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In this work, we highlight an issue that may reduce the accuracy of many local
nonlinear gyrokinetic simulations – turbulent self-interaction through the parallel
boundary condition. Given a sufficiently long parallel correlation length, individual
turbulent eddies can span the full domain and ‘bite their own tails’, thereby altering
their statistical properties. Such self-interaction is only modelled accurately when
the simulation domain corresponds to a full flux surface, otherwise it is artificially
strong. For Cyclone Base Case parameters and typical domain sizes, we find that
this mechanism modifies the heat flux by approximately 40 % and it can be even
more important. The effect is largest when using kinetic electrons, low magnetic
shear and strong turbulence drive (i.e. steep background gradients). It is found that
parallel self-interaction can be eliminated by increasing the parallel length and/or the
binormal width of the simulation domain until convergence is achieved.
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1. Introduction
Local nonlinear gyrokinetic simulations are one of the most commonly used tools to

assess turbulent transport in tokamaks. They solve the gyrokinetic model (Catto 1978;
Frieman & Chen 1982; Brizard & Hahm 2007; Abel et al. 2013), a nonlinear system
of integro-differential equations that have been derived to model plasma turbulence
as accurately as possible. Indeed, the primary approximation of gyrokinetics, ρ∗ ≡
ρi/a�1 (i.e. the tokamak minor radius a is much larger than the ion gyroradius ρi), is
satisfied in many existing tokamaks by factors of several hundred. Unfortunately, even
with its approximations, such a high-fidelity model is very computationally expensive.
For this reason, it has been crucial to streamline the calculations as much as possible.

To this end, it is helpful to minimize the volume of the simulation domain and
only include the minimal number of turbulent eddies needed to obtain a statistically
relevant representation of turbulence. Instead of modelling full magnetic flux surfaces
across most of the plasma minor radius (referred to as ‘global’ simulations), a
calculation can get by with a much smaller domain (referred to as ‘local’ simulations).
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FIGURE 1. An example flux tube (thin blue and purple lines) that is one poloidal
turn long with its cross-sectional shape indicated on the outboard midplane (thick black
rectangle) and at both locations on the inboard midplane (thick black parallelograms). Also
shown is the central flux surface of the flux tube (transparent yellow) with a toroidal
wedge removed for visual clarity.

Since turbulence in tokamaks is aligned with the magnetic field and is very
anisotropic, it is important for the domain of a local simulation to have similar
characteristics. Thus, the domain is long in the direction parallel to the magnetic
field and quite narrow in the two perpendicular directions. Full flux surfaces are not
usually modelled, nor is a large fraction of the minor radius. Typically, the domain
has a rectangular cross-section on the outboard midplane and is deformed into a
parallelogram at other poloidal locations due to the effect of magnetic shear. Such a
domain is called a ‘flux tube’ (Beer, Cowley & Hammett 1995) (see figure 1). It can
enable the computational cost of local simulations to be orders of magnitude lower
than global simulations, particularly when modelling large devices.

An important difference between local and global simulations concerns boundary
conditions. In global simulations, the boundaries within the flux surface are
straightforward – because entire flux surfaces are modelled, the physical periodicity
in the toroidal and poloidal directions can be implemented directly. However, the
radial boundary condition for global simulations is less obvious. Typically Dirichlet
boundary conditions are applied together with ‘buffer regions’, which are radial
regions that contain sources of particles and energy (Candy & Waltz 2003; Görler
et al. 2011)1. Hence, it is important to monitor global simulations to ensure that the
results are not sensitive to the particularities of this complex and artificial boundary
condition.

In contrast, all of the boundary conditions for local simulations are elegant (Beer
et al. 1995), although they still require care (as is emphasized by this work). Since the
domain of local simulations is narrow in the radial direction, the background plasma
parameters (e.g. density, temperature) are well approximated by a constant value
with a linear gradient to drive turbulence. This naturally reflects the inherent scale
separation between fluctuations and background gradients, which is a fundamental
assumption of the gyrokinetic model (Abel et al. 2013). One consequence is that the

1Additionally, an artificial Krook damping operator is often used to prevent profile relaxation in the
simulation region.
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turbulence experiences the same drive and background plasma conditions at opposing
sides of the domain, so it should be statistically identical. This is also true in the
binormal direction (i.e. the direction within the flux surface and perpendicular to the
magnetic field). For simplicity, instead of generating statistically identical turbulence
for these boundaries, it is substituted with exactly identical turbulence by using
periodic boundary conditions. Using exactly identical turbulence instead of statistically
identical turbulence does have the potential to introduce unphysical correlations into
the system. However, as long as the correlation length of the turbulence is much
smaller than the domain, this will not occur. In practice, the validity of this can be
determined by testing for convergence in the widths (radial and binormal) of the
domain.

For nonlinear simulations, the boundary condition in the parallel direction is similar,
but with one additional complicating factor – the effect of magnetic shear. In this
work we will study the parallel boundary condition and its effect on convergence
in the parallel and binormal sizes of the simulation domain. We will find that the
domain length typically used by the community, one poloidal turn, can introduce
unphysical turbulent correlations, directly affecting the accuracy of the results.
Individual turbulent eddies can remain correlated across the entire parallel length
of the domain and interact with themselves, which is unphysical unless the domain
corresponds to the full flux surface. This was first discussed in the original flux
tube model paper (Beer et al. 1995) in the context of gyrofluid simulations with
adiabatic electrons. Subsequent gyrokinetic studies (Candy 2005; Waltz et al. 2006;
Dominski et al. 2015) investigated the ability of this mechanism to generate localized,
steady corrugations in the background profiles. More recent work considered the
self-interaction of linear eigenmodes and revealed that their parallel self-interaction
can even interfere with the numerical convergence of nonlinear simulations with
respect to the domain size (Weikl et al. 2018; C.J. et al. 2020)2. Additionally, it has
been explored in gyrokinetic simulations of low magnetic shear stellarators (Faber
et al. 2018; Martin et al. 2018). This paper will show that parallel self-interaction
can be eliminated by lengthening the simulation domain in the parallel direction
to multiple poloidal turns or making the binormal width of the domain large. It is
the first work to demonstrate that these two methods produce the same result and
presents a novel, simple test for the presence of parallel self-interaction (i.e. the radial
dependence of the parallel correlation function shown in figure 7).

2. The parallel boundary condition
The parallel boundary condition generally used by nonlinear flux tube simulations

is called the ‘twist-and-shift’ condition (Beer et al. 1995). As with the perpendicular
boundaries, it requires the two ends of the flux tube to have statistically identical
turbulence. Finding statistically identical turbulence is non-trivial because toroidicity
and plasma shaping mean that the statistical properties of turbulence change with
poloidal angle. Thus, to be statistically identical the two ends of the flux tube must
be at the same poloidal angle χ , although, due to axisymmetry, they are still free to
be at different toroidal angles ζ . This constraint requires the length of the domain to
be an integer number of poloidal circuits, which we represent by Npol.

2Note that the self-interaction considered in these previous works (i.e. the nonlinear interaction of a linear
eigenmode with itself) is closely related to the self-interaction considered here (i.e. the interaction of a nonlinear
turbulent eddy with itself), but the two are distinct. Most notably, in the absence of magnetic shear, linear
eigenmodes would not exhibit self-interaction, but nonlinear eddies still could.
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FIGURE 2. An example flux surface showing two poloidal turns of a magnetic field line
(red arrows) and a global perturbation (grey and white stripes) with toroidal and poloidal
mode numbers of 9 and 21 respectively. Also shown is a Npol = 2 flux tube (thin blue
and purple lines) with the parallel boundary condition applied between the two ends (thick
black horizontal lines). As shown, χ is taken to be a straight-field line poloidal angle.

While Npol is free to be any positive integer, it has become overwhelmingly
standard in the fusion community to use Npol = 1 (e.g. figure 1). While this is likely
due to the desire to minimize the computational cost of simulations, there also have
been concerns about the validity of flux tubes with Npol > 1. For example, such
simulations are often not ‘globally consistent’ (Scott 1998). This means that, when
Npol > 1, the narrow flux tube can permit Fourier modes that do not exist on the
full, doubly periodic flux surface. However, in the true ρ∗ → 0 limit for which
gyrokinetics is valid, the charged particles have no way of knowing that they are on
a doubly periodic flux surface. Particles can never communicate information between
the different poloidal turns by moving in the toroidal direction because the distance
separating the different poloidal turns is proportional to the minor radius a, while
the turbulent correlation length is proportional to the ion gyroradius ρi (see figure 2).
Thus, the distance separating the poloidal turns is an asymptotically large number of
turbulent correlation lengths, so the particles will perceive the perpendicular direction
within the flux surface as infinite in the ρ∗≡ ρi/a→ 0 limit. This means that it is not
relevant which modes are allowed on a doubly periodic flux. While we should still
be concerned about respecting any periodicity in the parallel direction (i.e. do not
use a domain with Npol = 2 to model a q= 1 surface), violating global perpendicular
periodicity will only introduce an error that is small in ρ∗ � 1. This is intuitive –
global consistency should be unimportant in local simulations. Another concern is that
flux tubes with Npol > 1 include multiple locations at the same poloidal angle, which
must all have the same value of the zonal flows (i.e. fluctuations with a binormal
wavenumber ky= 0). Fortunately, it appears that the physics of the gyrokinetic model
ensures that this is fairly well satisfied in the simulations we have run (e.g. figure 3).
However, we should point out that we have no proof that this must always be the
case, so it remains an open issue.

Unlike with the perpendicular boundary conditions, substituting statistical periodicity
with exact periodicity across the parallel boundary is made more complicated by the
effect of magnetic shear. In local simulations, the safety factor profile is approximated
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FIGURE 3. The zonal amplitude of the turbulent electrostatic potential φ as a function of
the time t, as calculated by a gyrokinetic simulation with the parameters of tables 1 and 2
using kinetic electrons, a binormal domain width Ly = 125ρi, and Npol = 3. The colour
(i.e. black or grey) indicates two different values of the radial wavenumber (i.e. kxρi ∈

{0.05, 0.1} respectively) and the symbol (i.e. line, circle or cross) indicates the three
different toroidal locations at the outboard midplane (i.e. χ ∈ {−2π, 0, 2π}). Here, the
reference velocity vr≡

√
Tr/mr, temperature Tr and mass mr are taken to be the ion values

and e is the proton charge.

Coordinate Grid range Number of grid points
Adiabatic Kinetic Adiabatic Kinetic

x/ρr [−100, 100) [−65, 65) 256Npol 128Npol

y/ρr [−Ly/2, Ly/2)/ρr [−Ly/2, Ly/2)/ρr 64Ly/Ly0 32Ly/Ly0

χ [−Npolπ,Npolπ) [−Npolπ,Npolπ) 18Npol 18Npol

v‖/vs [−3, 3] [−3, 3] 32 32
√
µ/(Ts/Br) (0, 3) (0, 3) 8 8

t/(a/vr) [500, 1500] [150, 800] time step < CFL limit

TABLE 1. The nominal GENE (Jenko et al. 2000) coordinate grids used for the scans in
Ly and Npol, where Ly0 ≡ 125ρr is a common value used by the community. Note that all
grids are equally spaced, the reference length a is the tokamak minor radius, the reference
magnetic field Br is the toroidal field in the flux tube at R0, R0 is the average major
radius of the flux tube, and the CFL condition is explained in Courant, Friedrichs & Lewy
(1967). The other reference quantities indicated by the subscript r are taken to be the ion
quantities (except for the electron-scale simulation in figure 6) and vs =

√
2Ts/ms is the

thermal velocity of species s.

to be linear across the flux tube, i.e.

q(x)= q0 +
dq
dx
(x− x0)= q0

(
1+ ŝ

x− x0

x0

)
, (2.1)

where q is the safety factor, x≡ r is the minor radial coordinate within the domain,
ŝ≡ (x0/q0) dq/dx is the magnetic shear and the subscript 0 indicates the quantity is
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Parameter Value Parameter Value

Minor radius of flux tube, x0/a 0.54 Major radius, R0/a 3.0
Safety factor, q0 1.4 Magnetic shear, ŝ 0.8
Temperature gradient, a/LTs 2.3 Density gradient, a/Lns 0.733
Ion-e– mass ratio, mi/me 3672 Ion-e– temperature ratio, Ti/Te 1.0
Effective ion charge, Zeff 1.0 Collision frequency, νss′ 0.0
Fourth-order v‖ hyperdiffusion, εv‖ 0.2 Fourth-order z hyperdiffusion, εc 0.05

TABLE 2. The nominal Cyclone Base Case (Dimits et al. 2000) parameters used for the
scans in Ly and Npol. Simulations with kinetic electrons use εv‖ = εc = 0.5 (Pueschel,
Dannert & Jenko 2010) and a plasma beta of β = 0.001 for numerical reasons.

evaluated at the centre of the radial domain. This means that the two ends of the flux
tube are deformed into parallelograms that have opposite tilts. Hence, the shapes do
not overlap nicely, which must be resolved by the parallel boundary condition (see
figure 4). In essence, the parallel boundary condition determines how the magnetic
field lines are connected between these two parallelograms. The twist-and-shift
condition typically implemented by gyrokinetic codes starts by using axisymmetry to
justify toroidally shifting the two parallelograms until they are centred on one another
(Beer et al. 1995). Then, again using axisymmetry, we can make periodic copies of
the flux tube, shifted in the toroidal direction, and completely cover the opposing
parallelogram (see figure 4). Thus, any turbulent structure that extends past one end
of the domain will be copied into the other end while maintaining the twisting caused
by magnetic shear3.

One consequence of this boundary condition is that it forces at least one flux
surface in the domain to have field lines that close on themselves after going through
the parallel boundary just once or, equivalently, after just Npol poloidal turns. Given
that we have chosen to centre the parallelograms with respect to one another, the flux
surface in the centre of the radial domain will always be such a surface (see figure 5).
However, figures 4 and 5 show that there can be more than one – sometimes there
are many. We will indicate the total number of surfaces with field lines that close on
themselves after just one pass through the parallel boundary with Nsi. The subscript si
stands for ‘self-interaction’ because these surfaces will exhibit the strongest parallel
self-interaction. Now if Npol = 1, the parallel boundary condition will be applied
after one poloidal turn, so these field lines will close after just one poloidal turn.
Accordingly, we will call them ‘pseudo-integer’ surfaces – they close on themselves
after one poloidal turn like a normal integer surface, but they are usually an artefact of
the boundary condition and do not actually correspond to integer flux surfaces in the
real device. Additionally, we see that there will be ‘pseudo-rational’ surfaces at other
radial locations, where the field lines exactly close on themselves after two or more
poloidal turns. For example, the ‘pseudo-half-integer’ surfaces close on themselves
after two poloidal turns and will always occur midway between two neighbouring
pseudo-integer surfaces. Alternatively, if Npol is increased from 1 to 2, all of the
pseudo-integer surfaces will be replaced by pseudo-half-integer surfaces. Thus, the
lowest-order rational surfaces in an Npol = 2 simulation will be pseudo-half-integer
and there will be Nsi of them.

3For a mathematical explanation of the parallel boundary condition in real space see appendix A or for a
Fourier-space formulation see Beer et al. (1995).
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FIGURE 4. The shape of the parallel boundary (thin solid black parallelogram) on the
inboard midplane of the example flux tube shown in figure 1. The parallel boundary
condition is supplied by shifting the other end of the flux tube (thick solid black
parallelogram) toroidally until it is centred on the first and then making periodic copies
offset in the toroidal direction (two thick dashed black parallelograms). The flux surfaces
are also shown (thin solid grey lines).

FIGURE 5. A Poincaré puncture plot at the outboard midplane for the flux tube from
figures 1 and 4, which has Npol= 1. Following a magnetic field line that starts at different
radial positions (smallest filled circles) will take us to different toroidal locations after
one poloidal circuit of the device (smaller empty circles) and two poloidal circuits (large
empty circles). Two radial locations have field lines that close on themselves after passing
through the parallel boundary just once, so Nsi = 2.

These pseudo-rational surfaces are also involved in an important constraint that
arises from the combination of the parallel and radial boundary conditions – the
aspect ratio of the domain becomes discretized (i.e. the radial domain width Lx

divided by the binormal domain width Ly). This can be found from a derivation in
real space (see appendix A), a derivation in Fourier space (Beer et al. 1995) or by
the following explanation. First, note that radial periodicity implies an equivalence
between pairs of field lines, one on each of the two radial boundaries. In other words,
any field line at x= x0 − Lx/2 has a matching field line at x= x0 + Lx/2 with which
it is equivalent. These field lines are the same and must remain matched as we move
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in the parallel direction. Otherwise, a particle moving purely along a field line would
find itself transported across field lines. However, from figures 4 and 5, we see that
the twist-and-shift condition, which is applied at the parallel ends of the domain,
connects different field lines at different toroidal locations. This can cause problems.
If we are not careful, the twist-and-shift boundary condition will connect the two field
lines from a matching pair to two other field lines that are not matching. This would
cause spurious cross-field transport. We must ensure that, given any matching pair
of field lines, twist-and-shift always connects them to two other field lines that also
form a matching pair. From figures 4 and 5, we see that this will only be achieved
if

1ζ =NsiLζ , (2.2)

where 1ζ is the total shift in toroidal angle caused by magnetic shear along the
length of the flux tube, Nsi is some integer, and Lζ is the width of the flux tube
in toroidal angle such that Lζ = 2π corresponds to the full toroidal domain. For the
example shown in figure 4, we can see that Nsi = 2 because the radial boundaries
of the thick solid black parallelogram are offset in the toroidal direction by 1 × Ly
and this represents half the total shift (i.e. the shift in the range χ ∈ [−πNpol, 0], but
not χ ∈ [0,πNpol]). Additionally, figure 5 shows that, for this example, the twist-and-
shift condition connects every field line on the radial boundary to itself. This trivially
ensures that matching pairs remain matching as particles move across the parallel
boundary. If Nsi = 1, the field lines on the radial boundary would no longer close on
themselves, but instead to a different matching pair offset in the y direction by Ly/2.

To see how equation (2.2) discretizes the domain aspect ratio, we invert the
definition of the binormal coordinate

y(x, ζ , χ)≡
x0

q0
(q(x)χ − ζ ) (2.3)

(where χ is a straight-field line poloidal angle) and use (2.1) to calculate the toroidal
shift across the sheared domain to be

1ζ ≡ ζ

(
x= x0 +

Lx

2
, y= y0, χ = 2πNpol

)
− ζ

(
x= x0 −

Lx

2
, y= y0, χ = 2πNpol

)
(2.4)

= 2πNpol
dq
dx

Lx = 2πNpol
q0

x0
ŝLx, (2.5)

where y0 is any arbitrary binormal location. Since

Ly =
x0

q0
Lζ (2.6)

follows from evaluating equation (2.3) at constant x and χ , we can use (2.2) and (2.5)
to see that the possible values for the radial domain width are

Lx =
Nsi

2πNpol|ŝ|
Ly. (2.7)

Thus, we find that Lx must be a integer multiple of the distance between lowest-order
pseudo-rational surfaces. Importantly, we see that if the magnetic shear is very small,
the radial width will be forced to be large because we cannot decrease Nsi below 1.
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This causes simulations with very low, but finite magnetic shear to become expensive.
Equation (2.7) also shows that Nsi can be used to specify the radial width of the
domain. In fact, Nsi is a common input parameter to gyrokinetic codes and goes by
various names such as nexc in GENE, jtwist in GS2, IKXSPACE in GKW and m_j
in GKV.

Lastly, it is important to note that the pseudo-rational surfaces created by the
parallel boundary condition can be physical (Waltz et al. 2006; Weikl et al. 2018;
C.J. et al. 2020). For example, a q = 3 surface really closes on itself after one
poloidal turn and should be modelled using Npol = 1, while a q= 5/2 surface should
use Npol = 2. Moreover, the physics occurring at these surfaces may be crucial
for modelling certain behaviour such as microtearing modes (Hazeltine, Dobrott &
Wang 1975; Guttenfelder et al. 2011). However, to accurately model the overall
impact of self-interaction from rational surfaces, the spacing between pseudo-rational
surfaces must also be correct. For example, the domain shown in figure 5 has
Nsi = 2 pseudo-integer surfaces, so, to be physical, the radial width of the simulation
domain must correspond to twice the distance between the actual integer surfaces in
the device4. To put it another way, the simulation must have the same number of
ion gyroradii separating the integer surfaces as the experiment does. Unfortunately,
accomplishing this turns out to require a simulation domain that corresponds to the
full flux surface (as is discussed further at the end of § 4). To see this, take the
change in safety factor across the simulation domain 1q= Lx dq/dx and set it equal
to the number of integer surfaces in the simulation 1q=Nsi. Then, substituting (2.6)
and (2.7) with Npol = 1 shows that Lζ = 2π (i.e. the toroidal domain size is equal to
the entire toroidal domain). Thus, we see that accurately modelling self-interaction
on rational surfaces requires full flux surface simulations with radial domain widths
on the scale of the tokamak minor radius a. Flux tubes of this size offer little
computational savings compared to global simulations, but if we try to get by with a
smaller domain of Lζ = 2π/N, it will have a radial density of pseudo-integer surfaces
that is N times larger than reality.

3. Neglecting pseudo-rational surfaces
While the pseudo-rational surfaces created by the parallel boundary condition

are unphysical unless the domain size is very large, this is not always a problem.
Typically gyrokinetic simulations are used to model plasma far from low-order rational
surfaces. To do this accurately we do not need to ensure that the simulation has the
correct spacing of rational surfaces, we just need to ensure that their presence is
negligible. Broadly speaking, this can be accomplished by verifying that the results
of the simulation do not depend on the spacing of pseudo-rational surfaces. From
(2.7), we see that the spacing is given by

Lx

Nsi
=

Ly

2πNpol|ŝ|
, (3.1)

so we can vary either Ly or Npol and test for convergence. Additionally, we can
specifically check the low-order pseudo-rational surfaces to see if they are exhibiting
any unusual behaviour. The low-order pseudo-rational surfaces are only distinct
from the other surfaces in that they close on themselves after a small number of

4Or more precisely, twice the distance between the integer surfaces in the device if the safety factor profile
was given by (2.1).
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FIGURE 6. The time-averaged zonal E×B shearing rate (i.e. ∂2φ/∂x2 averaged over time
and y) as a function of minor radial location within the flux tube for slab simulations
(though toroidal simulations with kinetic electrons look similar (Dominski et al. 2015;
C.J. et al. 2020)). Data are shown for ion-scale simulations using kinetic electrons with
mi/me = 3672 (black thick solid), kinetic electrons with mi/me = 918 (red thick solid)
and adiabatic electrons (grey thick dashed). An electron-scale simulation is shown with
adiabatic ions (blue thin solid). The light grey regions indicate the portion significantly
affected by pseudo-integer surfaces, while pseudo-half-integer surfaces are located half-way
in between. The parameters used are given in tables 1 and 2, except a/LTs = 10, a/Lns =

2.0 and several of the geometry parameters are not needed. Note the reference magnetic
field Br and reference length a become arbitrary in slab geometry.

poloidal turns. If the parallel correlation length of the turbulence is sufficiently long,
an eddy can interact with itself along the field line, thereby altering its statistical
properties. Hence, to ensure that their presence is not affecting things, we can verify
that the flux tube has statistically homogeneous turbulence in the perpendicular plane.

For example, the observation of localized, steady E × B flow shear layers (Candy
2005; Waltz et al. 2006; Dominski et al. 2015; Weikl et al. 2018; C.J. et al. 2020) is
a clear indicator that pseudo-rational surfaces may be adversely affecting the accuracy
of many present-day simulations. These structures are a general consequence of self-
interaction and are a fairly universal in conventional tokamak simulations with kinetic
electrons. Although it is difficult to see them in tokamak simulations with adiabatic
electrons, figure 6 shows that they can be found by using a slab geometry (instead of
toroidal geometry). While they have been identified as an electron-scale phenomenon
in linear simulations (Dominski et al. 2015), in nonlinear simulations they manifest as
fairly narrow ion-scale structures. Figure 6 demonstrates that their width does not scale
with the electron mass in slab ion-scale simulations and the same behaviour has been
seen in previous toroidal ion-scale simulations (Dominski et al. 2017). Furthermore,
figure 6 shows that similar structures can be found at electron scales in slab electron
temperature gradient simulations.

These E×B flow shear layers are particularly interesting because they are constant
in time – i.e. the plasma is spontaneously moving momentum around within the flux
tube in order to modify the steady background flow profile. Like large-scale steady
E×B flows, the tokamak will set up a parallel flow in order to convert the E×B flow
layers into a purely toroidal flow (Abel et al. 2013). Such flow represents intrinsic
rotation, which is generally prohibited by an underlying symmetry of the gyrokinetic
model (Peeters et al. 2005; Parra, Barnes & Peeters 2011; Sugama et al. 2011). Thus,
there must be a symmetry-breaking mechanism present. One plausible mechanism is
variation in turbulence characteristics (Parra & Barnes 2015). This could be introduced
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by the existence of pseudo-rational surfaces (e.g. the turbulence on integer surfaces
is different than on the neighbouring irrational surfaces). Normally, this symmetry-
breaking effect is small in ρ∗� 1 because the gradual change in background gradients
is the usual cause for the variation in turbulence characteristics. However, the variation
caused by the pseudo-integer surfaces occurs on the scale of the gyroradius, so it is
not small in ρ∗. There are only two physical effects that cause variation in turbulence
characteristics to break the symmetry (see Section 9 of Parra & Barnes (2015)): finite
gyroradius effects and the radial magnetic drifts. Since figure 6 shows the shear layers
persist in slab geometry, we believe that the finite gyroradius effect is the dominant
symmetry-breaking effect. This is intuitive as the symmetry breaking occurs on a
small scale and appears to be dipolar (i.e. a region of positive momentum flux is
always next to a region of negative), so the radial drift orbits should average over
it more effectively because they are significantly larger than the gyroradius.

Importantly, these flow shear layers are just one possible symptom of self-interaction
at pseudo-rational surfaces. More generally, we can investigate spurious correlations by
looking at the two-point parallel correlation function

C‖(x, y, χ1, χ2)≡
〈φNZ(x, y, χ1, t)φNZ(x, y, χ2, t)〉t√
〈φ2

NZ(x, y, χ1, t)〉t〈φ2
NZ(x, y, χ2, t)〉t

, (3.2)

where the subscript NZ signifies the non-zonal portion of the quantity and 〈. . .〉u
indicates an average over any coordinate u. The quantity C‖ indicates the degree of
correlation between two points χ1 and χ2 on the same field line (i.e. at constant x
and y). Figure 7 shows the y-averaged correlation between adjacent outboard and
inboard midplanes

〈
C‖(x, y, χ1 = 0, χ2 =π)

〉
y for various toroidal simulations. Note

that all simulations with Npol = 1 have sharp spikes in the parallel correlation at the
locations of pseudo-integer surfaces. Thus, even though toroidal simulations with
adiabatic electrons did not display flow shear layers at pseudo-integer surfaces, they
do exhibit spikes in parallel correlation. We see that increasing Ly increases the
spacing between pseudo-integer surfaces, in accordance with (3.1). However, we also
notice that neither the width, nor the height of the spikes changes with Ly. Thus,
as we increase Ly the regions affected by pseudo-integer surfaces occupy a smaller
and smaller fraction of the domain. This indicates one way to eliminate the effect
of pseudo-rational surfaces – increase Ly until convergence is achieved. If Ly is
sufficiently large, the pseudo-rational surfaces will have a negligible impact on all
volume-averaged quantities. Effectively we are ‘diluting’ away their influence.

Figure 7 also shows a second strategy to eliminate pseudo-integer surfaces –
increase Npol until convergence is achieved. If the flux tube is longer, a turbulent
eddy has to remain correlated over a longer distance in order to ‘bite its own tail’.
In other words, the Npol = 2 has no pseudo-integer surfaces, only pseudo-half-integer
surfaces. Accordingly, we see that, compared to the Npol = 1 simulation, the Npol = 2
case has much smaller peaks at its lowest order pseudo-rational surfaces, which
are more closely spaced. This suggests that, given the parameters used for these
simulations, a small number of poloidal turns should be sufficient to eliminate the
effect of pseudo-rational surfaces and achieve convergence. This is consistent with
the original convergence study of Beer et al. (1995), which found that two or three
poloidal turns was sufficient to achieve convergence in gyrofluid simulations with
adiabatic electrons. However, it was not obvious that kinetic and adiabatic electron
simulations would behave similarly because, in linear simulations, kinetic electrons
enable modes that are very extended along the magnetic field line (i.e. ‘giant tails’
in the ballooning envelope) (Hallatschek & Dorland 2005).
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FIGURE 7. The parallel correlation between inboard and outboard locations following a
field line at a given minor radial location within the flux tube. The base simulation has
kinetic electrons with Npol = 1 and Ly = 250ρi (black thick solid). The other three curves
are produced by changing the base simulation to either have adiabatic electrons (grey thick
solid), Ly = 500ρi (red thin solid) or Npol = 2 (blue thick dashed). Note the Ly = 500ρi
simulation has only a single pseudo-integer surface, which occurs at x = 0. The Npol =

2 simulation has no pseudo-integer surfaces, but has pseudo-half-integer surfaces at x =
{0,±25,±50,±75}ρi.

4. Resolution study
We will now use the gyrokinetic code GENE (Jenko et al. 2000; Görler et al.

2011) to perform a resolution study in Ly and Npol, the two strategies to eliminate
pseudo-integer surfaces. Figures 8(a) and 8(b) show the results using standard Cyclone
Base Case parameters (Dimits et al. 2000) with adiabatic electrons and kinetic
electrons respectively (see table 2). The simulations with adiabatic electrons are
considerably less expensive, so we are able to perform a more complete parameter
scan and more rigorously ensure adequate resolution (see table 1). Regardless, both
display qualitatively similar behaviour.

For adiabatic electrons, figure 8(a) shows that the fully converged value of the ion
heat flux appears to be a bit less than 7 in gyroBohm units (QgB= ρ

2
∗
vrniTr, where ni

is the ion number density). Such convergence can be achieved by simply increasing Ly
to very large values while maintaining Npol= 1. The same result can also be achieved
by increasing Npol, which somewhat alleviates our concerns about the validity of using
Npol > 1 (see § 2). However, this is only true when we are already using a sufficiently
large value of Ly. If Ly is not large enough, the simulation will not be fully converged
even if Npol → ∞. This is for the same reason that we need a sufficiently large
domain in the x direction – self-interaction in the perpendicular direction. Completely
independent of parallel self-interaction, it is still necessary to ensure that the turbulent
correlation length in the y direction is much smaller than the domain width in the y
direction (as explained in § 1). If this is not satisfied, convergence will be achieved as
Npol→∞ (because the parallel self-interaction will vanish), but it will not converge
to the same value as when the binormal self-interaction is also eliminated. Note in
figure 8 that the simulations that are not fully resolved in either Ly or Npol have heat
fluxes lower than the converged value. This indicates that both binormal and parallel
self-interaction tend to reduce the ability of turbulence to transport energy. This may
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(a)

(b)

FIGURE 8. Resolution studies in Ly and Npol with the parameters of tables 1 and 2
using adiabatic electrons (a) and kinetic electrons (b). The open black circles indicate
simulations with Npol= 1 that individually double the grid resolution or the domain width
of the three other coordinates (i.e. x, v‖ and µ) as well as the grid resolutions in y and χ .
The simulation at Ly=2000ρi was forced to have double the nominal x domain width (and
thus double the number of x grid points) due to the aspect ratio quantization of (2.7). The
top axis shows the value of ρ∗ for which a given Ly corresponds to the full flux surface.

be because the correlations imposed by self-interaction reduce the degrees of freedom
accessible to the turbulence, preventing it from behaving in ways that would more
effectively drive transport.

Figure 8(a) shows that, using Ly ≈ 125ρi and Npol = 1, as is common in the
community (Watanabe et al. 2015), under-predicts the ion heat flux by approximately
25 % in adiabatic electron simulations. While this is already concerning, figure 8(b)
shows that the effect of self-interaction increases when using kinetic electrons.
Instead of a 25 % error, we see roughly 40 %. This is consistent with figure 7,
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which showed that the kinetic electron simulation had more pronounced spikes in
the parallel correlation function. Moreover, the effect of self-interaction can be even
bigger for other physical parameters. For example, Watanabe et al. (2015) shows that
taking Cyclone Base Case parameters and lowering the magnetic shear from ŝ= 0.8
to 0.2 increases the error in adiabatic electron simulations from 25 % to at least 50 %.
Going further, we simulated Cyclone Base Case parameters with adiabatic electrons
and ŝ = 0 and found that changing Npol = 1 to Npol = 2 increased the heat flux by
70 %. Simulations of stellarators with ŝ = 0 have even found that turbulence can be
stable when using Npol = 1, but unstable when Npol = 2 (see figure 11 of Faber et al.
(2018)). Clearly, self-interaction through the parallel boundary condition can be a
significant effect in local gyrokinetic simulations.

An important practical result is the relative computational cost of the two routes
– increasing Npol or increasing Ly. This is briefly considered by Beer et al. (1995)
in the context of gyrofluid simulations of a TFTR experimental shot, concluding that
‘it appears that faster convergence is obtained by allowing the domain to be longer
than a parallel correlation length’. However, our conclusion from the above Cyclone
Base Case simulations is the opposite – increasing Ly while maintaining Npol = 1
was the cheapest way to reach convergence. For example, the Npol = 2, Ly = 250ρi
simulation required roughly double the computational resources of the Npol = 1, Ly =

1000ρi simulation. This can be understood by studying how the coordinate system
grids change in response to increasing Ly versus Npol (see table 1).

We see that as Ly is increased the number of y grid points must be increased
proportionally. Additionally, after Ly reaches a certain value, equation (2.7) forces us
to increase Lx (and thus the number of x grid points) proportionally as well. However,
for the parameters of tables 1 and 2, this was not necessary until Ly > 1000ρi. For
simulations with lower values of ŝ, for which parallel self-interaction is expected to
be more of a concern, this constraint would kick in at lower values of Ly. On the
other hand, when increasing Npol we clearly must increase the number of parallel grid
points. Moreover, as explained in detail in Watanabe et al. (2015), properly resolving
a longer parallel domain turns out to require more radial grid points, due to the fact
that longer domains are twisted more by magnetic shear. Adding more radial modes
decreases the time step of explicit codes like GENE because we are allowing smaller
radial scales, which makes the CFL limit more constraining. In light of this, it is not
surprising that simulations with Npol > 1 are so costly – it is necessary to increase the
parallel, radial and temporal resolutions proportionally with Npol. Additionally, pushing
to extreme values of Ly has the added advantage of ensuring that self-interaction in
the y direction is completely eliminated.

While increasing Ly was the better way to reach convergence in our simulations,
there are a few important caveats that make generalization difficult. First, at lower
values of ŝ the domain aspect ratio quantization condition (i.e. (2.7)) kicks in at lower
values of Ly, making the Ly route more costly. Second, codes that partially use implicit
methods to advance in time may observe different computational costs than what we
have seen in GENE, which uses only explicit methods, as they are not limited by the
CFL condition. Third, adding perpendicular grid points (specifically when increasing
Lx and Ly at fixed resolution) is fundamentally different than adding parallel grid
points because the perpendicular modes are all coupled through a Fourier transform
in the nonlinear term, while only some of the parallel grid points are connected
via the parallel streaming term. Thus, the relative computational and communication
costs may depend strongly on the computer architecture, memory and parallelization
scheme. Finally, Scott (2001) and Watanabe et al. (2015) each present a clever way
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of potentially getting around the need to increase the radial and temporal resolutions
with Npol. While neither have been implemented in GENE, they both could make
Npol > 1 simulations much more affordable, potentially more affordable than large Ly
simulations. The first approach, the ‘flux tube train’ (Watanabe et al. 2015), has been
implemented in the local gyrokinetic codes GKV (Watanabe & Sugama 2006) and
stella (Barnes, Parra & Landreman 2019). The other approach, the ‘shifted metric’
coordinate system (Scott 2001), has not been implemented in any local gyrokinetic
code and it is currently unclear if it is possible to implement in a radially periodic
domain (Told & Jenko 2010).

As discussed in § 2, the parallel self-interaction occurring in local simulations
is physical when Ly corresponds to a full flux surface. The same is true of
self-interaction in the y direction – if we are modelling a full flux surface, the
toroidal periodicity of a real device will lead to self-interaction if the toroidal
correlation length is comparable to the toroidal circumference. Thus, we can also
view the Npol = 1 points in figure 8 as a scan showing how the physical effect of
self-interaction weakens with decreasing ρ∗

5. This is indicated on the top horizontal
axes in figure 8. For context, the DIII-D tokamak (Luxon 2002) has ρ∗ ≈ 1/300 and
a full flux surface simulation corresponds to

Ly =
2π

q0

1
ρ∗

x0

a
ρi ≈ 700ρi. (4.1)

Therefore, figure 8 shows that self-interaction is a finite ρ∗ effect that we are usually
justified in eliminating when modelling present-day large tokamaks. However, it might
still play an important role in smaller machines or specific parameter regimes6.

Lastly, we performed a temperature gradient scan to determine how self-interaction
affects the critical gradient and profile stiffness in Cyclone Base Case simulations.
Figure 9 shows two data sets – one with a large value of Ly, where self-interaction has
been mostly diluted away, and one with a small value of Ly, where self-interaction is
still significant. We see that the difference in the ion heat flux between the two values
of Ly is generally reduced as the temperature gradient decreases. This leads to similar
estimates of the critical gradient for both sets of simulations, giving evidence that
large Ly domain widths may not be necessary for simulations near the critical gradient.
However, the self-interaction present in the simulations with smaller Ly reduces the
profile stiffness, more significantly when using kinetic electrons.

5. Conclusions
In this work we have shown that turbulent self-interaction through the parallel

boundary condition can significantly affect the results of local gyrokinetic simulations.
Such self-interaction can be physical, but only when the simulation domain
corresponds to a full flux surface for the device being modelled. Using a narrow flux
tube to model a large device will artificially strengthen self-interaction, which can

5This convergence looks quantitatively similar to the system size investigations in McMillan et al. (2010)
and Lin et al. (2012).

6Note that there are many other finite ρ∗ effects apart from the self-interaction discussed here. Some of
these are contained in current global gyrokinetic codes (e.g. profile shearing), while many others have only
been derived recently (Parra & Calvo 2011) and are not in any code. Thus, while going to a full flux surface
simulation will allow us to properly treat self-interaction, it is no guarantee that our overall simulation will be
accurate for a small machine. On the contrary, the fact that self-interaction is important suggests that many of
the other finite ρ∗ effects may be important too.
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(a)

(b)

FIGURE 9. A critical gradient study using adiabatic electrons (a) or kinetic electrons (b)
for a domain width that mostly eliminates self-interaction (grey triangles) and another for
a domain width that allows significant self-interaction (black circles). All simulations use
the parameters of tables 1 and 2 and best-fit linear trendlines are also shown.

reduce the heat flux. This implies that, if the parallel self-interaction is significant,
the simulation will only properly model it for a single finite value of ρ∗. However, if
self-interaction is negligible, the simulation is appropriate for any sufficiently small
value of ρ∗. In other words, self-interaction is a finite ρ∗ effect.

Thus, to achieve the true ρ∗� 1 limit assumed in deriving gyrokinetics, one would
like to completely eliminate parallel self-interaction. We have shown in figure 8 that
this can be achieved by increasing the width of the simulation domain in the binormal
direction Ly and/or lengthening the simulation domain using Npol. Currently available
results suggest that self-interaction is stronger for kinetic electrons, low values of
magnetic shear and strong turbulence drive (i.e. steep background gradients). This may
be because these parameters tend to increase the parallel correlation length of the
turbulence. To verify that self-interaction has been eliminated, one should pay special
attention to convergence in the binormal domain width and check for spikes in the
parallel correlations function (e.g. figure 7). Additionally, one should take care when
using a resolution study done with adiabatic electrons to justify domain resolutions
for simulations using kinetic electrons.
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Appendix A. Derivation of aspect ratio quantization
To see why the aspect ratio Lx/Ly of a flux tube is quantized, we must start with

the boundary conditions. The binormal boundary condition is

φ(x, y+ Ly, χ)= φ(x, y, χ), (A 1)

where y is defined by (2.3). Here we give the turbulent electrostatic potential φ as an
example, but the same boundary conditions also hold for the electromagnetic perturbed
fields as well as the gyrokinetic distribution function. The radial boundary condition
is

φ(x+ Lx, y, χ)= φ(x, y, χ), (A 2)

where it is important that we are holding y constant in applying radial periodicity.
Lastly, the parallel condition is more complicated and is called the ‘twist-and-shift’
(Beer et al. 1995). It is defined by taking parallel periodicity at constant toroidal angle
ζ , according to

φ(x, y(x, ζ , χ + 2πNpol), χ + 2πNpol)= φ(x, y(x, ζ , χ), χ). (A 3)

This relation is also depicted in figure 4. Using the definition of y given by (2.3) and
linearizing the safety factor profile, we can see that

y(x, ζ , χ + 2πNpol)= y(x, ζ , χ)+ 2πNpolx0 + 2πNpolŝ(x− x0). (A 4)

Thus, equation (A 3) can be written as

φ(x, y+ 2πNpolŝ(x− x0), χ + 2πNpol)= φ(x, y, χ), (A 5)

where we have assumed that 2πNpolx0/Ly is very close to an integer Nq ∈Z and then
applied the binormal periodicity (i.e. (A 1)) Nq times. This is valid because the minor
radial location of the centre of the flux tube x0 is much larger than the binormal width
Ly, so a slight radial shift ensures that the assumption is satisfied and does not affect
the simulation.

The flux tube aspect ratio quantization condition fundamentally arises from the
combination of the parallel and radial boundary conditions. As explained in the main
text, if field lines are not connected properly across these two boundaries, parallel
motion can lead to an artificial jump in the binormal direction. We begin by writing
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the radial boundary condition given by (A 2). Then, replace both sides of the equation
using the parallel boundary condition given by (A 5) to find

φ(x+ Lx, y+ 2πNpolŝ(x+ Lx − x0), χ + 2πNpol)

= φ(x, y+ 2πNpolŝ(x− x0), χ + 2πNpol). (A 6)

Next, we again use the radial boundary condition given by (A 2) to replace the right
side of (A 6) and show

φ(x+ Lx, y+ 2πNpolŝ(x+ Lx − x0), χ + 2πNpol)

= φ(x+ Lx, y+ 2πNpolŝ(x− x0), χ + 2πNpol). (A 7)

This expression can only be true if the 2πNpolŝLx term in the second argument on the
left side can be removed using repeated application of binormal periodicity (given by
(A 1)). Thus, we require that

2πNpol|ŝ|Lx =NsiLy, (A 8)

for some integer Nsi ∈ Z. This is the flux tube aspect ratio quantization condition
given by (2.7). If it is not satisfied, field line identity will not be consistent across the
parallel boundary of the flux tube and spurious cross-field transport will be introduced
into the simulation. A particle travelling purely along a field line can find itself on
a different field line after passing through the parallel boundary, thereby enabling
fictitious correlations between distant regions within the flux tube. Note that this is
a separate issue from fictitious correlations that can be introduced by pseudo-integer
surfaces (i.e. the primary focus of this paper). By applying (2.5) and (2.6) to (A 8),
we can derive (2.2) and show that the radial domain width must correspond to an
integer number of lowest-order pseudo-rational surfaces.
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