
Astin Bulletin 41(2), 575-609. doi: 10.2143/AST.41.2.2136989 © 2011 by Astin Bulletin. All rights reserved.

MODELLING DEPENDENCE IN INSURANCE CLAIMS PROCESSES
WITH LÉVY COPULAS

BY

BENJAMIN AVANZI, LUKE C. CASSAR AND BERNARD WONG

ABSTRACT

In this paper we investigate the potential of Lévy copulas as a tool for modelling 
dependence between compound Poisson processes and their applications in 
insurance. We analyse characteristics regarding the dependence in frequency and 
dependence in severity allowed by various Lévy copula models. Through the 
introduction of new Lévy copulas and comparison with the Clayton Lévy copula, 
we show that Lévy copulas allow for a great range of dependence structures.

Procedures for analysing the fi t of Lévy copula models are illustrated by 
 fi tting a number of  Lévy copulas to a set of  real data from Swiss workers 
compensation insurance. How to assess the fi t of these models with respect to 
the dependence structure exhibited by the dataset is also discussed.

Finally, we provide a decomposition of  the trivariate compound Poisson 
process and discuss how trivariate Lévy copulas model dependence in this 
multivariate setting.
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1. INTRODUCTION

In a non-life insurance company, an event may give rise to claims of different 
types. Such events range from a work-related accident resulting in claims for 
medical costs and allowance costs, to a natural peril causing losses in motor 
and home classes of business. Furthermore, dependence in claims processes 
can have an impact on both frequency (claim counts) and severity (claim 
amounts). This has direct implications on pricing, reserving and capital alloca-
tion of an insurance company (Embrechts et al., 2002; Denuit et al., 2005; 
McNeil et al., 2005). It is also highly relevant for solvency purposes and in risk 
based capital regulatory systems such as Solvency II.

A natural and standard choice for modelling insurance claims processes
is the compound Poisson process (e.g., Bowers et al., 1997; Mikosch, 2009; 
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Asmussen and Albrecher, 2010). In a multivariate setting, dependence between 
multiple compound Poisson processes (loosely interpreted as classes of business) 
can be intuitively represented in a common shock representation (Lindskog and 
McNeil (2003); see also Yuen and Wang (2002)). In such a representation, 
classes of business (potentially) share ‘common shocks’ — claims occurring at 
the same time in two or more different classes according to an identical arrival 
process. Furthermore, dependence between the sizes of the claims occurring 
simultaneously can be modelled with distributional copulas. This approach has 
a number of advantages. Firstly, the common shock model allows for detailed 
and separate specifi cation of  dependence in frequency and dependence in 
severity. In addition, as the model is specifi ed upon a continuous time (Markov) 
stochastic process, the model also allows for the consideration of dependence 
over alternative time horizons in an internally consistent manner.

Unfortunately, due to its fl exibility, the common shock model becomes 
increasingly parameter intensive as the number of dimensions increases. For 
example, the case of four classes of business can require the specifi cation of 
up to fi fteen independent Poisson arrival processes (because of jumps that can 
be common to two, three, or four classes), six bivariate distributional copulas, 
four trivariate distributional copulas, one quadvariate distributional copula 
and twenty-four jump size distributions.

An alternative approach is to apply a distributional copula directly to the 
aggregate claims of each class at a chosen time horizon, creating a multivariate 
distribution of aggregate claim amounts (see, for example, McNeil et al., 2005; 
Bargès et al., 2009). Similarly, a distributional copula may be applied to the 
aggregate number of  claims over a chosen time horizon, (see, for example, 
Bäuerle and Grübel, 2005; Genest and Neslehová, 2007). The model is then 
reduced to modelling dependence between random variables for a given time 
horizon. This approach possesses a number of benefi ts, including relative par-
simony in model specifi cation, and in particular with the facilitation of  a 
“bottom-up approach to multivariate model building” whereby models are built 
by combining the information of a class of business (i.e. the marginals), with 
that of the dependence structure across classes (McNeil et al., 2005, p. 185). 
This is in contrast to a common shock based approach where models are built 
from common shock events. The focus here is on the classes of business, rather 
than the common shock events. Unfortunately, as the distributional copula for 
aggregate claims will depend on the chosen time horizon, in general it is not 
possible to infer the copula for a different time horizon (to consider the risks 
faced by an insurance company over 1, 2 or 5 years, for instance, Fosker et al., 
2010, p. 8). This approach also requires suffi cient data for the aggregate claim 
amounts in each class of business for the chosen time horizon. For example, if  
only a single year of data is available, then using a time horizon of one year would 
allow for only 1 data point for fi tting a distributional copula. This also results 
in an ineffi cient use of data where individual accident information is known.

In contrast to the two methods discussed above, Lévy copulas provide a 
new method which bridges the benefi ts of the common shock and distributional 
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copula approaches. Under this approach, dependence is introduced via a 
multi variate function (the Lévy copula) which couples the marginal tail inte-
grals of  the compound Poisson processes for each class of  business into a 
multivariate tail integral which completely specifi es the desired multivariate 
(dependent) compound Poisson processes model. In a nutshell, the tail integral 
of a compound Poisson process (related to its Lévy measure) represents the 
expected number of losses over a threshold (the argument of the function) 
over one unit of time; refer to the following section for a formal defi nition. 
Such a representation combines the advantages of the common shock model 
and the distributional copula approach, by being parsimonious, facilitating a 
bottom-up approach, allowing changes of  time horizon (time consistency), 
and by being effi cient in the way it uses available data.

Lévy copulas were introduced in a series of publications by Tankov (2003), 
Cont and Tankov (2004) and Kallsen and Tankov (2006). In applications, the 
Clayton Lévy copula have been used to model the dependence between com-
pound Poisson processes fi rstly to estimate ruin probabilities for an insurance 
company with multiple classes of business (Bregman and Klüppelberg, 2005). 
Optimal investment and reinsurance problems for a multiline insurer under
a Lévy copula framework was studied in Bäuerle and Blatter (2011). In the 
closely related area of operational risk modelling, applications of Lévy copulas 
between operational loss cells is discussed in Böcker and Klüppelberg (2008), 
Biagini and Ulmer (2009) and Böcker and Klüppelberg (2010). On the statistical 
front, a maximum likelihood scheme for fi tting Lévy copulas to data is pro-
vided in Esmaeili and Klüppelberg (2010a), who focus in particular on fi tting 
a Clayton Lévy copula. Additional theoretical developments in more general 
Lévy process settings can also be found in Barndorff-Nielsen and Lindner 
(2007), Bäuerle et al. (2008) and Eder and Klüppelberg (2009).

In this paper, we fi rst focus on a careful review of the concept of Lévy copula 
and shed some light on how this function is generating dependence between 
compound Poisson processes. To date, there has been limited consideration of 
the properties enabled by specifi c Lévy copula models in applications, with the 
notable exception being the Clayon Lévy copula. Section 3 develops new Lévy 
copula models and illustrates how their dependence structures can be com-
pared. It is illustrated how many of the special properties of the Clayton Lévy 
copula may not hold in general. Furthermore, it is also important from a 
practical point of view to consider alternative Lévy copula models so as to 
provide additional fl exibility in the type of dependence available to the modeller. 
This allows for a better understanding of the actuarial applications of Lévy 
copulas and illustrates the range of dependence structures enabled by them, 
in particular with respect to the impact of different models on the dependence 
in frequency and/or severity. Section 4 provides a modelling example using a 
set of worker’s compensation claims and the newly developed Lévy copulas. 
The issue of  model selection is also discussed, as the fi t of  different Lévy 
copulas to the data is compared. Finally, as insurance companies normally run 
more than two (possibly dependent) classes of business, dependence beyond a 
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bivariate setting is of particular relevance. This is investigated in Section 5, 
where the similarities and differences between the bivariate and trivariate cases 
are highlighted. Such a development is of interest as common jumps can then 
occur between any sub-set of the considered processes.

2. DEPENDENCE BETWEEN COMPOUND POISSON PROCESSES

This section provides an introduction to Lévy copulas and their implica-
tions on dependence between compound Poisson processes. Note that whilst 
compound Poisson processes in general can have jumps in both positive and 
negative directions, compound Poisson processes with only positive jumps are 
considered for the purpose of insurance claims modelling. Hence, only positive 
Lévy copulas are addressed in this paper.

2.1. Lévy copulas and compound Poisson processes

Consider a bivariate compound Poisson process {S1(t),  S2(t)}, for instance, to 
model two dependent classes of business; see also Sato (1999, Theorem 4.3) 
for a comprehensive defi nition of a multivariate compound Poisson process. 
It is known that {S1(t),  S2(t)} can be decomposed into unique (superscript =) 
and common (superscript ;) jumps, so that 
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where S1
=(t) and S2

=(t) are independent compound Poisson processes and where 
S1

;(t) and S2
;(t) are dependent compound Poisson processes whose jumps

(the ‘common shocks’) occur at the same time (Lindskog and McNeil, 2003; 
Esmaeili and Klüppelberg, 2010a). In general, the jump size distributions of 
Si

=(t) and Si
;(t) are not identical. However, the jump size distribution of Si (t)

will be a mixture of the jump size distributions for Si
=(t) and Si

;(t) (see, for 
example, Mikosch, 2009, Proposition 3.3.4).

Let us now introduce more formally the concept of ‘tail integral’. The tail 
integral of a Lévy process measures its expected number of jumps (above a 
certain threshold) per unit of time. In the (less general) case of a compound 
Poisson process Si (t), i  = 1, 2, the tail integral boils down to 
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where Fi  (x) is the survival function for the jump size of Si (t). Furthermore, 
the joint tail integral of a bivariate compound Poisson process {S1(t),  S2(t)} 
is given by 
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where l; is the Poisson parameter for the (common) jumps in S1
;(t) and S2

;(t) 
and F(x1,  x2) is the joint survival function for the sizes of the common jumps. 
A formal defi nition of the tail integral for a Lévy process with positive jumps 
is given in Appendix A.1.

A Lévy copula C couples the marginal tail integrals to the joint tail integral 
so that 

 2 2C ( ), ( ( , )U x1 1 2 1=x x x( )U ) ;U  (2.4)

see Appendix A.2 for a formal defi nition of positive Lévy copulas. The mech-
anism is strikingly similar to the one with which distributional copulas couple 
the marginal distribution functions to the multivariate distribution function 
and is formalised in what is described in Cont and Tankov (2004) as ‘‘a refor-
mulation of Sklar’s theorem for tail integrals and Lévy copulas.”

Theorem 2.1. (Sklar’s theorem for Lévy copulas, Tankov, 2003) If U is a tail 
integral with margins U1(·),  …,  Ud  (·), then there exists a Lévy copula C such that 

 U(x1,  …,  xd )   =   C (U1(x1),  …,  Ud (xd )). (2.5)

If U1(·),  …,  Ud  (·) are continuous on [0, 3] then this Lévy copula is unique. 
 Otherwise, it is unique on the product of the ranges of the marginal tail integrals.

The converse is also true. If C is a Lévy copula and U1(·),  …,  Ud  (·) are mar-
ginal tail integrals, then (2.5) defi nes a multidimensional tail integral.

On one hand, a common shock approach would require the separate model-
ling of  the Poisson parameters and jump size distributions of  S1

=(t), S2
=(t), 

S1
;(t) and S2

;(t), as well as the dependence structure of the jump sizes of S1
;(t) 

and S2
;(t). On the other hand, if  the Lévy copula is known, only the Poisson 

parameters and jump size distributions for S1(t) and S2(t) (which are directly 
observable) need to be specifi ed. This is because the decomposition of  S1(t) 
and S2(t) into unique and common components as shown in (2.1) stems 
directly from the Lévy copula (Böcker and Klüppelberg, 2008), as summarised 
in the following lemma.

Lemma 2.2. Common jumps in S1
;(t) and S2

;(t) arrive at a rate 

 = ( , )1 2C<l l l , (2.6)

94838_Astin41-2_11_Avanzi.indd   57994838_Astin41-2_11_Avanzi.indd   579 2/12/11   08:332/12/11   08:33

https://doi.org/10.2143/AST.41.2.2136989 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136989


580 B. AVANZI, L.C. CASSAR AND B. WONG

whereas the sizes of these common jumps have joint survival function
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Unique jumps in Si
=(t), i  =  1, 2, arrive at rates 

 1, 2iil l l= =
9 < ,i ,-  (2.9)

whereas their sizes are distributed with survival functions

 i i(
9
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In general, the distributions of the sizes of common jumps and unique jumps 
in each compound Poisson process distributions will not be identical. However, 
Lemma 2.3 provides conditions which must be satisfi ed by a bivariate Lévy 
copula to allow for identically distributed unique and common jump sizes in 
each compound Poisson process.

Lemma 2.3. (Identically distributed unique and common jump sizes)
A bivariate compound Poisson process with Lévy copula C satisfying
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has unique and common jump sizes in a given compound Poisson process which 
are identically distributed (and are identical to the marginal jump size distribu-
tion of the process).

Proof. If  the jump size distributions of the common jumps are equivalent to 
the marginal jump size distributions of the process, then (2.11) follows from a 
rearrangement of (2.8). In addition, (2.10) further implies that
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as required. ¡
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2.2. Changes of time horizon

If  the Lévy copula for a time horizon of one unit of time is given by C, then 
the Lévy copula for a time horizon of length T is expressed as

 Td
d( , , )u u

T
u

T
u

T 1
1f = CC ,f, .c m  (2.13)

This result is due to the properties of  the tail integral and Lévy processes 
(Barndorff-Nielsen and Lindner, 2007, Equation 13). This shows how a Lévy 
copula approach allows for easy changes of time horizon, in contrast to the 
distributional copula approach. Interestingly, Lévy copulas and the distribu-
tional copula of  the aggregate claim amounts at time T are related via the 
following asymptotic relation,

 Td ,(
+

C , , ) ( ,limu u
T

T1
0T

T d1 1f f=
"

uC ),u  (2.14)

where CT  ( ·,  …,  ·) is the time dependent distributional copula for an increment 
of time length T (Kallsen and Tankov, 2006). Whilst the Lévy copula of the 
process can be interpreted as the distributional copula of the aggregate claims 
amount for small T, in general CT  ( ·,  …,  ·) cannot be inferred from C.

2.3. Constructing positive Lévy copulas

In this section we present two methods for constructing Lévy copulas, due
to Tankov (2003), Cont and Tankov (2004) and Kallsen and Tankov (2006) 
(see also Bäuerle and Blatter, 2011). In Method 2.1, Lévy copulas are derived 
from a multivariate Lévy process using Sklar’s theorem for Lévy copulas. 
Note, however, that there are only a limited number of multivariate Lévy pro-
cesses from which Lévy copulas can be derived. As an alternative, Method 2.2 
allows for the construction of Archimedean families of Lévy copulas.

Method 2.1. Consider a d-dimensional spectrally positive Lévy process with con-
tinuous marginal tail integrals. A positive Lévy copula C can be constructed as

 ( ),U u d1 dUC ( , , ) ,u d1
1

1
1f f=

- - ( )U u ,u ` j  (2.15)

where U( ·,  …,  ·) is the multivariate tail integral of the multivariate Lévy process 
and U1(·),  …, Ud (·) are the marginal tail integrals.

Remark 2.1. If the marginal tail integrals are not continuous then a Lévy copula 
can still be constructed from (2.15) by an extension procedure, see Tankov (2003) 
and Kallsen and Tankov (2006).
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Method 2.2. For a function f  :  [0, 3]  " [0, 3] with f(0) = 3 and f(3) = 0 and 
a defi ned inverse f–1(·),

 d(dC f f( , , ) ( ) )u u u1
1

1f f= + +
- uf ,_ i  (2.16)

where the inverse must satisfy 

 (1 (( ) ( ) ) 0, 0, 1, ,z for z> >
)k k1 f-

- f =k ,d  (2.17)

and (f–1)(k) (z) denotes the k-th derivative of the inverse of f(·) with respect to z.

Remark 2.2. When constructing Archimedean distributional copulas, special care 
is needed in defi ning the inverse of the generator. The case of Lévy copulas is 
easier. Archimedean generators of Lévy copulas have a domain of [0, 3] and a 
range of [0, 3], so there is no need for a “pseudo-inverse” (Nelsen, 1999).

2.4. Fundamental Lévy copulas

For an independent multivariate compound Poisson process, the tail integral 
of the multivariate process is expressed as

    {x x 0f= = =d
( , , ) ( ) ( ) ;U x x { } }d x x d d1 1 1 0 d2 1 1

f f+ +f= = = -
IU x I x= U  (2.18)

see Bregman and Klüppelberg (2005). This means that the tail integral of an 
independent d-dimensional Lévy process is equal to 0 except for the cases where 
it is equal to the marginal tail integral. As a consequence, the independence Lévy 
copula is given by

 { }d u uf 3= = =( , , )u u u I{ }d u u1 1 d d2 1 1
f f= + +f 39 = = = -

,u IC  (2.19)

where the indicator functions are now changed since a marginal tail integral 
evaluated at 0 is equal to 3 by defi nition.

The comonotonic Lévy copula is derived in a multivariate setting as 

 d d<C ( , , ) ( , , )minu u1 1f f= u ;u  (2.20)

see Cont and Tankov (2004). This implies that the tail integral of a completely 
dependent d-dimensional Lévy process is given by the smallest of the marginal 
tail integrals.

Remark 2.3. Comonotonicity in a multivariate compound Poisson process means 
that all jumps in one process are functions of the jumps in the other. However, unless 
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 MODELLING DEPENDENCE IN INSURANCE CLAIMS PROCESSES  583

the rates of jumps in the marginal compound Poisson processes are equal, there 
will always exist unique jumps in the multivariate compound Poisson process 
with a comonotonic Lévy copula, so that all arrival processes are not necessarily 
identical. This stems from the discontinuity at 0 of the tail integral of a compound 
Poisson process.

3. COMPARISONS AND ILLUSTRATIONS OF BIVARIATE LÉVY COPULAS

The current applied literature on Lévy copulas places considerable emphasis 
on the properties and application of the Clayton Lévy copula. The purpose 
of this section is to illustrate that Lévy copulas allow for a richer range of 
dependence structures by developing new models and by comparing their main 
features. After introducing the pure common shock Lévy copula, an analysis 
of the Clayton Lévy copula (Tankov 2003) is included for comparison purposes. 
Two other new Lévy copulas are also introduced, one that fi ts well the data 
set that is considered in this paper (see Section 4), and another one that allows 
for negative dependence in severity. Throughout this section, the dependence 
structures induced by the different models will be compared by examination 
of their ‘Lévy copula density’,

 
C

( , )
( , )

u
u u

c 1 2
1 2

2
1 2

2 2

2
=u

u u
, (3.1)

where ui  =  Ui  (xi ), i  =  1, 2. The volume under the density on [ 0, l1 ]   ≈   [ 0, l2 ] is 
the expected number of common jumps per unit time,

 
2

,u <( ) .d dc 1 2 1 2
1

=
ll

lu u
00

u##  (3.2)

Since this is constant (for given l1 and l2), the relative repartition of the den-
sity on [ 0, l1 ]   ≈   [ 0, l2 ] is informative of the dependence structure. First, note 
that small u1 and u2 indicate larger jump sizes (and vice versa), because the 
expected number of jumps will be higher as the argument of the tail integral 
is lower. Thus, a relative higher density at small u1 and u2 will indicate a pro-
pensity for common jumps of large sizes in both components (and vice versa). 
Similarly, if  more density is present at small u1 and large u2, common jumps 
of large sizes in the fi rst component will have a higher propensity to occur with 
common jumps of small sizes in the second component, and vice versa.

We consider in the rest of this section the following illustration scheme. 
Assuming l1  =  100 and l2  =  100, Lévy copula densities and the distributional 
copula of  common jump sizes are compared under three possible values
for the expected number of  common jumps l ;  =  30, 60, 90. The purpose of
this exercise is to demonstrate the range of dependence structures available
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by using different Lévy copulas, while holding the dependence in frequency 
constant.

3.1. Pure common shock Lévy copula

Lemma 2.2 showed how the Lévy copula affects both dependence in frequency 
and dependence in severity in a bivariate compound Poisson process. However, 
it is sometimes desirable to assume independence between common jump sizes, 
and use a model which allows for dependence in the frequency only. We refer 
to such a dependence structure as a ‘pure common shock model’ (not to
be confused with a process consisting of  only common jumps; see (2.20)).
The corresponding Lévy copula representation is given in Defi nition 3.1.

Defi nition 3.1. Pure common shock Lévy copula)
The pure common shock Lévy copula is given by
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 (3.3)

where l1 and l2 are the Poisson parameters for the bivariate compound Poisson 
process, and where d is a parameter which will determine the intensity of the 
common jumps, since 

 d ( , .1 2 1 2C= =
<l l l d l) l  (3.4)

Lemma 3.1. The pure common shock Lévy copula (3.3) satisfi es the necessary 
conditions of a positive Lévy copula (see Appendix A.2).

Proof. The positive Lévy copula is clearly increasing in each component u1 
and u2, satisfi es Cd  (0, u2 )  =  Cd  (u1, 0)  =  0 and has margins Cd  (3, u2 )  =  u2 and 
Cd  (u1, 3)  =  u1. For all (a1, a2), (b1, b2)  !  [0, 3)2, and with a1  #  b1 and a2  #  b2 ,

 
d d d d2 2

d

2

2

( , ) ( , ) ( , ) ( , )
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b b a a a

b a b a

1 1 1 1 2

2 2 2 1 1 1 1

C

/ / / / $
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= - -l l l l

aC C- -b bC

_ _ _ _i i i i8 8B B
 (3.5)

and for the case b1  =  3, b2  !  [0, 3) and (a1, a2)  !  [0, 3)2, 

 
d d d d2 2 2
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( , ) ( , ) ( , ) ( , )

( ) 0,

b b a a a

a a a b

1 1 1 1 2

2 2 1 1 2 2 2 2

C
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= + -d l l
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 (3.6)
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since d (a1  /  l1)  #  1 due to the restriction on d. All other cases are proven in a 
similar way. ¡

Note that the upper bound on the Lévy copula parameter d in (3.3) is neces-
sary as a result of li

=   $  0 and (2.9), so that 

 ( , ) .min 1 2#
<l l l  (3.7)

The case of d  =  0 leads to the independence Lévy copula (2.19).

Lemma 3.2. A bivariate compound Poisson process with dependence specifi ed by 
the pure common shock Lévy copula (3.3) with non-zero d has independent and 
identically distributed common and independent jump sizes within one process, 
and independent common jump sizes in both processes.

Proof. This Lévy copula satisfi es 

 d d1 1( ( ), ) ( ) ( ) ( , ),21 1 2 1 1 2C C= =d l l lx x xl l lF F F  (3.8)

and similarly for the second argument. It follows by Lemma 2.3 that the result-
ing common and independent jump sizes within one process are independent 
and identically distributed. Finally, application of (2.7) gives

 
d1,
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1 2 2
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=

d l l
ll<

F
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xF

F

x ,x F
 

(3.9)

  (3.10)

indicating independence. ¡

For (u1, u2)  !  [0, l1]   ≈   [0, l2] the Lévy copula density for the pure common 
shock Lévy copula is simply given by the parameter d. A plot of this density 
would then display a fl at plane at that level, which indicates no prevalence
of  certain jump sizes over others for given jump sizes in other processes.
As the dependence in frequency increases, the height of the plane above 0 also 
increases.

3.2. Clayton Lévy copula

The bivariate Clayton (positive) Lévy copula, introduced in Cont and Tankov 
(2004), is given by 

 d
- -

+( , ) , 0.u u u u >
d d d

1 2 1 2

1

C for=
-

d` j  (3.11)
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As d  "  0, the Clayton Lévy copula (3.11) tends to the independence Lévy 
copula, while as d  "  3, (3.11) tends to the comonotonic Lévy copula.

A particular property of the Clayton Lévy copula is that the survival copula 
of the sizes of common jumps is the Clayton distributional copula, that is,

 --( , ) 1 ;C a a a ad d d
1 2 2

1

= + -
-

1` j  (3.12)

see Bregman and Klüppelberg (2005). The Lévy copula densities for the three 
scenarios of l; are shown in Figure 1. In contrast to the case of the pure com-
mon shock Lévy copula, the Clayton Lévy copula density is not a fl at plane, 
refl ecting dependence in the sizes of the common jumps. Additionally, as the 
dependence in frequency is increased, the intensity of common jumps is more 
prevalent at larger sizes, since the density is increasingly concentrated at small 
values of u1 and u2.

The Clayton Lévy copula is a homogeneous function of order one, that is,

 ad d , 2ua a( , ) ( ) .u1 2 1= uC Cu  (3.13)

(b) l ; = 60(a) l ; = 30

FIGURE 1: Clayton Lévy copula densities for l1  =  100 and l2  =  100.

(c) l ; = 90
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An important consequence of (3.13) is that a Clayton Lévy copula for a new 
time horizon of length T is unchanged from the original so that 

 d d,T ( , ) ( , ) for 0u u u u T >1 2 1 2= , .C C  (3.14)

To study dependence in severity, Figure 2 shows scatterplots of 1000 simulations 
from the distributional copula of the sizes of common jumps. Under the Clay-
ton Lévy copula, the survival copula of the common jumps sizes is a Clayton 
distributional copula. The distributional copula of the sizes of common jumps, 
C( ·,  ·) is then derived from the survival copula C( ·,  ·) using the relationship 

 ),( 1 ( , ;CC a a a a1 2 1 2 1 2= + - + - -a a) 1 1  (3.15)

see Nelsen (1999). As the dependence in frequency increases, the dependence 
in the sizes of common jumps is increasingly evident in the right-tail. That is, 
the prevalence of common jumps of relatively large sizes in both component 
increases, which further confi rms our deductions from the Clayton Lévy den-
sities in Figure 1.

3.3. Archimedean model I

In this section we introduce Archimedean model I, constructed using Method 2.2. 
Archimedean model I is an extension of a Lévy copula introduced in Chapter 5 
of Cont and Tankov (2004).

Defi nition 3.2. (Archimedean model I)

 d - - -

-

( , ) , 0ln
e e e

e for1
2

1 >d d d

d

u u u u

u u

1 2
1 1 2 2

1 2

C =
- +

-
+

+

d
d ,u u e

^

^

o
h

h

 (3.16)

(a) l ; = 30 (b) l ; = 60 (c) l ; = 90

FIGURE 2: Simulations from the distributional copula of common jump sizes under the
Clayton Lévy copula for l1  =  100 and l2  =  100.
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is a bivariate Archimedean positive Lévy copula with Archimedean generator

 
-

(
-

-
f .z

e
e

1 d

d
=) z

z
 (3.17)

In contrast to the Clayton Lévy copula, Archimedean model I does not tend 
to the independence Lévy copula as d  "  0. Instead, the degree of dependence 
enabled under Archimedean model I is restricted as

 d
1 2

1 2( , ) .lim
u u

u u
0d 1 2 =

+"
u uC  (3.18)

This means that as d  "  0, Archimedean model I tends to a Clayton Lévy cop-
ula with a parameter of 1. Archimedean model I tends to the comonotonic 
Lévy copula as d  "  3.

Even though Archimedean model I is not a homogeneous function of 
order one, the time scaled Lévy copula is derived by a simple adjustment of 
the parameter d. If  Cd is an Archimedean model I Lévy copula defi ned for a 
time horizon equal to one unit of time, then the equivalent Lévy copula for a 
time horizon of length T is given by 

 d ., 2( , ) ( , )u uT 1 1 2d
T

C C=u u  (3.19)

This is a very convenient result as it means that dependence in multivariate 
compound Poisson processes may be time scaled with a simple change of 
parameter for the Lévy copula. This property is a result of the Archimedean 
generator f(·) being a function of dz.

The survival copula of the sizes of common jumps is then derived as
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where
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 (3.21)

Notice that in contrast to the case of the Clayton Lévy copula, the survival 
copula of the sizes of common jumps is dependent on the values of l1 and l2. 
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Additionally, it does not bear any resemblance to any commonly known bivar-
iate Archimedean distributional copulas (see, for instance, Nelsen, 1999).

Due to the restriction indicated by (3.18), a dependence in frequency of 
l;  =  30 cannot be produced by this Lévy copula, which explains why there is 
no density for that case in Figure 3. For the cases of  l;  =  60 and l;  =  90, 
Archimedean model I models positive jump dependence as the Lévy copula 
density is concentrated at those values where u1  =  u2 ; not dissimilar to the 
Clayton Lévy copula. However, there is a notable difference in the way that the 
Lévy copula density changes with changes in l; compared to the Clayton Lévy 
copula.

As is observed in the Lévy copula densities in Figure 3, there is a lack of 
signifi cant change in the distributional copula of common jump sizes, shown 
in Figure 4. However, as dependence in frequency increases, the dependence 
in sizes of  common jumps becomes stronger and is also positive and pre-
dominantly in the right tail.

(b) l ; = 60(a) l ; = 30

FIGURE 3: Archimedean model I densities for l1  =  100 and l2  =  100.

N/A

(c) l ; = 90
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3.4. Archimedean model II

Both previous Lévy copulas model positive dependence in both frequency and 
severity. Although only positive dependence in frequency is possible under a 
Lévy copula model (since l;   $  0), we present here a Lévy copula which allows 
for both negative dependence in severity, as well as dependence in the left-tail.

Defi nition 3.3. (Archimedean model II)

 +d ( , ) 0,lnu u e e for1 1 1 >
u u

1 2

1
1 2C = - - +

d d d- - -

d,_ _ad i i k n  (3.22)

is a bivariate positive Lévy copula with Archimedean generator

 .(f )z e 1z
= -

d-
^ h  (3.23)

Similar to the Clayton case, as d  "  0, Archimedean model II tends to the 
independence Lévy copula. As d  "  3, Archimedean model II tends to the 
comonotonic Lévy copula.

The Lévy copula for a time horizon of length T, expressed in terms of an 
Archimedean model II Lévy copula defi ned for a time horizon of length one, 
is derived as 

 +d ( , ) .lnu u T e e1 1 1,T
T
u

T
u

1 2

1
1 2

C = - - +
d d d- - -

b bdf l l n p  (3.24)

Clearly, Archimedean model II is not a homogeneous function of order one, 
nor does it exhibit the same time scaling property as Archimedean model I.

(a) l ; = 30 (b) l ; = 60 (c) l ; = 90

FIGURE 4: Simulations from the distributional copula of common jump sizes under Archimedean model I 
for l1  =  100 and l2  =  100.

N/A
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(a) l ; = 30 (b) l ; = 60 (c) l ; = 90

FIGURE 6: Simulations from the distributional copula of common jump sizes
under Archimedean model II for l1  =  100 and l2  =  100.

(b) l ; = 60(a) l ; = 30

FIGURE 5: Archimedean model II densities for l1  =  100 and l2  =  100.

(c) l ; = 90
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As illustrated in Figure 5, the dependence structure enabled under Archi-
medean model II is clearly distinct from those enabled by the Clayton Lévy 
copula and Archimedean model I. The fact that this densitity has mass at points 
where u1 is small and u2 is large, and vice versa, suggests negative dependence 
in the sizes of  the common jumps. This is confi rmed in Figure 6. Clearly, 
Archimedean model II allows for negative dependence in the sizes of common 
jumps. In addition to this, as the dependence in frequency increases (l; increases), 
the sizes of common jumps tend to positive dependence. On the other hand, 
as l; decreases, the dependence in severity becomes increasingly negatively 
dependent.

4. MODELLING EXAMPLE: 
APPLICATION TO SWISS WORKERS COMPENSATION CLAIMSC

In this section Lévy copulas are used to model dependence in a real set of data 
provided by SUVA (“Schweizerische Unfallversicherungsanstalt”). SUVA is
a body incorporated under Swiss public law which provides accident and occu-
pational disease compensation insurance to around 2 million employed and 
unemployed people in Switzerland (almost a third of Swiss residents).

4.1. Data analysis

The dataset used in this modelling example is a random sample of 5% of the 
claims from class 41A, relating to the construction sector, from accident year 
1999. The sample size of  the dataset is 2326. Each claim is divided into
two claim classes. The fi rst class relates to medical costs whilst the second 
 corresponds to daily allowance costs. Importantly, claims have been subject to 
3 years of development. That is, claims data is at 2002 year end.

Dependence in frequency between medical claims and daily allowance 
claims is evident by the existence of 1089 accidents which resulted in a claim 
in both classes. That is, there were 1089 common claims. Table 1 breaks down 
the claim numbers in terms of unique and common claims for each class.

TABLE 1

NUMBER OF UNIQUE AND COMMON CLAIM PAYMENTS IN EACH CLASS

Allowance

Claim No claim Total

Medical

Claim 1089 1160 2249

No claim   10   67  77

Total 1099 1227 2326
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Swiss law requires all worker’s compensation accidents to be reported to 
SUVA even if  the accident does not result in a claim payment. There are a 
total of 67 reported accidents with a claim size of 0 Swiss francs (CHF) in 
both medical and daily allowance classes.

Our modelling approach is to let S1(t) be a compound Poisson process for 
medical claims and S2(t) be a compound Poisson process for daily allowance 
claims. We let Cd denote the Lévy copula with parameter d specifying the 
dependence between the two processes.

The jump sizes for each process are refl ected in positive claim amounts and 
the model will assume that a claim payment of 0 does not refl ect a jump in 
the compound Poisson process. This means that the jump size distributions
of S1(t) and S2(t) do not have masses at 0. As such, the 67 accidents which 
resulted in no losses in either class will be ignored, as the model is concerned 
with those accidents that resulted in claims only, leaving a total of 2259 acci-
dents to which the bivariate compound Poisson process will be fi tted. As a 
result of  the thinning property of  the compound Poisson process (see, for 
instance, Esmaeili and Klüppelberg, 2010a), removing these data points does 
not change the assumption of a bivariate compound Poisson process.

TABLE 2

SUMMARY STATISTICS FOR CLAIM SIZES IN EACH CLASS

Statistic Medical claim sizes Allowance claim

Mean 1 492.77 6 760.32
Standard deviation 5 764.39 17 890.12
Skewness 8.88 6.35
Kurtosis 105.03 52.03

Minimum 15 26
Median 249 1 763
Maximum 97 506 186 850

Table 2 shows summary statistics for the claim sizes in each class, where acci-
dents without claims have been removed. Sample kurtoses of 105.03 and 52.03 
for medical claim sizes and daily allowance claim sizes respectively, shown in 
Table 2, suggest a heavy tailed claim size distribution for both classes.

Dependence in frequency is evident by the presence of 1089 claims com-
mon to both classes. Dependence in the severity of  these claims is evident
in Figure 7, showing scatter plots of the claim sizes, the logarithm of claim 
sizes and the empirical copula (whole and upper-right quadrant), respectively. 
Figure 7 suggests positive dependence in medical and daily allowance claim 
sizes for the 1089 common claims. Furthermore, this dependence appears to 
be right-tailed. That is, there is stronger positive dependence amongst larger 
claim sizes as opposed to smaller claim sizes.
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4.2. Parameter estimation

In fi tting a bivariate compound Poisson process, the Poisson parameters, 
 marginal jump size distribution parameters and Lévy copula parameters are 
estimated simultaneously. The fi t will depend on the choice of marginal jump 
distributions F1(x) and F2(x) with parameters q1 and q2 respectively, and the 
choice of a Lévy copula Cd with parameter(s) d.

A maximum likelihood estimation method for a bivariate compound Pois-
son process requires the following observation scheme (Esmaeili and Klüp-
pelberg, 2010a). Let n be the total number of claims (jumps) occurring in a 

(c) Empirical copula

(a) Claim sizes (b) Logarithm of claim sizes

(d) Upper-right quadrant of the empirical copula

FIGURE 7: Scatterplots for common medical and daily allowance claims.
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time interval of length T. The number of jumps in each class is n1 and n2 .
The number of claims common to both classes is n;, and the number of claims 
unique to each class is expressed as n1

= and n2
= respectively. The jump sizes in 

the fi rst and second components are denoted by 1 , ,x xnf =
=

=

1
 and 1 , ,y yn2

f =
=

=  
respectively, while the sizes of the observed common jumps in both compo-
nents are denoted by (x;

1,y;
1),  …,  ( n n,x y<

< <

< ).
Maximising the full likelihood function can become numerically intensive 

for large datasets. Furthermore, as the full likelihood function is not the same 
under different Lévy copulas, this maximisation must be performed for each 
of the Lévy copula candidates in order to select one. To address this issue, one 
can use a method analogous to the inference functions for margins (“IFM”) 
method (Joe, 1997, Chapter 10.1) in order to heuristically select a Lévy copula 
model; see also Esmaeili and Klüppelberg (2010b). This relies on the following 
representation of the log-likelihood function for the bivariate compound Pois-
son process.
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an IFM approach involves the estimation of parameters l1, l2, q1 and q2 fi rstly 
without consideration of the dependence structure between the two compound 
Poisson processes. That is, these parameters are estimated by maximisation of 
the log-likelihood 
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producing parameter estimates (l1, l2, q1, q2 ). This is where the choice of the 
marginal jump size distributions occurs. Then, using the parameters estimated 
above (of the best marginal models), different Lévy copulas are fi t to the data by 
estimating their parameter(s) d through maximisation of l (d, l1, l2, q1, q2 ) (keep-
ing the parameters l · and q ·  constant). Finally, once the jump size distributions 
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and Lévy copula have been chosen, all parameters can be estimated simultane-
ously on maximisation of  the full likelihood l (d, l1, l2, q1, q2 ). This method 
is less computationally intensive than simultaneous maximisation of  all 
parameters using the full likelihood and trial and error of different Lévy cop-
ula models and jump size distributions.

4.3. Maximum likelihood estimation – IFM approach

In fi tting the bivariate compound Poisson process, we begin with an IFM approach. 
Firstly, we choose a time unit of one year so that T  =  1. We then derive maxi-
mum likelihood estimates for l1 and l2 based on the marginal compound 
Poisson processes. The estimates for l1 and l2 are derived as l1  =  2249 and 
l2  =  1099.

In fi tting the marginal jump size distributions we let X1 denote the logarithm 
of medical claim sizes and X2 denote the logarithm of daily allowance claim 
sizes. Table 3 shows the maximised log-likelihood for a number of distribu-
tions when fi t to the logarithm of both medical claim sizes and daily allowance 
claim sizes. It can be seen that a Gumbel distribution maximises the log-like-
lihood for the logarithm of medical claim sizes while a Gaussian distribution 
maximises the log-likelihood for the logarithm of daily allowance claim sizes. 
The parameter estimates for the Gumbel distribution are a  =  5.1476 and 
b  =  1.1048, while the parameter estimates for the Normal distribution are 
m  =  7.6305 and s  =  1.4403.

TABLE 3

MAXIMISED LOG-LIKELIHOOD VALUES FOR FITTING THE LOGARITHM

OF CLAIM SIZE DATA

Maximised log-likelihood

Distribution X1 X2

Gaussian –3960.32 –1960.43

Gumbel –3759.12 –1995.93

Weibull –4071.53 –2003.26

Cauchy –4056.66 –2122.89

The fi nal step is to maximise the full likelihood assuming marginal parameter 
estimates l1, l2, a, b, m and s constant while deriving an estimate for the Lévy 
copula parameter d under different Lévy copulas. The maximised log like-
lihood, parameter estimates for d and the implied value for l; under the IFM 
method are shown in Table 4.

The IFM method identifi es Archimedean model I as an appropriate Lévy 
copula for use in the model, based on the maximised value of the likelihood 
function, while Archimedean model II performs poorly, which could have been 
expected because of its tendency to model negative dependence in severity.
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The implied l ; is calculated as Cd  (l1, l2) and indicates the estimated 
expected number of common jumps per unit of time. A value of 1089 represents 
the maximum likelihood estimate for the number of common jumps. The pure 
common shock Lévy copula reproduces this estimate, since it affects the 
dependence in frequency only.

4.4. Maximum likelihood estimation – full model

In this section fi tting results using the full likelihood for all Lévy copulas dis-
cussed in this paper are presented (with the exception of Archimedean model II, 
which performed signifi cantly poorly in comparison to the other candidate 
Lévy copulas). Additional Archimedean Lévy copulas were also tested but 
excluded from this analysis due to their relatively poor fi t.

TABLE 4

MAXIMISED LOG-LIKELIHOOD AND LÉVY COPULA PARAMETER ESTIMATES UNDER THE IFM METHOD. 

Lévy copula Maximised l d Implied l ;

Pure common shock 7845.03 0.0004406 1089.00

Clayton 8510.28 2.1459 1003.62

Archimedean model I 8624.06 0.0024983 1079.66

Archimedean model II 4564.90 0.0110101 1099.00

TABLE 5

MAXIMISED LOG-LIKELIHOOD AND PARAMETER ESTIMATES OF THE BIVARIATE COMPOUND POISSON PROCESS 
FOR EACH LÉVY COPULA.

Lévy copula Maximised l d l1 l2 Implied l ; 

Pure common shock 7845.03 0.0004406 2249.00 1099.00 1089.00
(0.0000093) (47.42) (33.15)

Clayton 8536.43 2.2632 2176.90 1066.27 984.16
(0.0688161) (46.26) (31.68)

Archimedean model I 8631.27 0.0025358 2239.42 1113.32 1093.74
(0.0001110) (47.20) (32.75)

Lévy copula a b m s

Pure common shock 5.1476 1.1048 7.6305 1.4403
(0.0245) (0.0179) (0.0434) (0.0307)

Clayton 5.1007 1.1404 7.7012 1.5498
(0.0253) (0.0189) (0.0430) (0.0252)

Archimedean model I 5.1294 1.0785 7.6792 1.4051
(0.0237) (0.0170) (0.0400) (0.0236)
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Table 5 shows the maximised log-likelihood and corresponding parameter 
estimates for each Lévy copula. The standard errors of each parameter estimate 
are given in parentheses and are calculated as the square roots of the diagonal 
entries in the inverse Hessian matrix of  the log-likelihood function (Klug-
man et al., 2008, Chapter 15.3). Note that the estimates for d, the Lévy copula 
parameter, are not comparable across different Lévy copulas.

As initially suggested from analysis under the IFM method, Archimedean 
model I maximises the log-likelihood function for the bivariate compound 
Poisson process. With the exception of the case of the pure common shock 
Lévy copula, the parameter estimates l1, l2, a, b, m and s differ from those 

(c) Medical claim sizes

(a) Medical claim sizes (b) Allowance claim sizes

(d) Allowance claim sizes

FIGURE 8: Quantile-quantile plots for fi tted marginal jump size distributions under
Clayton Lévy copula and Archimedean model I

ARCHIMEDEAN MODEL I

CLAYTON
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produced under the IFM method. Recall from Lemma 2.2 that the Lévy 
 copula affects the distribution of unique jump sizes as well as the distribution of 
common jump sizes and their dependence structure. As a result of this, the fi tting 
procedure will estimate parameters based on the fi t of unique jump sizes and 
common jump sizes, resulting in different marginal jump size parameters. Also, 
as the dependence in frequency (via the expected number of common jumps) and 
the dependence in the severity (of those common jumps) are fi t simultaneously, 
they compete with each other and in doing so, yield different parameter estimates 
for the marginal Poisson parameters and jump size distribution parameters.

Figure 8 shows quantile-quantile plots for the marginal jump sizes using 
the fi tted parameters from the Clayton Lévy copula and from Archimedean 
model I. While the parameter estimates for the marginal jump size distributions 
differ under the IFM method, the quality of fi t is still reasonable. Further tests 
for the goodness-of-fi t for the marginal jump size distributions can also be 
employed (Klugman and Rioux, 2006).

Even though the pure common shock Lévy copula produces the same 
 marginal parameters estimates as under the IFM method, it also produces
the lowest value for the maximised log-likelihood. This is because the pure 
common shock Lévy copula assumes independent jump sizes, which is an 
invalid assumption as suggested by Figure 7. In addition to this, we will see in 
the following section that the assumption of identically distributed unique and 
common jump sizes in each class is incorrect.

4.5. Dependence goodness-of-fi t

An initial assessment of the Lévy copula fi t would be to compare the fi tted 
dependence in frequency as measured by the implied l;. In Table 5 we see that 
the pure common shock Lévy copula and Archimedean model I produce a 
good fi t for dependence in frequency, as l; is relatively close to the observed 
number 1089 (in the case of the pure common shock Lévy copula it is equal). 
However, the dependence in frequency is merely one aspect of the fi tted bivar-
iate compound Poisson process than can be assessed.

In order to discuss the fi t of the model in terms of dependence in severity 
(the sizes of common jumps), Figure 9 plots 1089 simulations from the distri-
butional copula of  the sizes of  common jumps derived under the Clayton 
Lévy copula and Archimedean model I. The pure common shock Lévy copula 
only allows for independence in common jump sizes and was consequently 
omitted from this analysis. On comparison of  Figure 9 with the empirical 
copula of the common claims in Figure 7, the distributional copula under the 
Clayton Lévy copula appears to offer a better fi t for the dependence in the 
sizes of common jumps. While Archimedean model I offers right-tail positive 
dependence, its upper-right quadrant does not fi t as well as the one of  the 
Clayton Lévy copula. Note that more sophisticated methods can be used in 
testing the goodness-of-fi t of distributional copulas (cf. Genest et al., 2009).

While these traditional goodness-of-fi t approaches are inconclusive, it is 
also possible to plot the theoretical tail integrals against the empirical tail 

94838_Astin41-2_11_Avanzi.indd   59994838_Astin41-2_11_Avanzi.indd   599 2/12/11   08:332/12/11   08:33

https://doi.org/10.2143/AST.41.2.2136989 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136989


600 B. AVANZI, L.C. CASSAR AND B. WONG

integrals for unique jumps and common jumps in each component, and for 
each fi tted model. The advantage of this approach is that it assesses both fi t 
of the dependence in frequency and severity at the same time. For the common 
components (Si

; (t), i  =  1, 2) the empirical tail integrals are defi ned as

i;n (
number of common jumps in component of size

, for , ,U x
T

i x
i 1 2

>
= =< )<

 (4.3)

(c) Empirical copula

(a) Empirical copula (b) Upper-quadrant of the empirical copula

(d) Upper-quadrant of the empirical copula

FIGURE 9: Simulations from the distributional copula of common jump sizes under candidate
Lévy copula models.

CLAYTON

ARCHIMEDEAN MODEL I
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while the empirical tail integrals for unique jumps are defi ned as

i; n (
number of unique jumps in component of size

, for , .U x
T

i x
i 1 2

>
i

= =
9

9 )

 (4.4)

Figure 10 shows plots of empirical tail integrals against theoretical fi tted tail 
integrals of  unique jumps and common jumps in each component for the 
Clayton, pure common shock, and the Archimedean model I Lévy copulas 
(where the tail integral comparisons for unique allowance claims were not 
plotted due to a small number of data for these types of claims). Note that 
for each Lévy copula, both curves start at the model and empirical versions 

FIGURE 10: Empirical (grey) and theoretical (black) tail integrals for medical (common and unique) and 
allowance (common) jumps with three candidate Lévy copula models.

CLAYTON

PURE COMMON SHOCK

ARCHIMEDEAN MODEL I
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of l1
=, l; and l;, respectively, and are then shaped according to the model and 

empirical versions of F1
=(x), F1

;(x) and F2
;(x) respectively.

Although the Clayton Lévy copula produced a relatively high maximised log-
likelihood, we see that the fi t of the tail integrals under the Clayton Lévy copula 
is rather poor. Whilst the pure common shock Lévy copula fi ts the dependence 
in frequency perfectly, the jump size distributions for common and unique jumps 
are not fi tted well at all. Finally, it can be seen that Archimedean model I fi ts the 
tail integral components rather well in comparison to the other Lévy copulas.

In view of the above, Archimedean model I seems to be the most appropriate 
choice of Lévy copula for the dependence structure exhibited in the SUVA dataset.

5. TRIVARIATE COMPOUND POISSON PROCESS

In this section, Lemmas 5.1 and 5.2 extend Lévy copula results for the bivariate 
compound Poisson process to a trivariate compound Poisson process using
a trivariate Lévy copula, adopting a similar approach to the one used in
the bivariate case by Esmaeili and Klüppelberg (2010a). Care has to be
taken in settings beyond the bivariate case, as ‘common jumps’ can now be 
common between two out of  the three processes, or between all three pro-
cesses. In particular, Example 5.1 illustrates the similarities and differences 
between the bivariate and trivariate cases. Results for the trivariate compound 
Poisson process can easily be generalised for use with multivariate compound 
Poisson processes of any dimension.

Lemma 5.1. (Trivariate compound Poisson process) The constituents of a tri-
variate compound Poisson process {S1(t), S2(t), S3(t)}, can be expressed as
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3
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 (5.1)

The compound Poisson processes denoted by S ;
i; ij  (t) feature an arrival process 

common with compound Poisson processes S ;
j; ij  (t), for i,  j  =  1, 2, 3 and i < j only. 

The three compound Poisson processes denoted as S ;
i; 123 (t), for i  =  1, 2, 3 all feature 

a common arrival process.

Proof. Decomposing the tail integral of S1(t) in terms of the Lévy measure gives,
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 (5.2)
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and similarly for U2(x) and U3(x). Terms denoted by U ;
i ; ij (x) are tail integrals 

for compound Poisson processes S ;
i ; ij  (t) as in (5.1). It represents the expected 

number of jumps in Si (t) which are above x and occur at the same time as 
jumps of any size in Sj (t) only, for i,  j  =  1, 2, 3 and i < j. Similarly, U ;

i ; 123 (x) is 
the tail integral for compound Poisson process S ;

i ; 123 (t). Since we now have 
marginal tail integrals broken up into independent components, it is now clear 
that (5.1) holds. ¡

Consider now a trivariate compound Poisson process {S1(t), S2(t), S3(t)} with 
Lévy copula C, and let li, Fi (x), i  =  1, 2, 3 denote its (marginal) Poisson param-
eters and jump size distributions, respectively. As in the bivariate case, it is 
possible to derive the Poisson parameters and jump size distributions of the 
compound Poisson processes Si

=(t), S ;
i; ij  (t) and S ;

i; 123 (t) in terms of the Lévy 
copula and the marginal tail integrals Ui (x) i,  j  =  1, 2, 3, i < j.

Lemma 5.2. Common jumps in S ;
1; 123 (t), S ;

2; 123 (t) and S ;
3; 123 (t) arrive at a rate

 123 ( , ,1 2 3C=
<l l l l ), (5.3)

whereas the sizes of these common jumps have survival function

 123 ( , ,xF ) ( ), ( ), ( ))x x 1
1 2 3

123
1 1 2 2 3 3=

<l
,x x x< UU U(C  (5.4)

and marginal survival functions

 ;1 123 (xF ) ( ), ,1

123
1 1 2 3=

<l
l l ),x< UC (  (5.5)

with F ;
2; 123 (x) and F ;

3; 123 (x) derived in a similar way. Jumps which are common 
between the fi rst two processes, but not all three processes, as in S ;

1; 12 (t) and 
S ;

2; 12 (t), arrive at a rate 

 ( (, , ) , ,12 1 2 1 2 3C C3l = -l l l l l ),<  (5.6)

whereas the sizes of these jumps have joint survival function 

 (2( 2xF , ( ), ), ( ( ), ( ), .x U U1
12 1

12
1 2 1 3C3 l= -

<

<l
) )U x x x(x UC )_ i  (5.7)

Results for l ;
13, l

;
23, F

;
13 (x1, x3) and F ;

23 (x2, x3) are derived in an analogous way.
Unique jumps in S=

1  (t) arrive at rates 

 1 1 12 13 123= - - -
9 < < <l l l l l , (5.8)
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whereas their sizes are distributed with survival function

     1 ( ( ( (
1

F ) ) ( ) ) ) .x x x x t1
; 1;13 1;1231 1 12 1 12 13 123= - - -

9

9l
l l l l< < <F F F F< < <

` j  (5.9)

Results for l=
2 , l

=
3 , F2

=(x) and F3
=(x) are derived in a similar way.

Proof of Equation (5.3). Consider the expected number of jumps common to 
all three processes expressed in terms of the joint Lévy measure,

 (n (0, ) (0, ) (0, )) .123 # #3 3 3l =
<  (5.10)

Using limits and the defi nition of the multivariate tail integral, and applying 
Sklar’s theorem for Lévy copulas (Theorem 2.1) in a trivariate setting, we have 

 
, ,x +x x1 "

( ), ( ), ( .lim
0

123 1 1 2 2 3 3
2 3

l = x x< ))xU U(UC  (5.11)

Finally, using the result that lim
x 0"

+
Ui (x)  =  li for i  =  1, 2, 3, produces the fi nal 

result for l ;
123 . ¡

Proof of Equation (5.4). Consider the defi nition of the multidimensional tail 
integral,

 , ,( , ( , ) .U x x x x1 2 3 123 123 1 2 3l=
<x x) F <  (5.12)

Applying Sklar’s theorem for Lévy copulas to the left hand side of the above 
yields the desired result. ¡

Proof of Equation (5.6). Expressing l ;
12 in terms of the Lévy measure yields

 , ,2, 0"

([ ) [ ) {0}) .lim x x12 1
1 2

# #3 3l =
+

n
x

<

x
 (5.13)

Then, using the result that
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"
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n

))

x ),

x

C l(U U U( ), (5.14)

we have,

       ( ( ( (2 2), ), ( ), ), .lim x x x x
, 0

12 1 1 2 1 1 2 3
1 2

C C3l l= -
"

+
U U

x x
)U U )

<

(_ i  (5.15)
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Since lim
x 0"

+
Ui (x)  =  li for i  =  1, 2, 3, the desired result is derived, with the proof 

of results for l23 and l13 derived similarly. ¡

Proof of Equation (5.7). Consider the tail integral for jumps common in the 
fi rst and second components only, expressed in terms of the Lévy measure,

 1, , 223 3([ ) [ ) {0}) ( , ) .x x x12 12 1# # l=
<n xF <  (5.16)

Applying (5.14) to the left hand side and dividing both sides by l ;
12 produces 

the desired result. Results for F ;
13 (x1, x3) and F ;

23 (x2, x3) can be proved similarly.
 ¡

Proof of Equation (5.8). The Poisson parameters are derived using the result 
that the Poisson parameters of the right hand side of (5.1) must sum to give 
the marginal Poisson parameter li , i  =  1, 2, 3. ¡

Proof of Equation (5.9). This result is derived from the decomposition of the 
marginal tail integral

 
i

ii i(

i

;ik ( (; ;ij 123

9( (i)

) ( ) ), for , , , , and .

U x x

U x U x U x U x i j j k1 2 3i !

l=

= - - + =

9 ),9 F

) k< i !< <

 (5.17)

¡

Example 5.1. (Trivariate Clayton Lévy copula) We illustrate the above results 
by considering a trivariate Lévy copula and studying some of its properties. The 
trivariate Clayton Lévy copula is given by 

 ,-( (, , 0u u u u u u >1 2 3

1

C = + + d dd d d- - -
1 2 3) ) ; (5.18)

see Tankov (2003). Using (5.3), the Poisson parameter for jumps common to all 
three processes is 

 d d d(123 1 2 3

1

= + +
-

dl l l l- - - ,
<

)  (5.19)

while the joint survival function of these jump sizes is

         -d-F ( , , ( ) ( ( ) )x x x 1
123 1 2 3

123
1 1 2 2 3 3

1
=

d d d- -

l
x) x U x U+ +)

<
( ,U

<  (5.20)

with marginal survival functions 

, for
j( k
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)
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 (5.21)

94838_Astin41-2_11_Avanzi.indd   60594838_Astin41-2_11_Avanzi.indd   605 2/12/11   08:332/12/11   08:33

https://doi.org/10.2143/AST.41.2.2136989 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136989


606 B. AVANZI, L.C. CASSAR AND B. WONG

Akin to the bivariate case, the trivariate survival copula of the jump sizes for 
jumps common to all three processes is a distributional trivariate Clayton copula, 
so that

2+ -2 +, ,( (1 ( ( .x x x x; ; ;123 3 1 123 2 123 3 123

1

=
d d d d- - -

))x ) )x
-

F F F F< < < <

` ` `j j j: D  (5.22)

However, this is not the case for the jumps common to two processes only, as

-
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)
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 (5.23)

which is not easily expressed in terms of F ;
12(x1, x2) and more specifi cally, is not 

in the form of the ordinary Clayton copula.
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APPENDIX

A. Defi nitions

A.1. Tail Integral (Tankov, 2003)

For a d-dimensional Lévy process with positive jumps, the multivariate tail 
integral is defi ned as the expected number of jumps per unit of time that are 
above a given level (x1,  …,  xd ). The multivariate tail integral is a function U : 
[0, 3]d  "  [0, 3] such that

1. U is equal to zero if  one of its arguments is equal to 3;
2. U is fi nite everywhere except at zero and U(0, …,  0)  =  3;
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3. For all (a1,  …,  ad ), (b1,  …,  bd )  !  [0, 3]d and with ai   #   bi ,

 , xf, )(d( 1) x
1 1i i

i i d
i di

2 2

1
d

d
1

1

1
g $-

g

=

+ + + U
=

0/ /  (A.1)

 where xj 1  =  aj and xj 2  =  bj for all j  =  1,  …,  d.

Note that the margins of a tail integral may be derived in a manner similar to 
that of deriving marginal distribution functions from a multivariate distribu-
tion function so that

 ( ( , , , , , , ),U x U x0 0 0 0i f f=)  (A.2)

where x is evaluated at the i-th dimension of U(·,  ···,  ·).

A.2. Lévy copula (Positive Lévy copula, Tankov, 2003)

For Lévy processes with positive jumps a “positive Lévy copula” is defi ned to 
be a function C  :  [0, 3]d  "  [0, 3] which satisfi es the following:

1. C(u1,  …,  ud) is increasing in each component.
2. C(u1,  …,  ud)  =  0 if  ui  =  0 for any i  =  1,  …,  d.
3. Evaluating C at 3 at all components except for the i-th component which 

is evaluted at u produces margins Ci, i  = 1,  …,  d, which satisfy Ci (u)  =  u for 
all u in [0, 3].

4. For all (a1,  …,  ad ), (b1,  …,  bd )  !  [0, 3]d and with ai  #  bi ,

 ,f( , )ug d

1
1) u

i i

i i
i di
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2

1

2
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d
1

1 C $
g

=

+ +

=

0(-/ /  (A.3)

 where uj1  =  aj and uj2  =  bj for all j  =  1,  …,  d.

A.3. Lévy measure (Chapter 2.8 Sato, 1999)

The Lévy measure of a multivariate compound Poisson process is given by

 A( ) ( ), ( )P A Afor R
dB!=n l , (A.4)

where l is the Poisson parameter for the arrival of all jumps in the multivariate 
process, P is the multivariate distribution for the sizes of jumps, and where B 
is the Borel s-fi eld.The Lévy measure n(A) may be interpreted as the expected 
number of jumps, per unit of time, where the size of the jumps are in A. The 
tail integral is expressed in terms of the Lévy measure as

 1, n( , ) ([ , ) [ , )) for (0, ) .xU x x xd d
d

1 # #f 3 3 3g !=x  (A.5)

94838_Astin41-2_11_Avanzi.indd   60794838_Astin41-2_11_Avanzi.indd   607 2/12/11   08:332/12/11   08:33

https://doi.org/10.2143/AST.41.2.2136989 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136989


608 B. AVANZI, L.C. CASSAR AND B. WONG

REFERENCES

ASMUSSEN, S. and ALBRECHER, H. (2010) Ruin Probabilities. World Scientifi c, Singapore, 2nd edi-
tion.

BARGÈS, M., COSSETTE, H. and MARCEAU, É. (2009) TVaR-based capital allocation with copulas. 
Insurance: Mathematics and Economics, 45(3), 348-361.

BARNDORFF-NIELSEN, O.E. and LINDNER, A.M. (2007) Lévy Copulas: Dynamics and Transforms 
of Upsilon Type. Scandinavian Journal of Statistics, 34, 298-316.

BÄUERLE, N. and BLATTER, A. (2011) Optimal control and dependence modeling of insurance 
portfolios with Lévy dynamics. Insurance: Mathematics and Economics, 48(3), 398-405.

BÄUERLE, N. and BLATTER, A. and MÜLLER, A. (2008) Dependence properties and comparison 
results for Lévy processes. Mathematical Methods of Operations Research, 67, 161-186.

BÄUERLE, N. and GRÜBEL, R. (2005) Multivariate counting processes: copulas and beyond. 
ASTIN Bulletin, 35(2), 379-408.

BIAGINI, F. and ULMER, S. (2009) Asymptotics for operational risk quantifi ed with expected 
shortfall. ASTIN Bulletin, 39(2), 735-752.

BÖCKER, K. and KLÜPPELBERG, C. (2008) Modelling and Measuring Multivariate Operational 
Risk with Lévy Copulas. Journal of Operational Risk, 3, 3-27.

BÖCKER, K. and KLÜPPELBERG, C. (2010) Multivariate models for operational risk. Quantitative 
Finance, 1-15.

BOWERS, N.L.J., GERBER, H.U., HICKMAN, J.C, JONES, D.A. and NESBITT, C.J. (1997) Actuarial 
Mathematics. The Society of Actuaries, Schaumburg, Illinois, 2nd edition.

BREGMAN, Y. and KLÜPPELBERG, C. (2005) Ruin estimation in multivariate models with Clayton 
dependence structure. Scandinavian Actuarial Journal, 2005(6), 462-480.

CONT, R. and TANKOV, P. (2004) Financial Modelling With Jump Processes. Chapman & Hall/
CRC, London.

DENUIT, M., DHAENE, J., GOOVAERTS, M. and KASS, R. (2005) Actuarial Theory for Dependent 
Risks. John Wiley & Sons, Inc., West Sussex.

EDER, I. and KLÜPPELBERG, C. (2009) The quintuple law for sums of dependent Lévy processes. 
The Annals of Applied Probability, 19(6), 2047-2079.

EMBRECHTS, P., MCNEIL, A.J. and STRAUMANN, D. (2002) Correlation and Dependence in
Risk Management: Properties and Pitfalls. In Risk management: value at risk and beyond (ed. 
M. DEMPSTER), 176-223. Cambridge University Press, Cambridge.

ESMAEILI, H. and KLÜPPELBERG, C. (2010a) Parameter estimation of  a bivariate compound 
Poisson process. Insurance: Mathematics and Economics, 47(2), 224-233.

ESMAEILI, H. and KLÜPPELBERG, C. (2010b) Two-step estimation of a multivariate Lévy process. 
Available at http://www-m4.ma.tum.de/Papers/.

FOSKER, P., SCANLON, M. and SIMPSON, E. (2010) Insurance ERM advances: Global leaders point 
way for regional players. URL: http://www.towerswatson.com/assets/pdf/3372/1210-ERM.pdf

GENEST, C. and NESLEHOVÁ, J. (2007) A primer on copulas for count data. Astin Bulletin, 37(2), 
475-515. ISSN 0515-0361.

GENEST, C, RÉMILLARD, B. and BEAUDOIN, D. (2009) Goodness-of-fi t tests for copulas: A review 
and a power study. Insurance: Mathematics and Economics, 44, 199-213.

JOE, H. (1997) Multivariate Models and Dependence Concepts. Chapman & Hall, London.
KALLSEN, J. and TANKOV, P. (2006) Characterisation of dependence of multidimensional Lévy 

processes using Lévy copulas. Journal of Multivariate Analysis, 97(7), 1551-1572.
KLUGMAN, S. and RIOUX, J. (2006) Toward a Unifi ed Approach to Fitting Loss Models. North 

American Actuarial Journal, 10(1), 63-83.
KLUGMAN, S.A., PANJER, H.H. and WILLMOT, G.E. (2008) Loss Models: From Data to Decisions. 

John Wiley and Sons, Hoboken, New Jersey.
LINDSKOG, F. and MCNEIL, A.J. (2003) Common Poisson shock models: Applications to insur-

ance and credit risk modelling. ASTIN Bulletin, 33(2), 209-238.
MCNEIL, A.J., FREY, R. and EMBRECHTS, P. (2005) Quantitative Risk Management: Concepts, 

Techniques and Tools. Princeton University Press, Princeton.
MIKOSCH, T. (2009) Non-Life Insurance Mathematics: An Introduction with the Poisson Process. 

Springer, 2nd edition.

94838_Astin41-2_11_Avanzi.indd   60894838_Astin41-2_11_Avanzi.indd   608 2/12/11   08:332/12/11   08:33

https://doi.org/10.2143/AST.41.2.2136989 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136989


 MODELLING DEPENDENCE IN INSURANCE CLAIMS PROCESSES  609

NELSEN, R.B. (1999) An Introduction to Copulas. Springer, New York.
SATO, K.-I. (1999) Levy Processes and Infi nitely Divisible Distributions. Cambridge University 

Press.
TANKOV, P. (2003) Dependence structure of spectrally positive multidimensional Lévy processes. 

Available at http://www.math.jussieu.fr/tankov/.
YUEN, K.C. and WANG, G. (2002) Comparing Two Models with Dependent Classes of Business. 

ARCH, Society of Actuaries, 22.

BENJAMIN AVANZI

School of Risk and Actuarial Studies
Australian School of Business
University of New South Wales
Sydney NSW 2052
Australia
E-Mail: b.avanzi@unsw.edu.au

LUKE C. CASSAR

School of Risk and Actuarial Studies
Australian School of Business
University of New South Wales
Sydney NSW 2052
Australia
E-Mail: luke.c.cassar@gmail.com

BERNARD WONG (Corresponding author)
School of Risk and Actuarial Studies
Australian School of Business
University of New South Wales
Sydney NSW 2052
Australia
Tel.    +61 2 9385 2827
Fax: +61 2 9385 1883
E-Mail: bernard.wong@unsw.edu.au

94838_Astin41-2_11_Avanzi.indd   60994838_Astin41-2_11_Avanzi.indd   609 2/12/11   08:332/12/11   08:33

https://doi.org/10.2143/AST.41.2.2136989 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136989



