type policies (described in this section) with the switch point chosen inde-
pendently of the status of servers. Tables 1 and 2 display the 95% confidence intervals
for the average throughput values of (d1)1, (d2)1, and (d*)1 as a function of the buffer
size B for the two sets of numerical experiments described above.

As expected, Tables 1 and 2 demonstrate that the average throughputs
achieved by all three policies increase as the buffer size B increases. Moreover,
the average throughput of the (d1)1 policy is always within 1.41% of the through-
put of the optimal policy, and the difference between the average throughputs of
the (d2)1 policy and the optimal policy never exceeds 0.08%. This shows that
the average performance of policies (d1)1 and (d2)1 is similar to the average
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performance of the optimal policy for all buffer sizes; in particular, (d2)1 yields
near-optimal throughput. We conclude that choosing the optimal switch point
for server m independently of the status of the servers has minimal impact on
the throughput, and both policies (d1)1 and (d2)1 are likely to yield very good per-
formance in practice. Consequently, these numerical results show that using the
optimal policy for systems with reliable servers yields near-optimal throughput
in systems with unreliable servers.

4. DYNAMIC SERVER ASSIGNMENT POLICIES FOR LARGER SYSTEMS

This section is concerned with server assignment policies for tandem lines with more
than two stations when the number of servers is equal to the number of stations.
Unfortunately, even when the servers are reliable, the optimal server assignment
policy in these larger systems is complicated and might be difficult to implement.
Thus, it is important to identify server assignment heuristics with good throughput

TABLE 2. Throughput Values for Systems with Two Stations, Three Servers, and
Different Timescales

B (d1)1 (d2)1 (d*)1

0 59.6406+0.0396 60.4447+0.0399 60.4910+0.0399
1 62.3232+0.0414 62.7910+0.0415 62.8405+0.0416
2 63.7140+0.0424 64.0210+0.0424 64.0659+0.0424
3 64.5473+0.0430 64.7654+0.0430 64.8032+0.0430
4 65.0900+0.0434 65.2542+0.0433 65.2891+0.0433
5 65.4667+0.0436 65.6000+0.0437 65.6312+0.0436

10 66.3620+0.0442 66.4489+0.0441 66.4690+0.0441
15 66.7196+0.0443 66.8174+0.0443 66.8329+0.0443
20 66.9358+0.1402 67.0578+0.1401 67.0708+0.1401

TABLE 1. Throughput Values for Systems with Two Stations, Three Servers, and
Common Timescales

B (d1)1 (d2)1 (d*)1

0 29.9400+0.0282 30.2667+0.0284 30.2707+0.0285
1 31.0931+0.0293 31.3192+0.0295 31.3220+0.0295
2 31.7210+0.0299 31.9085+0.0301 31.9105+0.0301
3 32.1021+0.0304 32.2775+0.0305 32.2789+0.0305
4 32.3517+0.0307 32.5249+0.0308 32.5259+0.0308
5 32.5230+0.0309 32.6991+0.0310 32.6999+0.0310

10 32.9170+0.0315 33.0999+0.0315 33.1002+0.0316
15 33.0589+0.0317 33.2342+0.0318 33.2344+0.0318
20 33.1231+0.1004 33.2861+0.1007 33.2862+0.1007
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performance for larger systems. One possible way of achieving this is to determine the
best nonmoving policy (i.e., the policy with the highest throughput among those with
stationary servers) and apply one step of the policy iteration algorithm on this policy.
This approach has been implemented successfully in different settings (see, e.g.,
Argon, Ding, Glazebrook, and Ziya [5]). However, determining the best nonmoving
policy and implementing one step of the policy iteration algorithm could be arduous
for larger systems and will not necessarily yield a policy with good throughput per-
formance. Moreover, the resulting policy will depend on the system parameters and
could be difficult to implement. By contrast, our objective is to develop easily imple-
mentable and robust server assignment heuristics having good throughput perform-
ance for a broad range of system parameters. In particular, using numerical
experiments, we will illustrate that server assignment heuristics developed for
larger systems with reliable servers are also effective in systems with failure-prone
servers.

The results provided in Section 3.1 suggest that the optimal policy for systems with
two stations and two unreliable servers is the same as for the corresponding systems
with reliable servers. This policy has two parts: a primary assignment of servers to
stations and a contingency plan specifying what servers will do when there is no
work at their primary assignments. The heuristic server assignment policies developed
by Andradóttir et al. [2] for larger systems with reliable servers have the same nature
(consisting of a primary assignment and a contingency plan). In particular, based on
the optimal policy in Section 3.1, for systems with M ¼ N � 2, the primary assignment
of each server i [ f1, . . . , Mg is to station ji [ f1, . . . , Ng, where f j1, . . . , jMg ¼
f1, . . . , Ng (so that there is exactly one server at each station) and

Q
i¼1
M miji

is maxi-
mized. Also, we consider the following three contingency plans:

In the first (local) contingency plan, at any time when station j [ f1, . . . , N21g is
blocked, the server with primary assignment at station j will be working downstream
at the nearest station k . j where there is work to be done and where there is room for
at least one job in the buffer following station k, and at any given time when station
j [ f2, . . . , Ng is starved but not blocked, the server assigned to station j will be
working upstream at the nearest station k , j where there is work to be done.

In the second (push) contingency plan, all servers who have no work to do at the
station they are assigned to will be working at the lowest numbered station 1 �
k � N that is not blocked.

In the third (pull) contingency plan, all servers that have no work to do at the
station they are assigned to will be working at the highest numbered station
1 � k � N that is not starved.

As in Andradóttir et al. [2], when these three contingency plans are implemented with
the primary assignment strategy described above, the resulting heuristics will be
referred to as the local, push, and pull heuristics.

Andradóttir et al. [2] compared the local, push, and pull heuristics to several other
policies (described below) in tandem lines with reliable servers and concluded that
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these three heuristics (especially the local one) yield near-optimal throughput. We now
evaluate the performance of these heuristics in tandem lines with failure-prone servers.
To this end, we will compare these three heuristics with several other server assignment
policies, including the optimal policy and four benchmark policies: the nonmoving policy
with server i assigned to station i at all times, for all i; the nonmoving heuristic using our
criterion described in the previous paragraph for assigning servers to stations; the best
nonmoving heuristic (which yields the largest throughput among all server assignment
policies where each server i is assigned to station ji at all times with f j1, . . . , jMg ¼
f1, . . . , Ng); and the teamwork policy of Van Oyen, Gel, and Hopp [12] (which involves
assigning all available servers to a single team that will follow each job from the first to the
last station and only starts work on a new job once all work on the previous job has been
completed). Moreover, we will also compare the three heuristics with the best local, push,
and pull heuristics that use the best primary assignment of servers to stations instead of
our heuristic primary assignment criterion. The optimal policy and corresponding
steady-state throughput were obtained using the policy iteration algorithm.

To evaluate and compare the performance of the 11 server assignment policies
described in the previous paragraph, we considered Markovian systems with 3 unreliable
servers and 3 stations with a buffer size of B1 [ f1, 2g between stations 1 and 2 and a
buffer size of B2 [ f1, 2g between stations 2 and 3. Since the state space of the corre-
sponding Markov chain grows exponentially as the number of stations and the sizes of
the buffers increase, we do not consider larger systems (due to not having the required
computational resources). As in Section 3, in the first set of examples we considered
systems with common time scales, and in the second set of examples we focused on
systems with different timescales. Table 3 (Table 4) shows the 95% confidence intervals
for the steady-state throughput obtained by each policy for the first (second) set of

TABLE 3. Throughput Values for Systems with Three Stations, Three Servers, and
Common Timescales

Policy
Common Buffer

Size ¼ 1
Common Buffer

Size ¼ 2
Buffer

Sizes ¼ Uniform f1, 2g

Optimal policy 27.9501+0.1308 28.7283+0.1344 28.3693+0.1328
Best local heuristic 25.8591+0.1258 26.9705+0.1305 26.4617+0.1287
Best push heuristic 25.6516+0.1229 26.7180+0.1278 26.2563+0.1269
Best pull heuristic 25.6041+0.1238 26.6316+0.1288 26.1731+0.1264
Local heuristic 25.6574+0.1276 26.8185+0.1157 26.2941+0.1087
Push heuristic 25.5405+0.1239 26.6722+0.1285 26.1616+0.1267
Pull heuristic 25.4592+0.1247 26.5085+0.1296 26.0422+0.1272
Teamwork policy 16.4795+0.1627 16.4795+0.1627 16.5499+0.1640
Best nonmoving

heuristic 15.9194+0.1026 17.7443+0.1157 16.8536+0.1087
Nonmoving

heuristic 15.7929+0.1049 17.5719+0.1186 16.7077+0.1111
Nonmoving policy 9.5728+0.1258 10.4016+0.1407 10.1033+0.1345
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numerical examples for systems with a common buffer size of 1 (i.e., B1 ¼ B2 ¼ 1),
common buffer size of 2 (i.e., B1 ¼ B2 ¼ 2), and independent and uniformly distributed
buffer sizes on the set f1, 2g (i.e., B1 � Uniform f1, 2g, B2 � Uniform f1, 2g). In each
case, the number of replications (sets of service, failure, and repair rates) was 10,000.
(Since the amount of computer time required to find the optimal policy for systems
with three stations and three servers is large, in this section we performed a smaller
number of replications than in Section 3.)

Tables 3 and 4 illustrate that the local, push, and pull heuristics yield good through-
put performance on average (e.g., considering the optimal policy as the baseline, the
difference between the average throughputs of the optimal policy and the local heuristic
is always less than 8.5%). Moreover, the difference between the steady-state throughputs
of the local, push, and pull heuristics and the best local, push, and pull heuristics is very
small (e.g., considering the best local heuristic as the baseline, the difference between the
average throughputs of the best local heuristic and the local heuristic is always less than
0.8%). Among the three heuristics, the local heuristic always shows the best performance
and the pull heuristic always shows the worst performance. The performance of the three
heuristics is slightly better in the second set of numerical examples, where the service
times, lifetimes, and repair times are on different scales. The three heuristics yield
much better throughput performance than the nonmoving and teamwork policies.
Moreover, the teamwork policy always shows better average behavior than the three non-
moving policies. For the systems considered in Tables 3 and 4, we also implemented
various contingency plans where an idle server will give priority to work at a station if
the server assigned to that station is failed. Although the results are omitted for reasons
of brevity, these heuristics always performed significantly worse than the local, push,
and pull heuristics. In summary, the results presented in this section suggest that in

TABLE 4. Throughput Values for Systems with Three Stations, Three Servers, and
Different Timescales

Policy
Common Buffer

Size ¼ 1
Common Buffer

Size ¼ 2
Buffer

Sizes ¼ Uniform f1, 2g

Optimal policy 52.2617+0.2405 53.3506+0.2466 52.8443+0.2433
Best local heuristic 48.6272+0.2286 50.4355+0.2374 49.6156+0.2335
Best push heuristic 48.4361+0.2273 50.1688+0.2367 49.3706+0.2318
Best pull heuristic 48.2278+0.2273 49.8551+0.2358 49.1118+0.2311
Local heuristic 48.3514+0.2313 50.2261+0.2396 49.3743+0.2357
Push heuristic 48.2791+0.2289 50.0442+0.2357 49.2331+0.2331
Pull heuristic 48.0083+0.2290 49.6611+0.2372 48.9102+0.2324
Teamwork policy 37.9073+0.4159 37.9073+0.4159 38.1015+0.4191
Best nonmoving

heuristic 30.8097+0.1776 33.3873+0.1992 32.1056+0.1874
Nonmoving

heuristic 30.5172+0.1839 33.0125+0.2068 31.7824+0.1939
Nonmoving policy 16.9686+0.2256 18.1793+0.2476 17.7924+0.2390
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tandem lines where the number of servers is equal to the numberof stations, serverassign-
ment policies designed for systems with reliable servers also achieve very good through-
put performance in systems with failure-prone servers.

One heuristic explanation for the insensitivity of desirable server assignment pol-
icies to server failures is that the ratio of the effective service rate of each server i at
any station j to the server’s effective service rate any other station k=j does not
depend on the reliability of server i (where the effective service rate of server i [
f1, . . . , Mg at station j [ f1, . . . , Ng is defined as the product of mij and the
long-run probability bi/(aiþbi) that server i is up). In fact, the results for flexible
reliable servers that only depend on ratios of service rates (i.e, the optimal assignment
of generalist servers, the optimal assignment of servers for systems with M ¼ N ¼ 2,
and the definition of servers d, m, and u for systems with M ¼ 3 and N ¼ 2) are com-
pletely insensitive to server failures, whereas the state where server m moves from
station 1 to station 2 for systems with M ¼ 3 and N ¼ 2 and the optimal server assign-
ment policy for systems with N ¼ M ¼ 3 are not completely specified by these ratios,
and server failures do in fact have a greater impact in these cases.

5. CONCLUDING REMARKS

The results in this article suggest that in tandem lines with finite buffers, the optimal
assignment of servers to stations (in order to achieve good throughput performance) is
relatively insensitive to server failures. More specifically, in a system with N � 1
stations and M � 1 generalist servers, any nonidling server assignment policy is
throughput-optimal, regardless of whether the servers are reliable or unreliable.
Similarly, the optimal policy for systems with two stations and two reliable servers
also appears to be optimal when the two servers are unreliable. Moreover, the
optimal policy for systems with two stations and three unreliable servers has
the same structure as the optimal policy for three reliable servers, and even when
the optimal policy for systems with unreliable servers does not coincide with the
optimal policy for systems with reliable servers, the loss in throughput associated
with ignoring server failures by using the optimal policy for reliable servers
appears to be insignificant. Finally, in tandem lines with three stations and three
servers, server assignment policies designed for larger systems with reliable servers
also yield good throughput performance in systems with failure-prone servers.
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