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Free surface oscillations in a narrow gap between elongated parallel bodies are studied
numerically. As this represents both a highly resonant system and an arrangement
of relevance to offshore operations, the nature of the damping is of primary interest,
and has a critical role in determining the response. Previous experimental work has
suggested that the damping could be attributed to laminar boundary layers; here our
numerical wave tank successfully resolves both wave and boundary layer scales to
provide strong numerical evidence in support of this conclusion. The simulations
follow the experiments in using wave groups so that the computation is tractable, and
both linear and second harmonic excitation of the gap are demonstrated.

Key words: wave–structure interactions

1. Introduction

Arranging ships or ship-shaped floating bodies in a closely spaced parallel alignment
(‘side-by-side’) is necessary in some marine industrial applications, particularly
transfer of liquefied natural gas from a floating production vessel to a carrier. This
practice creates a long, narrow gap between the vessels, which supports highly
resonant free surface motions at particular frequencies. As for any highly resonant
system, the amplitude of the response depends on the system damping, and the
resonance may be excited in a linear or nonlinear fashion. For industrial applications,
the amplitude of the resonance during operations (moderate sea states) may be
important in its own right, or due to its coupling with vessel motion.

It is well established that linear potential flow theory can predict resonant
frequencies and mode shapes well (Molin 2001; Sun, Eatock Taylor & Taylor
2010; Molin et al. 2018). However, potential flow theory typically overpredicts
experimentally determined resonant amplitudes of gap responses (e.g. Buchner, Van
Dijk & De Wilde 2001) unless artificial dissipation is added (e.g. Chen 2005).
Sources of this amplitude discrepancy are generally believed to be viscous effects
and perhaps effects associated with the nonlinear free surface condition. The latter
effect was investigated numerically by Feng & Bai (2015), who found only very
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slight reductions in the amplitude of the resonant response even for rather steep
incoming waves.

Thus, more effort has been focused on viscous dissipation. In an early experimental
study of the gap problem, Molin et al. (2002) estimated the energy losses due
to wall friction and flow separation at the (square) bilge for waves propagating
in a long narrow channel; wall friction being approximately 15 % of the total.
Kristiansen & Faltinsen (2012) and Fredriksen, Kristiansen & Faltinsen (2015) created
two-dimensional (2D) hybrid potential flow Navier–Stokes (NS) solver models to try
to incorporate losses due to separation from the sharp bilges of catamaran boxes in
forced heave and wave-excited heave and roll, and found good agreement with
response curves from experiments. Faltinsen & Timokha (2015) and Tan et al.
(2017) developed methods based on hydraulic arguments and calibration with 2D
experimental data to modify potential flow solvers to correctly incorporate viscous
losses.

Experimental studies have been crucial in the above work but largely focused on 2D
geometries. Three-dimensional (3D) gap resonance experiments have been performed
by Molin et al. (2009), Perić & Swan (2015) and Chua et al. (2018), amongst others.
Recently Zhao et al. (2017) conducted 3D experiments in transient wave groups, for
vessels with round and square bilges. In both cases substantial damping in addition to
radiation damping was clearly present, and for the round bilge cases it was suggested
that the damping was almost entirely due to laminar boundary layers.

NS solvers have been extensively applied to gap resonance in two dimensions,
but less so in three, where the computational demand is greater. Feng et al. (2017)
simulated regular waves interacting with the square bilge version of the 3D model
tested by Molin et al. (2009), and found reasonable agreement with experimental
response curves (generated from irregular wave tests). For each frequency considered,
it was found necessary to run 20–50 wave periods, to ensure that steady state was
reached. When the bilges were rounded, Feng et al. (2017) found that the response
curves obtained from the NS solver agreed well with linear potential flow theory. A
notable difference between this case and Zhao et al. (2017) was the gap width – the
geometries being otherwise similar, the latter featured a gap width around half that
of the former, which entails a large change in the relative contribution of viscous and
radiation damping.

In this work two transient wave group experiments of Zhao et al. (2017) are
reproduced using an NS solver – this ambitious effort enables comparison of time
series rather than averaged responses, and by reducing the simulation time required
(compared to using regular waves), increases the numerical resolution that can be used.
By simulating one case with linear excitation and one case with frequency doubling,
resolution of nonlinear free surface effects is demonstrated. The approach taken also
enables a detailed investigation of the nature of the damping, to a resolution not
feasible in experiments.

2. Re-creating experiments
In this section, experimental and numerical details of primary importance are

presented; more complete information can be found in Zhao et al. (2017) and Wang
et al. (2018), respectively.

2.1. Experimental
Zhao et al.’s (2017) experiments were carried out in the Deepwater Wave Basin at
Shanghai Jiao Tong University. Two identical prismatic boxes of length L= 3.333 m,
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FIGURE 1. (Colour online) Definition sketch of experimental and numerical (mesh A3)
set-ups.

beam B= 0.767 m and draft D= 0.185 m with rounded bilges of radius r= 0.083 m
were used in the experiments. Arranged with long axes parallel, aligned at the fore
and aft perpendicular, the boxes formed a narrow gap of width G = 0.067 m (as
indicated in figure 1). The fixed boxes were subjected to long-crested transient wave
groups incident from the beam. Seven wave gauges (WGs) were placed symmetrically
along the gap: WG 4, central; WG 3 and WG 5, 0.50 m offset; WG 2 and WG 6,
0.833 m offset; and WG 1 and WG 7, 0.45 m from the gap ends. In this work two
of the wave groups are considered, here called case A and case B (set I and set
VIA, respectively, in Zhao et al. (2017)). Both wave groups had a maximum surface
elevation of approximately 50 mm: for case A the spectral peak frequency of fp =

1.015 Hz (peak wavelength λp = 1.5 m) coincided with the first gap mode; while for
case B the spectral peak frequency was halved to fp= 0.508 Hz (λp= 6 m). The input
wave spectrum used for both cases was Gaussian in frequency.

2.2. Numerical
Simulations were carried out in a 3D numerical wave tank (NWT) shown in figure 1
solving the two-phase incompressible NS equations with volume-of-fluid free surface
tracking. The NWT was established using OpenFOAM and the governing equations
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FIGURE 2. (Colour online) Comparison of numerical and experimental incident wave
groups for cases A and B.

solved using a finite volume method discretised on a structured mesh. The origin of
the NWT was positioned at the mean free surface at the centre of the gap, with x
the direction of wave propagation and z positive upwards. The toolbox waves2Foam
(Jacobsen, Fuhrman & Fredsøe 2012) was used for generation of incident waves and
absorption of reflected waves using relaxation zones at both ends of the NWT. The
experimental incident wave groups were re-created with considerable accuracy in the
NWT using an iterative method (see figure 2 and Wang et al. (2018) for details). The
size of the NWT must be minimised; the lengths of the NWT for cases A and B were
chosen as 8.0λp and 5.2λp, respectively, to allow wave propagation and absorption
upstream and downstream of the boxes, while the water depths were λp and 0.58λp
(which fulfil the deep-water condition). Sidewalls were set at y= 4L and y= 12L for
cases A and B, respectively, to limit wave reflection.

Knowledge of Zhao et al.’s (2017) experiments informed the selection of mesh
parameters shown in figure 1. The maximum Reynolds number here is Re=ωη2

o/ν '
2.3 × 104, where ω is the first resonant frequency, ν the kinematic viscosity and ηo
the amplitude of free surface motion at the centre of the gap, with a maximum value
of around 0.06 m. For oscillatory flow over a smooth plane wall, turbulence first
appears at Re ' 105 (Jensen, Sumer & Fredsøe 1989). However, the possibility of
flow separation from the rounded bilge must also be considered. Here the maximum
local Keulegan–Carpenter number KC = 2πηo/2r for flow around the rounded bilge
is approximately 2.3. For flow around a cylinder Sumer & Fredsøe (2006) give flow
regimes for a limited subset of (KC–Re) space; for Re ' 103 there is no separation
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for KC < 1.1. Given that the present geometry is not a cylinder, and the oscillatory
flow is transient, the KC and Re regimes for this problem make it plausible that
laminar boundary layers dominate the damping in this case, and the mesh design is
based around this hypothesis. The thickness of a Stokes boundary layer based on the
parameters above is around δ0.99= 4.6

√
2ν/ω' 2.5 mm for the first mode. In light of

this, four meshes A1–A4 with near-wall cell width normal to the box walls 1x2 equal
to 2.0, 0.4, 0.1 and 0.05 mm were used to simulate case A. The adjacent cells expand
away from the wall to take account of the fact that the near-wall velocity gradient is
much larger than that near the gap centre. The other mesh dimensions are essentially
the same for the four cases. The mesh size along the wave propagation direction 1x1
is chosen to achieve 200 cells per peak wavelength to resolve propagating incident
waves. The vertical cell height 1z1 is chosen to ensure the aspect ratio (i.e. 1z1/1x2)
remains small, so that 20 cells per wave height are used for mesh A1 while 50 cells
per wave height are used for meshes A2–A4. Along the gap direction, the cell width
in the gap (region 1 in figure 1(a), from the mid-ship position y= 0 to the gap end
y = −L/2) is chosen to give 60 cells per ‘wavelength’ of the seventh mode shape.
The cell width outside the gap (region 2 in figure 1(a), from the gap end to the
sidewall) expands gradually away from the gap end. Given that attached laminar
boundary layers are expected, a symmetry boundary condition was applied at the
mid-ship plane (see figure 1a) to reduce the computational cost. However, due to the
two-scale nature of this problem, in which surface wavelength and boundary layer
scales are resolved simultaneously, the number of cells is still extremely large, which
renders the 3D simulations very demanding (e.g. mesh A3 has 48.1 million cells
and the simulation requires approximately 1 million CPU hours, computed using
720 cores on a Cray XC40 supercomputer with 2.6 GHz Intel Xeon E5-2690 v3
‘Haswell’ CPUs). For robustness, the time step of the simulations was chosen to be
runtime adaptive with maximum Courant number not exceeding 0.5 (chosen based on
experience). Although the gap is relatively narrow, surface tension is not represented
numerically, since the Bond number Bo = gL2ρ/Ts ' 1.5 × 106 (where g and ρ are
gravitational acceleration and fluid density, respectively, and Ts = 0.073 N m−1 is the
surface tension). This is well above the range where surface tension is important,
according to Faltinsen & Timokha (2009).

2.3. Kinematics: linear excitation
The same incident crest-focused wave group corresponding to case A has been used
to excite gap motions for meshes A1–A4. The excitation resulting from this wave
group is mostly linear because the frequency content of the wave group overlaps
with the natural frequencies of the dominant gap modal responses. Based on the
arguments above, the near-wall velocity profile should resemble a Stokes boundary
layer for oscillatory flow over an infinite flat plate. Here, however, there are multiple
oscillation frequencies, all associated with time-varying amplitude and the hull is finite
and rounded (though r� δ0.99). To compare the boundary layer profile computed in
the vertical part of the gap in the NWT to this theory, a velocity-based time-dependent
pressure gradient is used to numerically solve the Stokes equation,

1p(t)=−ρ
∂u
∂t
+µ

∂2u
∂x2
+ ρg, (2.1)

where u represents vertical fluid velocity. To calculate the vertical velocity profile
away from a point on the wall in the straight part of the gap, at a depth which the
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FIGURE 3. Boundary layer profiles in the gap at various phases over a nominal cycle
T (from 8.12 s to 9.10 s) computed numerically (thin lines) and using (2.1) (circles) for
meshes (a) A1 and (b) A3, at y= 0, z=−0.43D.

free surface does not reach, the velocity-based pressure gradient 1p(t) taken from the
full 3D simulation at 0.05G away from the wall is applied in (2.1) (this sampling
point is close to the wall but still outside the boundary layer). Agreement between
the theoretical solution and the 3D simulation results becomes better as the near-wall
mesh is refined, such that A3 and A4 give excellent agreement; the results of A1 and
A3 for the point (−G/2, 0,−0.43D) based on 1p(t) from (−0.9G/2, 0,−0.43D) are
shown in figure 3. Similar results apply for other points.

Time series of free surface elevation at the centre of the gap for meshes A1–A4 are
compared in figure 4(a). The phases from meshes A2, A3 and A4 agree well, while
A1 leads the other three slightly. In terms of amplitude, the gap responses decay more
swiftly as the near-wall mesh is refined. It is clear that, after the initial ‘excitation’
stage the responses of A1>A2>A3'A4. Based on figures 3 and 4(a), we conclude
that convergence is achieved for mesh A3. Thus, in figure 4(b) the responses at the
centre of the gap computed using A3 are compared to the experimental measurements
of Zhao et al. (2017). The agreement between the simulations and experiments is
good. The slight overpredictions which occur periodically arise because multiple
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FIGURE 4. (Colour online) Response at gap centre for meshes A1–A4 (a) and that from
mesh A3 compared to Zhao’s experiments (b) for case A (linear excitation). The time axes
are as in figure 2.

modes are excited (see § 3.1), each with small errors in amplitude and phase (due to
the numerical incident waves, experimental set-up, etc.). Such errors are noticeable at
times in the response when multiple modes reinforce or cancel.

The full interaction of the wave group with the boxes is shown in supplementary
movie 1 (available at https://doi.org/10.1017/jfm.2019.115). Snapshots of the interaction
at t= 0 and 1.8 s are shown in figure 5. The large wave crest is essentially unaltered
at the edge of the figure (downstream and outside the boxes), whereas waves are
almost absent downstream and behind the boxes in region 1 (see figure 1). This
illustrates the strongly directional nature of the waves scattered from the boxes –
most energy is reflected back up-wave and a small amount excites free surface modes
within the gap. The ‘near-trapped’ wave energy then causes the fluid in the gap to
oscillate within the side-by-side system, slowly leaking wave energy out into the
external wave field. As a result, the gap oscillations persist long after the incident
group has passed, as shown in supplementary movie 1. Higher-frequency scattered
waves are also evident radiating from the gap in figure 5(b), and upstream of the
leading box.

2.4. Kinematics: nonlinear excitation
Meshes B1 and B3, identical to A1 and A3 in the gap region, were used to compute
responses to two wave groups for case B, shown in figure 2 and labelled crest-focused
and trough-focused (in which each frequency component in the linear spectrum of
the crest-focused wave is phase-shifted by 180◦). For these wave groups the gap
modes are excited nonlinearly through quadratic wave–wave–structure interactions.
As in the experiments, the two-phase runs allowed odd and even harmonics to be
extracted using the phase inversion method of Fitzgerald et al. (2014), with the
results presented in figure 6 for mesh B3. There are some discrepancies between
the numerical and experimental results for the (very small) long-wave difference
component when t < 1.6 s but the agreement is better from t = 1.6 s onwards. The
numerical and experimental first-, second- and third-order harmonics are in good
agreement. As for case A, periodically the agreement deteriorates; seen in this light
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(a)
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t = 0 s

t = 1.8 s
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FIGURE 5. (Colour online) Snapshots of numerically computed response wave field for
mesh A3 (in the region 2.5 m< x< 8.5 m, −4.0 m< y< 0 m) captured at different times.
Note that the vertical axis is stretched, such that 1 unit in the vertical equals 5 units in
the horizontal, to more clearly show the free surface motions. To this end, the boxes are
shown as transparent.

the third harmonic result is remarkable. The agreement for the fourth harmonic is
not as good as for the other harmonics. However, assuming there is a generalised
Stokes-type perturbation expansion for the gap responses, it is possible to match the
envelope of the fourth harmonic component by squaring the envelope of the second
harmonic (calculated as

√
η2

2 + η
2
2H , where η2H is the Hilbert transform of the second

harmonic free surface elevation η2) and then fitting the measured envelope of the
fourth harmonic component by a least-squares method. Figure 6(h) shows that the
extracted fourth harmonic fits the scaled squared envelopes of the second harmonic
quite well, demonstrating that the numerical results are self-consistent. These results
represent a highly successful application of an NS solver to a problem with linear
viscous dissipation but nonlinear free surface effects, both of which must be resolved
to achieve satisfactory results. NS solvers have previously been used to derive second
harmonic responses around non-resonant structures such as cylinders in relatively
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FIGURE 6. (Colour online) Comparison of experimentally and numerically (mesh B3)
determined harmonic responses: (a) long-wave difference component; (b) first harmonic;
(c–f ) second harmonic; (g) third harmonic; and (h) fourth harmonic, with scaled envelope
squared of the second harmonic (dashed grey lines). The time axes are as in figure 2.

steep waves (Paulsen et al. 2014). Here the strength of the second harmonic response
is much stronger; even in waves which are not very steep, the second harmonic
responses are as large as the first.
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FIGURE 7. (Colour online) Non-dimensional damping coefficient for each mode versus
frequency (discontinuous axis) for each numerical simulation compared to experimental
results. The modes shown are modes 1, 3 and 5 (from left to right). The grey dashed
vertical lines and values above represent the resonant frequencies obtained from the
potential flow software DIFFRACT.

3. Damping analysis
3.1. Global damping

Owing to the transient nature of the incident wave group, the gap response can be
conceptualised as occurring in two stages, i.e. the excitation stage when the incident
waves drive the gap motions, and the decay stage, when the incident waves have
passed and the gap motion is a pure oscillatory decay. If the total damping in this
decay stage is linear, the free surface elevations should be well represented by a series
of decaying sinusoids with frequencies corresponding to the gap modes, as in Zhao
et al. (2017). Thus

η(t)=
∑

n

Ansin(ωnt+ φn) exp[−ωnξnt], (3.1)

where fn=ωn/2π is the resonant frequency of the nth mode, ξn the normalised modal
damping, and An and φn the amplitude and phase at the start of the time window. The
method of Kumaresan & Tufts (1982) performs well in estimating the parameters of
exponentially damped sinusoids for short data records, and is used here to calculate
the modal parameters using free surface elevation time series at a number of points
in the gap, assuming fn and ξn are independent of position along the gap, while An

and φn vary with position (reflecting the modal spatial structure). The effectiveness
of applying this method to the gap resonance problem has been demonstrated in
Zhao et al. (2017). Choosing a 20 s time window of t = [9, 29] s, the analysis is
conducted for the experimental and numerical results for cases A and B. The resonant
frequencies and corresponding damping coefficients are shown in figure 7.

Figure 7 suggests that the first resonant frequency identified from the numerical
results matches the experimental value more closely than potential flow theory for the
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first mode, while the opposite is true for the higher modes. Nevertheless, the frequency
agreement in all cases is quite good (within 1 %). The modal damping values are
of primary interest, and approach the experimental levels from below as the mesh is
gradually refined and the boundary layer resolved. For the finer meshes A3 and A4
the damping is in satisfactory agreement with the experimental values, despite being
slightly smaller. Part of this error may be attributable to the temperature dependence
of viscosity – in the simulations µ= 1000 µPa s, while temperatures in the Shanghai
basin during the tests were 17 ◦C, giving µ= 1080 µPa s. Damping values for each
mode are similar for cases A and B, while the third mode is generally underpredicted
more than the others.

From the numerical point of view, a coarse mesh usually induces larger unphysical
diffusion than a finer mesh, so it is common for fluid damping to be overpredicted
when mesh refinement is inadequate. Here, however, it appears that the damping
induced by wall friction dominates any unphysical diffusion. In this case the diffusion
should be small, since the structured mesh in the gap follows the curvature of the
walls and the convection term is small since the gap flow is Stokes-like. At this
point, note should be made of the work of Kristiansen & Faltinsen (2012), who
demonstrated convergence of gap responses by varying the number of uniform cells
across the gap and concluded that gap responses were not sensitive to mesh refinement
in the gap for their 2D geometry with square bilges. However, for the geometry with
rounded bilges in the present study, it is emphasised that the gap responses can only
be predicted with good accuracy when the boundary layer scale is resolved properly.

3.2. Local damping
While the ‘global’ damping of the computed free surface motions appears satisfactory,
the advantage of numerical simulations is that the flow field can be interrogated in
detail. It is of interest to determine whether the local fluid behaviour supports the
supposition that the viscous damping is due to laminar boundary layers. Contours of
normalised vorticity have been computed and examined, though they are not shown
here, as no visible vortex shedding occurs from the bilges throughout the simulation,
while small vortex shedding occurs from the sharp corners at the gap ends during
the excitation phase. To more quantitatively assess the nature of the dissipation, the
viscous dissipation is computed for various control volumes. The rate of energy
dissipation by the action of viscosity per unit time in a control volume V can be
calculated as (Whitham 1963)

Ėv =
1
2

∫
V
µ(e2

xx + e2
yy + e2

zz + 2e2
yz + 2e2

zx + 2e2
xy) dV, (3.2)

where exx = 2(∂ux/∂x), exy = ∂uy/∂x + ∂ux/∂y, etc. are the rate-of-strain components.
To attempt to separate the possible viscous dissipation contributions from wall friction
and flow separation, two control volumes are used. Control volume V1 surrounds
the boxes with x bounds [−1.25, 1.25] × (G/2 + B), z extending from the NWT
floor to the time-varying free surface η and y out to 0.56L. Control volume V2 is
a thin layer surrounding the boxes with a thickness δ = 3 mm (the blue area in
cross-section shown in figure 8 projecting along the gap). The viscous dissipation
rates in these control volumes are compared in figure 8. It is found that the largest
difference between V1 and V2 at any time in the decay stage is less than 8 %, and
the cumulative difference in viscous dissipation (integrating over time from t = 9 s
to t = 29 s) is less than 2 %, which means that nearly all of the viscous dissipation
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FIGURE 8. (Colour online) Dissipation rate time series for control volumes V1 and V2,
mesh A3, case A and (inset) cross-section diagram of control volume V2, for which δ =
3 mm.

occurs in a thin layer surrounding the boxes, suggesting that laminar boundary layers
are indeed the dominant damping contribution.

Having computed the viscous dissipation rate, it is possible to use this to compute
(at least approximately) the expected decay rate of the free surface in the gap and
compare to that found in the simulation, on a modal basis. It is therefore necessary
to obtain estimates of the average rate of energy loss from the oscillating system (Ėn)
and the amount of energy stored in the oscillating system (En) for each mode (per
unit modal amplitude squared), which are related to the non-dimensional damping for
each mode by

ξn ∝
Ėn

En
, (3.3)

(when the damping is small) assuming that the gap decay is well described by (3.1).
The total rate of energy loss is assumed to be the sum of radiation and viscous
contributions, i.e. Ėn = Ėn

r + Ėn
v . As the total energy of the oscillating system En

should be the same for viscous or inviscid calculations, we can write

ξn = Ėn ×
ξ n

r

Ėn
r

, (3.4)

where ξ n
r and Ėn

r are the damping coefficient and rate of dissipation, respectively,
caused by radiation by mode n. These have been calculated using the linear potential
flow software DIFFRACT, which is convenient as the different modal contributions
are computed separately. The radiated wave field is obtained by subtracting the
scattered wave field from a large box of width (2B+G) from the scattered field for
the gap problem. This approach takes advantage of the narrowness of the gap, and
is evidently deficient close to the ends of the gap, but otherwise produces smooth,
symmetrical radiated wave fields. For each mode, the rate of energy radiation to
infinity is computed using the radiated field at large radius from the boxes – radiation
patterns are shown in figure 9. It is interesting that mode 1 radiates most strongly
perpendicular to the gap (or along the NWT) while the other modes radiate most
strongly around the direction along the gap (i.e. out the ends of the gap).

To complete the analysis, the viscous dissipation rates shown in figure 8 must be
separated into modal contributions. Given the form of (3.2) and that the velocity in
the gap is in a form similar to (3.1), with spatial decay of the velocity towards the
wall, it is clear that for each mode there are dissipation rate contributions which are
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FIGURE 9. (Colour online) Radiation pattern, in terms of energy loss per unit modal
amplitude squared per radian, from gap mode 1 (a), mode 3 (b) and mode 5 (c)
determined using linear potential flow software DIFFRACT in an unbounded domain. The
definition sketch of θ is shown in (a) and θ =π/2 is along the gap direction.

purely decaying in time, and those which oscillate at twice the gap mode frequencies.
In addition, there are sum and difference frequency terms (cross-mode terms) and
terms at the gap oscillation frequencies caused by the time dependence of V in (3.2)
(due to the varying run-up on the box). Were the oscillations constant-amplitude
instead of decaying, time-integrating the dissipation rate to recover the average or
total dissipation would remove all of the oscillatory terms, leaving only the mean.
In this case we say simply that we expect the pure decay terms to dominate. As
the double-frequency dissipation rate terms occur in the same proportion as the pure
decay terms, it is possible to fit the double-frequency terms using the same method
as applied above (after isolating them with a bandpass filter), and use the relative
amplitudes to divide the pure decay dissipation rate signal into modal contributions.
Once the modal components of viscous dissipation rate are obtained, the global
damping coefficients for each mode can be calculated according to (3.4).

The analysis described above is carried out on the viscous dissipation rate time
series from t0 = 9 s onwards for mesh A3. The amplitude spectrum of the viscous
dissipation rate is obtained using the fast Fourier transform as shown in figure 10(a),
while the high-pass and low-pass time series are shown in figure 10(b). Applying
the method of Kumaresan & Tufts (1982) to the high-pass signal, it is found that
the reconstructed signal gives a very good approximation of the original high-pass
signal (see figure 11a). The modal frequencies ωn

vh and non-dimensional ‘damping’
ξ n
vh determined from the double-frequency viscous dissipation rate terms closely match

those for the free surface elevations over the same period (within 0.1 % for frequencies
and 3 % for damping), which means the coupling between different modes is indeed
weak as expected. The low-pass viscous dissipation rate signal should contain modal
signals with the same modal rates of decay and proportionality coefficients

αn =
Ėn
vh(t0)

Ėvh(t0)
(3.5)

as the high-pass signal. Thus, the dominant term in the low-pass signal can be
expressed as the sum of three pure decay curves (n= 1, 3, 5) in the appropriate ratio
(αn) and scaled by a constant C as

Ėv =
∑

n

Cαn exp[−2ωn
vhξ

n
vht]. (3.6)
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FIGURE 10. (Colour online) Amplitude spectrum (a), and high-pass and low-pass time
series (b) of viscous dissipation rate from t = −3 to t = 29 s. In (a), double-frequency
peaks corresponding to the three main gap modes can clearly be seen between 2 and
2.5 Hz, and the red dashed line represents the cut-off frequency for the filters.
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FIGURE 11. (Colour online) Numerical fit of high-pass (a) and low-pass (b) viscous
dissipation rate time series, using the method of Kumaresan & Tufts (1982) and a
least-squares method, respectively.

A numerical fit based on a least-squares method gives very good agreement with the
original signal shown in figure 11(b), with the coefficient of determination R2

= 0.96,
meaning that Ėn

v has been determined.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

11
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.115


Resolving wave and laminar boundary layer scales for gap resonance 773

Mode 1 Mode 3 Mode 5

ξη 7.7 8.3 11.2
ξµ 6.6 9.1 9.5

TABLE 1. Values of ξ × 103 determined from ‘global’ η (corresponding to the damping
coefficients in figure 7) and ‘local’ µ analyses.

Using (3.4) we arrive at the global damping results shown in table 1, where ξη is
the global damping derived from the free surface elevations and shown in figure 7 and
ξµ is the global damping derived using the dissipation calculation. The comparison
is reasonable (in light of the caveats discussed below), confirming the consistency of
these results, and the conclusion that the viscous damping is dominated by laminar
boundary layer behaviour.

It should be emphasised that producing a global damping value from radiation and
viscous contributions in the manner undertaken here involves several approximations,
some mentioned above, and some discussed here. Using (3.1) to represent the
gap motions works well because each mode may be described by a complex
resonance (see e.g. Meylan & Eatock Taylor 2009), though using the radiation
damping behaviour from a single (real) frequency is not a rigorous application of
this theory; ideally complex frequency calculations would be used. Secondly, the
radiation behaviour in the NWT and potential flow are assumed to be the same. As
the sidewalls of the NWT are reflective boundaries (while the ends are absorbing),
this would tend to reduce the effective radiation damping compared to an unbounded
domain potential flow analysis. However, numerical tests with a domain of larger
width for mesh A1 did not yield larger damping values. In this case it is important
to consider numerical propagation of the radiated wave, which is more than an order
of magnitude smaller in amplitude than the gap oscillation or incident wave. As the
vertical mesh resolution is optimised for propagation of the incident wave, it may
be inadequate to correctly capture propagation of the radiated wave. This difference
in scales therefore means that (unphysical) numerical damping of the wave radiated
out of the gap reduces the effect of the reflective walls. The effect of the walls is
therefore considered minor.

4. Conclusions
In this work numerical solutions of the Navier–Stokes equations have been shown to

compare favourably with experimentally observed gap response time series, including
higher harmonics, for (we believe) the first time. This is also an excellent test of
the possibility of resolving wave and (laminar) boundary layer scale processes in
the same simulation, as the amplitude of the resonant response for a narrow gap
depends critically on the viscous dissipation, the nature of which cannot feasibly
be determined in wave basin tests. Interrogation of the flow field has found that
nearly all the viscous dissipation is confined to a thin layer surrounding the boxes,
meaning the contribution from flow separation is negligible and wall friction is the
main source of damping. Further, the viscous dissipation in the boundary layer has
been computed, separated into modes and added to the modal radiation damping
contribution to produce modal global damping coefficients in reasonable agreement
with those measured in the simulation at the free surface, which are themselves in
fairly good agreement with the experimental values.
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In contrast to the finding of Kristiansen & Faltinsen (2012) that the 2D gap
response with square bilges is not sensitive to the mesh in the gap, it has been
shown that the cell width normal to the wall in the gap is crucial in determining
the amplitude response of each of the gap modes for the 3D gap resonance problem
with round bilges at laboratory scale. With a sufficiently fine mesh, the numerical
near-wall boundary layer can be well predicted by solving a local Stokes equation
driven by the time-varying pressure taken at a position near the wall in the gap but
still outside the boundary layer.

Given the success of reproducing higher harmonics using the NS solver, it is
expected that even higher harmonics could be well predicted if the mesh resolution
near the free surface is further refined, though their practical significance may be
limited. However, quadratic excitation of gap resonance does appear to be a problem
of practical relevance.

Ultimately the gap resonance problem has industrial relevance at a substantially
larger scale, though model testing remains a crucial tool for the offshore industry and
it is vital to understand these tests. As the scale is increased, the boundary layers
will inevitably become turbulent; though this is beyond the scale at which laboratory
testing is feasible. For sharp corners or bilge keels, separation will occur in the
laboratory as well as in the field.
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