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Premixed flame propagation in a confining
vessel with weak pressure rise
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The propagation of a premixed flame inside of a confining vessel filled with
combustible fluid is determined using large-activation-energy asymptotics. The flame
structure is analysed assuming that spatial and temporal variations in the transverse
direction are weak compared to those in the direction normal to the flame surface.
The analysis considers weak pressure rise from confinement and also allows for
mixtures that are both near and removed from stoichiometry, non-unity reaction orders,
temperature-dependent transport coefficients, and general Lewis numbers. The resulting
equations for flame propagation speed are expressed in a coordinate-free form and
describe the evolution of an arbitrary shaped flame in a general confining flow. These
expressions are specifically applied to the case of a spherical flame propagating inside
a spherical chamber. The radius at which the confining vessel influences the flame
propagation is determined and the various mechanisms influencing flame behaviour are
discussed. The results give rise to a simplified asymptotic relationship that provides
an improved equation that may be used to more accurately extrapolate unstretched
laminar flame speeds from experimental measurements.

Key words: combustion, flames

1. Introduction
In many practical and experimental configurations, premixed flame propagation takes

place inside a constant-volume vessel. As a flame propagates through the unburned
gas, the pressure inside the vessel begins to rise. This increase in pressure induces a
flow field and additionally heats the gases through adiabatic compression. The flame is
affected in two ways: the pressure-induced flow field advects the flame surface while
the compression and concomitant heating of the gas modifies the chemical reaction
rate and thus the flame propagation rate.

Mathematical descriptions of the propagation of confined premixed flames have
generally treated the flame as an infinitesimally thin surface of density discontinuity
separating the unburned and burned gases. The subsequent analysis of the bulk flow
determines the pressure inside the vessel as a function of the location of the flame
sheet. In order to complete the formulation, the location of the flame sheet must be
determined. One approach is to simply prescribe the flame speed while more formal
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Premixed flame propagation in a confining vessel with weak pressure rise 27

theories analyse the details of the flame structure to derive an explicit expression for
the evolution of the flame front.

The earliest theoretical treatments of confined flames (e.g. Eschenback & Agnew
1958; Lewis & von Elbe 1961; Raezer 1961) were primarily concerned with deriving
relations between burning velocity and pressure to be used in determining, from
experimental data, burning velocities of flames in closed spherical chambers. Bradley
& Mitcheson (1976) proposed several phenomenological relations between flame speed
and temperature and pressure in their comparison of theory and computations using
the same spherical geometry. Sivashinsky (1979) extended these works by adopting an
explicit expression for flame speed, previously derived by Bush & Fendell (1970) for
unconfined flames, that exhibits a dependence on both pressure and temperature. Chen,
Burke & Ju (2009) analysed confined flame propagation by prescribing a flame speed
which depends linearly on curvature but did not account for the modification of the
reaction rate by compression as was done by Sivashinsky (1979).

The structure of flames propagating with pressure variations either imposed or as a
result of confinement have been rigorously analysed previously. In order to constrain
the reaction rate term, two methods have primarily been employed in the analysis to
restrict the flame temperature to being adiabatic to leading order. The first method
restricts the analysis to flames with large exothermicity (e.g. Peters & Ludford 1983;
Keller & Peters 1994) while another method restricts the pressure variations to being
small (Buckmaster & Lee 1992). These previous derivations were performed for
specific flame geometries of planar flames (Peters & Ludford 1983) and spherical
flames (Buckmaster & Lee 1992) for general Lewis numbers, while Keller & Peters
(1994) analysed general shaped flames with Lewis numbers bounded near unity. Later,
Bechtold & Matalon (2000) adopted a delta function model of the reaction zone to
allow for larger pressure variations in deriving a Markstein number.

The present work generalizes many of the above studies by considering arbitrary
shaped confined flames with non-unity Lewis number, while additionally allowing
for near-stoichiometric mixtures, arbitrary reaction orders, and temperature-dependent
transport coefficients. The analysis is restricted to a small pressure rise such that the
leading-order flame temperature is unperturbed from its adiabatic value. Nevertheless,
the present analysis captures the effect of the onset of pressure variations on flame
propagation, which is often the critical parameter of interest in experiments. Such is
the case with nearly constant-pressure combustion bombs used in the measurement of
laminar flame speeds. Therefore, the present analysis is of significant importance in
determining conditions under which pressure effects become significant.

The present work provides additional analytical results which are particularly
useful for experimentalists using combustion bombs to measure laminar flame
speeds. As laminar flame speeds are often used in chemical kinetic mechanism
validation, increasingly sophisticated measurement techniques are required to reduce
the systematic errors associated with these measurements. One of the largest errors
associated with this measurement technique is in the extrapolation of the experimental
data to remove the influence of flame stretch. While the present derivation will provide
a limit for the largest radius of such a flame where the isobaric assumption is still
valid, the data at smaller radii are necessarily stretched. Therefore, the present work
extends upon our previous publication (Kelley & Law 2009) by providing an improved
equation relating stretch and flame speed which may be used for extrapolating
experimental data. As was seen in Kelley & Law (2009), the assumption that the
Lewis number is approximately unity is often mathematically advantageous, but is
often not the case experimentally. Therefore, the present derivation will allow general
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28 A. P. Kelley, J. K. Bechtold and C. K. Law

Lewis numbers in order to capture the nonlinear trend in the relationship between
stretch and flame speed.

In § 2, the mathematical model and approximations are presented. Asymptotic
methods are used to analyse the flame structure, resulting in explicit expressions
for the flame propagation rate and its dependence on stretch, flame acceleration, and
confinement. The approach is to exploit the disparity in length scales associated with
the flame structure and the bulk flow. On the length scale associated with flame
thickness, the problem is independent of the confining volume geometry and the local
structure analysis is therefore applicable to all confined premixed flames in large
vessels. When viewed on the larger hydrodynamic length scale, the flame appears as
a surface of density discontinuity advected and distorted by the flow. The present
formulation is general and in § 3 the specific case of a spherical flame propagating
in a spherical chamber is presented to both elucidate the methodology of analysing
the larger length scale and to provide physical insight into the factors which primarily
influence the flame propagation. This analysis is extended in § 4 to determine an
accurate method of extrapolating unstretched laminar flame speeds from experimental
data.

2. Mathematical analysis of the generalized flame
2.1. Model

Consider a flame of arbitrary shape propagating through a confining chamber and
experiencing a rise in pressure. Assuming that the complex chemistry associated with
premixed flame propagation may be described by a one-step, irreversible, overall
reaction between two reactants, ME the excess reactant and MD the deficient reactant,
which react to form a product MP, the reaction is given by

νEME + νDMD→ νPMP,

where ν represents the number of moles of each species.
To obtain physically meaningful quantities, all variables are non-dimensionalized.

The thermodynamic variables, species concentrations, and transport properties are
non-dimensionalized with respect to their values in the initial, unburned state. The
laminar flame speed, s̃0

u, defined as the speed with which a planar flame propagates
into the unburned gas, is used as a characteristic speed. A characteristic length
scale, L̃, is adopted, which is a measure of the vessel size or the bulk flow, and a
characteristic time scale is thus L̃/s̃0

u. Dimensional quantities are denoted with a tilde,
initial conditions with the superscript 0, unburned gas conditions with subscript u, and
burned gas conditions with subscript b.

Several standard assumptions are made in the present analysis. The flame is assumed
to propagate slowly relative to the speed of sound (small Mach number, M0

u) such
that, to leading order, the pressure is spatially uniform but varies with time and may
be expressed as P(t) + γ (M0

u)
2 p(x, t) where γ is the ratio of specific heats. Higher-

order diffusivity is assumed negligible and therefore only Fickian mass diffusion is
considered. Diffusivity of each species, i, is defined by a characteristic diffusivity
relative to the mixture, D̃i. The thermal diffusivity λ̃, mass diffusivity D̃i, and viscosity
µ̃, are assumed to vary with temperature but the Lewis number Lei and Prandtl
number Pr , are assumed to remain constant.

Under these assumptions, the governing equations in non-dimensional form may
now be written (e.g. Williams 1994)
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Premixed flame propagation in a confining vessel with weak pressure rise 29

Continuity:

Dρ
Dt
+ ρ(∇ ·V)= 0, (2.1)

Species:

ρ
DYi

Dt
− δ

Lei
∇ · (λ∇Yi)=− ω

(1+ εϕi)ε
, (2.2)

Momentum:

ρ
DV
Dt
=−∇p+ δPr∇ · [λ{∇V + (∇V)T− 2

3I (∇ ·V)
}]
. (2.3)

Energy:

ρ
DT

Dt
− δ∇ · (λ∇T)= γ − 1

γ

dP

dt
+ q

ω

ε
(2.4)

where i represents either the excess (E) or deficient (D) reactant, D/Dt is the
Lagrangian derivative, I the unit tensor, the reaction rate is

ω = DaCTαYa
DYb

Eρ
a+b exp

(
−Ea

T

)
(2.5)

and the gas is assumed to be ideal,

P= ρT. (2.6)

The symbols used above represent the variables density ρ, temperature T , species
mass fraction Y , velocity vector V , heat release q, collisional Damköhler number
DaC, reaction order of deficient species a, reaction order of excess species b, pre-
exponential temperature dependence α, activation energy Ea, and the relative flame
thickness δ to be defined later. An inverse Zeldovich number has been defined
as ε = T2

ad/Ea, where Tad is the adiabatic flame temperature. The largeness of the
activation energy will be exploited and thus it is assumed that ε is a small parameter.

The mixture strength is defined by φ = Ỹ0
EνDW̃D/Ỹ0

DνEW̃E, where W̃ is the molecular
weight. As defined, φ is identical to the equivalence ratio for mixtures in which the
fuel is the excess reactant, and is the reciprocal of the equivalence ratio when the fuel
is deficient. From this definition, it follows that φ is always greater than unity. Further,
it is assumed that conditions are very close to stoichiometry, φ = 1 + εϕ, where ϕ is
order one, and consequently both reactants are consumed to leading order. Note that
results corresponding to off-stoichiometric mixtures are recovered in the limit ϕ→∞.
To simplify the writing of the species equations, ϕi is defined such that ϕE = ϕ and
ϕD = 0.

The above equations may be analysed by exploiting the differences in length scales
present in the problem. The hydrodynamic length scale, L̃, is the largest scale and
describes the bulk fluid motion. When viewed on this scale, diffusion and chemical
reaction are confined to a thin sheet which separates burned from unburned gases. The
small scale, on which diffusion occurs, is the laminar flame thickness, ˜̀ = λ̃0/c̃pρ̃

0s̃0
u,

where c̃p is the specific heat at constant pressure. The ratio of these two length
scales, δ = ˜̀/L̃, is a small parameter that may be exploited in an asymptotic strategy.
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30 A. P. Kelley, J. K. Bechtold and C. K. Law

Furthermore, for the realistic case of large activation energy, the chemical reaction
zone is confined to a yet thinner region of order εδ within this zone. A similar model
was employed by Matalon, Cui & Bechtold (2003) and was analysed for the case of
constant pressure and near unity Lewis number.

The present analysis describes slow variations, and thus the distinguished limit,
ε = δ, is considered. This assumes that the reaction zone is an order of magnitude
smaller than the diffusion zone and uniquely defines the characteristic length scale
used in the non-dimensionalization of the governing equations such that L̃= ˜̀Ea/T2

ad .
The magnitude of the pressure rise due to confinement may be determined by

multiplying the continuity equation by T and adding it to the energy equation,

1
γ

dP

dt
+ P(∇ ·V)= ε∇ · (λ∇T)+ q

ω

ε
. (2.7)

This may be integrated, along with the species equation, over the volume of the vessel,
V , to determine the pressure inside the vessel (e.g. Bechtold & Matalon 2000),

P= 1+ qγ
(

1− mD

V

)
, (2.8)

where the walls of the vessel are assumed adiabatic. The total mass of the deficient
reactant in the vessel as a function of time, mD, is equal to the integral of ρYD over
the volume of the vessel. The initial value of mD is V and mD vanishes after the
entire vessel has been combusted. It may be seen that, as long as mD is relatively
close to the initial value of V , the pressure will not change appreciably. This is the
case when the volume of the flame is small relative to the volume of the confining
vessel, and thus the present investigation will be restricted to flames with an average
radius less than about half of the average radius of the confining volume. It is thus
appropriate to introduce the expansion P(t)= 1 + εP̂(t), and consider the effect of the
weak pressure perturbation on the dynamics of the flame front. Ahead of the flame
front, the unburned gas is adiabatically compressed. In the limit of weak pressure rise,
the unburned gas temperature is Tu = 1+ εP̂(1− 1/γ )+ O(ε2).

2.2. Analysis of the flame structure

The bulk flow for a particular configuration is described by the above equations with
reaction and diffusion ignored. However, in order to relate the flow variables on either
side of the flame surface, it is necessary to analyse the details of the structure. To do
so, it is convenient to adopt a coordinate system attached to the flame surface. Let the
surface of the flame be defined by the function F(x, y, z, t)= 0. A Cartesian coordinate
system attached to the flame surface is defined by ξ ≡ (x − f (y, z, t))/ε, ŷ ≡ y, ẑ ≡ z,
and t̂ ≡ t where F(x, y, z, t)= x− f (y, z, t). By introducing the dependence of ξ on ε−1,
the present analysis is in a reference frame where derivatives normal to the flame will
be much larger than those in time and the other spatial directions. This corresponds
to the slowly varying flame analysis of Buckmaster & Ludford (1982). The velocity
vector V will be decomposed as V → (u,v). On the ξ length scale, the reaction is
confined to a narrow zone located at ξ = 0 which has thickness of order ε. In this
coordinate system, the following relations may be obtained:

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= i−∇f

ε

∂

∂ξ
+ ∇̂s, (2.9)
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Premixed flame propagation in a confining vessel with weak pressure rise 31

where

∇̂s =
(

0,
∂

∂ ŷ
,
∂

∂ ẑ

)
and i is the unit vector in the x-direction. (2.10)

Furthermore, employing a weighted coordinate system simplifies some complications
that arise from the variable transport assumption. In order to handle the temperature
dependence of the transport parameter, λ, it is convenient to introduce an inverse
transport weighted coordinate system, (η, ȳ, z̄, t̄), where

η =
∫ ξ

0

1
λ(θ, ŷ, ẑ, t̂)

dθ, (2.11)

ȳ≡ ŷ, z̄≡ ẑ, and t̄ ≡ t̂. In this coordinate system, the gradient may be written as

∇ = i−∇f

ελ

∂

∂η
+ ∇̂sη

∂

∂η
+ ∇̄s, (2.12)

where the mass flux is defined as m≡ ρs, with

s= 1
N

(
u− v ·∇f − ∂f

∂t

)
(2.13)

and

N =
√

1+ |∇f |2. (2.14)

Note that the gradient and transverse gradient of f are identical in each coordinate
system.

In this coordinate system the continuity, species, and energy equations are

N
∂m

∂η
+ ελ

[
∂ρ

∂ t̄
+ ∇̄s · (ρv)+ ρ∇̂sη ·

∂v
∂η
+ ∂ρ
∂η

(
∂η

∂ t̂
+ v · ∇̂sη

)]
= 0, (2.15)

Nm
∂Yi

∂η
+ ελρ

[
∂Yi

∂ t̄
+ v · ∇̄sYi + ∂Yi

∂η

(
∂η

∂ t̂
+ v · ∇̂sη

)]
= λ

Lei
∆Yi − 1

1+ εϕi
λω,

(2.16)

Nm
∂T

∂η
+ ελρ

[
∂T

∂ t̄
+ v · ∇̄sT + ∂T

∂η

(
∂η

∂ t̂
+ v · ∇̂sη

)]
= ε2λ

γ − 1
γ

dP̂

dt̄
+ λqω + λ∆T,

(2.17)

where ∆ is defined

∆= ε2
∇ · (λ∇)

= N2

λ

∂2

∂η2
− ε
λ

∂λ

∂η

[
(∇f · ∇̄s)+ (∇f · ∇̂sη)

∂

∂η

]
− ε

[
∇2f

∂

∂η
+ 2∇f

∂

∂η
(∇̄s)+ 2(∇f · ∇̂sη)

∂2

∂η2
+∇f ·

∂

∂η
(∇̂sη)

∂

∂η

]
+ O(ε2).

(2.18)

Note that, on the η length scale, the temporal variation of the pressure contributing to
the energy equation is of order ε2. Therefore, the influence of the pressure perturbation
on the flame structure will only be felt through the matching conditions at η→±∞
where the hydrodynamic equations provide boundary conditions on the flame structure.
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32 A. P. Kelley, J. K. Bechtold and C. K. Law

In the large-activation-energy limit, the reaction zone is confined to a yet thinner layer
in which a balance between diffusion and reaction is maintained.

Furthermore it is convenient to define an enthalpy function, Hi = T + (1 + εϕi)qYi,
which simplifies the governing equations by removing the reaction rate term,

Nm
∂Hi

∂η
+ ελρ

[
∂Hi

∂ t̄
+ v · ∇̄sHi + ∂Hi

∂η

(
∂η

∂ t̂
+ v · ∇̂sη

)]
= λ∆Hi +

(
1
Lei
− 1
)
λ∆(Hi − T)+ ε2λ

γ − 1
γ

dP̂

dt̄
. (2.19)

On the η length scale, the reaction zone is confined to a region of thickness
O(ε) located at η = 0. Therefore, the flame structure may be resolved by solving
the chemically free governing equations on either side of the reaction zone. These
equations may now be integrated across the flame zone in the limit of large activation
energy, as first demonstrated by Sivashinsky (1976) and Buckmaster (1977). Our
analysis follows most closely that discussed in Bechtold & Matalon (1999), who
extended the above slowly varying flame (SVF) analyses to include stoichiometric
effects and variable transport in the form λ= T .

In the subsequent analysis, the O(ε) enthalpy Hi,1 will be needed, but the leading-
order solution to all other variables will be sufficient. Note that the subscript 1
corresponds to order-ε perturbations. Integrating (2.19) from −∞ to 0+ yields the
O(ε) enthalpy perturbation downstream of the reaction zone,

Hi,1(0+)= γ − 1
γ

P̂+ ϕiq+ 1
s2

u

(
1
su

D̂su

D̂t̄
− κ
)

Ii, (2.20)

where D̂/D̂t̄ = ∂/∂ t̄ + [v(−∞) − sun] · ∇̄, s(−∞) = m0 = su which is the velocity of
the flame with respect to the unburned gas, and n = (i − ∇f )/N is a unit normal
vector. The flame stretch rate, κ , may be defined from e.g.equation (6.7) in Matalon &
Matkowsky (1982),

κ = 1
N
∇̄s · [s(−∞)∇f ] + ∇̄s ·v(−∞)+ 1

N

∂N

∂t
+ 1

N
v(−∞) · ∇̄sN. (2.21)

The integral Ii is defined as

Ii = I(λ,Tad ,Lei)=
∫ Tad

1

λ

T

[
1−

(
T − 1

Tad − 1

)Lei−1
]

dT.

Note that for Lei > 1, Ii > 0 and for Lei < 1, Ii < 0. For the case where λ = T ,
Ii = q(1− Le−1

i ).
Equation (2.20) contains the pressure perturbation term P̂. This term appears from

the boundary condition where the enthalpy of the gas entering the flame structure
is increased due to adiabatic compression of the unburned gas. This is the only
mechanism through which the influence of confinement affects the flame structure and
mass burning rate. It is worth noting that combustion-emitted acoustic pressure has
been shown to affect the flame speed in the same way (Clavin, Pelcé & He 1990; Wu
et al. 2003).
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One of the two reactants must be completely consumed. To determine which
reactant is completely consumed, consider the difference in the enthalpies from (2.20),

YE,1(0+)− YD,1(0+)= ϕ + 1
qs2

u

(
1
su

D̂su

D̂t̄
− κ
)
(IE − ID). (2.22)

It may be seen that if the right-hand side of (2.22) is positive, reactant MD is
completely consumed. However, if the right-hand side of (2.22) is negative, the
deficient reactant MD will leak through the reaction zone and reactant ME will be
completely consumed.

Equation (2.20) provides one relationship between the enthalpy and the flame speed.
In order to uniquely determine these quantities and thus close the problem, the thin
region in which chemical reactions are confined must be analysed.

In the reaction zone, the influence of confinement is not directly present. A standard
analysis of the reactive layer yields (e.g.Buckmaster & Ludford 1982)

s2
uG

(
a, b; qϕ

LeE

)
= eT1(0

+)
∫ ∞

0

(
qYD,1

LeD
+ θ
)a(qYE,1

LeE
+ θ
)b

e−θ dθ, (2.23)

where

G (a, b; S)=
∫ ∞

0
xa (x+ S)b e−x dx. (2.24)

2.3. Flame evolution equation
Having solved the flame structure and reaction zones, it is now possible to determine
the flame speed as a function of the stretch, acceleration, and confinement. By
combining the results of (2.20) and (2.23) an equation describing the evolution of
the flame front may be determined. The evolution equation will be shown for three
cases: reactant MD completely consumed, reactant ME completely consumed, and
off-stoichiometric mixtures.

For the case where reactant MD is completely consumed, let YD,1(0+) = 0 in (2.22).
Equations (2.20) and (2.22) then determine the temperature and species concentration
perturbations,

YE,1(0+)= ϕ + 1
qs2

u

(
1
su

D̂su

D̂t̄
− κ
)
(IE − ID) , (2.25)

T1(0+)= γ − 1
γ

P̂+ 1
s2

u

(
1
su

D̂su

D̂t̄
− κ
)

ID. (2.26)

The temperature perturbation depends on the pressure perturbation, P̂. This arises
due to the confined unburned gas being heated by isentropic compression before
entering the reaction zone. The heating due to isentropic compression is limited to a
small perturbation as a result of the small-pressure-rise assumption. Additionally, the
T1 temperature perturbation is modified by the flame acceleration and hydrodynamic
stretch. Both of these terms are multiplied by the integral ID which quantifies the
diffusive strength of the mixture.

For the steady planar flame, YE,1(0+) = ϕ. However, for a general flame, the locally
excess reactant concentration is modified. The modification again depends on the flame
acceleration and hydrodynamic stretch. Both of these terms are multiplied by the
quantity IE − ID which quantifies the preferential diffusion of the two species.
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34 A. P. Kelley, J. K. Bechtold and C. K. Law

Inserting expressions for YE,1(0+) and T1(0+) into (2.23) and setting YD(0+) = 0
yields

s2
u ln s2

u − s2
u ln


G

(
a, b; qYE,1

(
0+
)

LeE

)

G

(
a, b; qϕ

LeE

)
= s2

u

γ − 1
γ

P̂+
(

1
su

D̂su

D̂t̄
− κ
)

ID. (2.27)

For the case where reactant ME is completely consumed, let YE,1(0+) = 0 in (2.22).
Equations (2.20) and (2.22) then determine the temperature and species concentration
perturbations,

YD,1(0+)=−ϕ − 1
qs2

u

(
1
su

D̂su

D̂t̄
− κ
)
(IE − ID) , (2.28)

T1(0+)= γ − 1
γ

P̂+ ϕq+ 1
s2

u

(
1
su

D̂su

D̂t̄
− κ
)

IE, (2.29)

which when inserted into (2.23) yield

s2
u ln s2

u − s2
u ln

G

(
b, a; qYD,1(0+)

LeD

)
G

(
a, b; qϕ

LeE

)
= s2

u

γ − 1
γ

P̂+ s2
uϕq+

(
1
su

D̂su

D̂t̄
− κ
)

IE.

(2.30)

Note that, although the present analysis considers near-stoichiometric flames, the
result for off-stoichiometric mixtures is recovered in the limit that ϕ→∞ in (2.27),

s2
u ln s2

u = s2
u

γ − 1
γ

P̂+
(

1
su

D̂su

D̂t̄
− κ
)

ID. (2.31)

Equations (2.27) and (2.30) govern flame propagation for near-stoichiometric
mixtures. The determination of which of the two equations is controlling depends
on the sign of (2.22). For off-stoichiometric mixtures, the flame speed is governed
by (2.31).

For an unconfined flame with unity reaction orders and setting λ = T , the present
analysis recovers the result of Bechtold & Matalon (1999). Furthermore, the present
analysis recovers the result of Peters & Ludford (1983) if their result is expanded for
small pressure perturbations.

The present analysis was carried out within the slowly varying flame (SVF)
framework. It is valid for Lewis numbers bounded away from unity, and considers
slow evolution on a long time scale. In the next two sections, we will employ
our model to investigate the effects of weak pressure rise on the behaviour of
spherically expanding flames. It should be noted that SVF models have been used
previously to examine the effects of small perturbations and stability on flame
evolution (Buckmaster & Ludford 1982) as well as freely expanding flames (Matalon
& Bechtold 1987; Ronney & Sivashinsky 1989). These, and other studies, have
demonstrated that the SVF formulation generally gives an accurate description of
flame behaviour in mixtures with Le< 1. However, for Le> 1, the model often admits
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non-physical solutions. These arise as a result of oscillations, on a fast time scale, that
are known to occur for this range of Lewis number, and that are not accounted for
in an SVF formulation (Buckmaster & Ludford 1982; Ronney & Sivashinsky 1989).
Nevertheless, in the case of a spherically expanding flame with Le > 1, the model
admits a separatrix solution that accurately describes the acceleration of the flame to a
constant speed, consistent with experimental observations (Matalon & Bechtold 1987;
Ronney & Sivashinsky 1989). Thus the SVF formulation may provide physical insight
into premixed flame propagation, even for Le > 1. The results of our work, reported
below, are consistent with the findings of these earlier studies.

Note that the above analysis completely resolves the flame structure, incorporating
all effects of diffusion and reaction. The equations are useful for any flame
configuration. To determine precisely how a flame will behave in a particular flow
field, the hydrodynamic equations must be solved on either side of the flame surface.
The above equations may then be used to track the evolution of the front. In the next
section, the specific case of a spherical flame is analysed propagating either in an
infinitely large domain or inside a spherical chamber.

3. Confined spherical flames
One of the most common experimental configurations in which flames propagate in

a confinement involves spherical flames ignited by spark discharge. These experiments
are often used in the measurement of high-pressure laminar flame speeds. In the
present analysis, a confining vessel of spherical shape is considered as this geometry
results in a one-dimensional analysis in the radial direction. It should be noted that
the dimensionality of the problem can change due to the formation of instabilities on
the flame surface (e.g. Jomaas, Law & Bechtold 2007; Pelce & Clavin 1982) but this
instability formation is not considered in the present analysis.

The solution to the hydrodynamic equations is similar to that of Sivashinsky (1979).
The flow field on either side of the flame may be determined from the governing
equations noting that diffusion and reaction are second-order effects. For spherical
flames, the continuity equation may be combined with the energy equation as done
in (2.7), such that the radial velocity on either side of the flame surface is governed by

1
γP

dP

dt
+ 1

r2

∂

∂r
(r2u)= 0, (3.1)

where u is the radial velocity. For a spherical confinement of radius rw, and flame
radius rf , the following leading-order velocity field is obtained:

u=


− r

3γP

dP

dt
, 0 6 r < rf ,

r

3γP

dP

dt

(
r3

w

r3
− 1
)
, rf < r 6 rw.

(3.2)

From the jump relation for the mass flux across the reaction zone, and isentropic
compression of the unburned gas, the following relationship is obtained:

1
γ

dP

dt
r3

w = q
d
dt
[P1/γ (r3

f − r3
w)], (3.3)
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which may be integrated to yield

P− 1
Pe − 1

= 1− P1/γ

(
1− r3

f

r3
w

)
, (3.4)

which also follows from (2.7), where Pe = 1 + qγ is the final pressure after complete
combustion of the gas in the vessel.

In order to keep the hydrodynamic derivation consistent with the analysis of the
flame zone, the pressure rise must be restricted to be small such that P = 1 + εP̂.
Analysing (3.4), it is seen that r−3

w must be ∼O(ε) for the pressure rise to be small.
In order to explicitly denote the order of the wall radius, a normalized wall radius is
defined,

εr3
w = (R̂wTad ID)

3
(γ − 1)

q

Tad
, (3.5)

where R̂3
w is an order-one quantity. Under these conditions (3.4) yields the definition of

the pressure perturbation,

P̂= γ

γ − 1

(
rf

R̂wTad ID

)3

. (3.6)

For the small-pressure-perturbation case, the leading-order velocity field given by (3.2)
can be simplified to

u=


0, 0 6 r < rf ,

r2
f

r2

drf

dt

q

Tad
, rf < r.

(3.7)

This velocity field is equivalent to the case of an unconfined spherical flame. This is
an interesting result. In some previous studies (e.g. Chen et al. 2009), the primary
influence of confinement has been attributed to a change in the flow field. However,
for flames which are weakly affected by confinement, the primary influence of
confinement is through a modification of the flame speed as a result of the isentropic
compression of the unburned gas.

In the subsequent analysis, the definition of a normalized flame radius simplifies the
notation,

rf ≡ Rf Tad ID. (3.8)

In this choice of normalization, both R̂w and Rf are positive for LeD > 1 and negative
for LeD < 1. Note that this choice of Rf and R̂w does not limit Rf /R̂w < 1. However, to
keep P̂ an order-one quantity, Rf /R̂w should be .1.5 for a typical value of γ = 1.4.

For a spherical flame, the mass flux is a constant to leading order and is defined
by (2.13),

m0 = su = drf

dt
− u|r+f =

1
Tad

drf

dt
(3.9)

and the leading-order stretch rate is obtained from (2.21),

κ = 2
rf

drf

dt
. (3.10)
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The results of (3.6) and (3.7) may be substituted into (2.27), (2.30), and (2.31) to
determine the evolution of a spherical flame, to be presented next.

3.1. Off-stoichiometric mixtures
For the off-stoichiometric mixtures, (2.31) governs the flame propagation rate. For
spherical flames in spherical confinement this equation becomes

s2
u ln s2

u = s2
u

(
Rf

R̂w

)3

+ dsu

dRf
− 2

Rf
su. (3.11)

First, (3.11) will be examined in the unconfined case corresponding to |R̂w| → ∞.
This reduces to equation (5) in Matalon & Bechtold (1987) and equation (42) in
Ronney & Sivashinsky (1989) when the diffusivity is a constant. As this equation
is an ordinary differential equation, it may be easily solved numerically; however an
analytical solution is not possible.

Figure 1 shows the flame speed as a function of radius determined by numerically
solving (3.11) with various initial conditions. As seen in figure 1(a), any initial
condition supplied for LeD < 1 corresponds to a physical solution as |Rf | → ∞.
However, figure 1(b) shows that only initial conditions along the separatrix solution
(bold line) correspond to physically realistic solutions at large radius. The unphysical
nature of additional solutions is typical in SVF formulations as has been discussed
previously (Matalon & Bechtold 1987; Ronney & Sivashinsky 1989). In the present
discussion, the separatrix solution will be interpreted as the physical solution and
therefore only the separatrix solution will be shown in the comparisons to follow. In
order to generate the separatrix solutions numerically, LeD < 1 flames are given an
arbitrary initial condition at a very small radius and the initial-condition-dependent
part of the solution is ignored. For LeD > 1 flames, the solutions are obtained by
numerically solving backwards in time from the flame at infinite radius having a
flame speed of unity. For confined flames, this condition at infinity is arbitrary, but a
reverse solution in time becomes stable and allows the determination of the separatrix
solution.

Using the physically realistic separatrix solutions, the influence of spherical
confinement on flame propagation may now be determined from (3.11). First, it is
instructive to look at the temperature perturbation which is causing the change in the
flame speed,

T1(0+)=
(

Rf

R̂w

)3

+ 1
s2

u

dsu

dRf
− 2

Rf su
. (3.12)

The terms on the right-hand side are the result of confinement, flame acceleration, and
hydrodynamic stretch respectively. Figure 2 compares the magnitude of these three
terms determined by numerically solving (3.11) with |R̂w| = 50. For both LeD > 1
and LeD < 1 flames, the modification to the temperature perturbation as a result of
compression is identical and is a positive influence. Therefore adiabatic compression
of the unburned gas increases the flame speed, su. This term is the dominant influence
when the flame is at large radius. The magnitude of the influence is identical at a
given |Rf | for both the LeD > 1 and LeD < 1 flames.

Modification of the temperature perturbation from the flame acceleration is seen to
be of large magnitude only for flames of small radii. This influence is positive for both
the LeD > 1 and LeD < 1 flames. This indicates that the flame acceleration increases
the flame speed for both LeD > 1 and LeD < 1 flames at small radii. The magnitude
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su

su

0
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1.0

1.5

5 10 15 20 25

(a)

(b)

FIGURE 1. Unconfined flame speed as a function of flame radius as determined by (3.11) for
(a) LeD < 1 and (b) LeD > 1. |R̂w| → ∞. Different curves correspond to different solutions
of (3.11) depending on the initial condition supplied. Arrows indicate temporal variation of
the flame position. It is seen that all initial conditions for LeD < 1 correspond to physically
meaningful solutions as |Rf | →∞. However, for LeD > 1, only one initial condition results
in a physically realistic solution as |Rf | →∞. The separatrix solution, corresponding to the
physically realistic solution to (3.11) is shown as a bold line.

for the LeD > 1 flame is seen to be larger than that for the LeD < 1 flame. For an
unconfined flame, the acceleration term would vanish at large radii. However, for the
confined case, the confinement causes the flame to increase in speed, which feeds
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FIGURE 2. Temperature perturbation terms given by (3.12) as a function of flame radius.
|R̂w| = 50.

back to the acceleration term. Although the magnitude of the influence is small for
the present case, the acceleration at larger radii results in a positive influence for the
LeD > 1 case and a negative influence for the LeD < 1 case.

The stretch term is dominant at small radii and its magnitude is always larger than
that of the acceleration term. Additionally, for the unconfined case, the acceleration
is only significant at very small radii whereas the stretch term remains at slightly
larger radii. The influence of stretch is to increase the flame speed and temperature
perturbation for the LeD < 1 flame while the opposite influence is observed for the
LeD > 1 flame.

The magnitude of the acceleration and stretch terms is uniformly larger at a given
|Rf | for LeD > 1 than it is for LeD < 1. However, since the two terms are of opposite
sign, the net influence is not as large as that for the LeD < 1 flame at small radii.

Figure 3 plots the flame speed as a function of (a) Rf and (b) stretch rate as
determined by (3.11) for various radii of the confining vessel, |R̂w|. As was expected
from the analysis of the temperature perturbation term, the LeD > 1 flame is seen to
have a flame speed less than unity for small radii. This is a result of the negative
influence of stretch on the flame speed for LeD > 1 flames. For LeD < 1 flames, the
flame speed is initially greater than unity at small radii as a result of both stretch and
acceleration.

At large radii, the flame speeds of both LeD > 1 and LeD < 1 flames are seen
to increase. This is a result of the confinement term dominating at larger radii. As
the chamber radius R̂w is decreased, it is seen that the influence of confinement is
manifested at smaller flame radii. For both LeD > 1 and LeD < 1 flames, the behaviour
at large radii is nearly identical. This is a result of the dominance of the confinement
term which influences both Lewis number flames similarly.

Experimental investigations are particularly concerned with the influence of pressure
on spherical flame propagation as spherical flames are often used for the determination
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FIGURE 3. Separatrix solutions of (3.11) for various confining vessel radii, |R̂w|. Flame speed
as a function of (a) flame radius, (b) stretch rate.

of laminar flame speeds. In these measurements, experimental data from early flame
propagation are used as they are assumed to be uninfluenced by the increase in
pressure resulting from the confining volume. The present analysis allows an exact
determination of the radius at which this approximation is no longer valid.

In order to assess the flame radius at which the confining volume influences the
flame propagation rate, figure 4 plots the flame radius at which a given percentage
change in flame speed is predicted by (3.11) as a function of chamber wall
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FIGURE 4. Flame radius at which the flame speed is noticeably influenced by confinement
as a function of confinement radius. The percentage change in the flame speed due to
confinement is indicated on the graph.

radius, |R̂w|. It is seen that the radius at which the flame speed is influenced by the
confinement is linearly proportional to the chamber wall radius. Additionally, LeD < 1
flames are seen to be affected by the confining volume at a slightly larger radius than
that of the LeD > 1 flames.

3.2. Near-stoichiometric mixtures

The criterion to determine whether the excess or the deficient reactant is locally in
excess comes from (2.22). For the spherical flame, the equation becomes

YE,1(0+)− YD,1(0+)= ϕ + 1
qs2

u

(
dsu

dRf
− 2

Rf
su

)(
IE

ID
− 1
)
. (3.13)

It is of interest to note the state when the right-hand side of (3.13) switches sign, as
this determines which reactant is locally deficient. As ϕ is always a positive quantity,
the sign can only switch when the sum of the flame acceleration and hydrodynamic
stretch multiplied by the preferential diffusion term, (IE/ID − 1), is negative. This
switching can be predicted by first assuming that the near-stoichiometric flames will
behave qualitatively similarly to off-stoichiometric flames. Looking at figure 2, it is
seen that the hydrodynamic stretch term always dominates over the acceleration term.
Therefore, the sum of the hydrodynamic stretch and acceleration terms is positive for
LeD < 1 and negative for LeD > 1. The preferential diffusion term is positive when
LeE > LeD > 1 or LeE < LeD < 1. From these results, switching may be predicted to
occur only for the case where LeE > LeD.

When the right-hand side of (3.13) is greater than zero, reactant ME is locally
in excess and the appropriate evolution equation is (2.27). For spherical flames, this

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

43
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.439


42 A. P. Kelley, J. K. Bechtold and C. K. Law

becomes

s2
u ln s2

u − s2
u ln

G

(
a, b; qYE,1(0+)

LeE

)
G

(
a, b; qϕ

LeE

)
= s2

u

(
Rf

R̂w

)3

+ dsu

dRf
− 2

Rf
su, (3.14)

where

YE,1(0+)= ϕ + 1
qs2

u

(
dsu

dRf
− 2

Rf
su

)(
IE

ID
− 1
)
. (3.15)

When the right-hand side of (3.13) is less than zero, reactant MD is locally in excess
and the appropriate evolution equation is (2.30). For spherical flames, this becomes

s2
u ln s2

u − s2
u ln

G

(
b, a; qYD,1(0+)

LeD

)
G

(
a, b; qϕ

LeE

)
= s2

u

(
Rf

R̂w

)3

+ s2
uϕq+

(
dsu

dRf
− 2

Rf
su

)
,

IE

ID

(3.16)

where

YD,1(0+)=−ϕ − 1
qs2

u

(
dsu

dRf
− 2

Rf
su

)(
IE

ID
− 1
)
. (3.17)

For mixtures near stoichiometric, the governing equations are (3.14) and (3.16).
The separatrix solutions to these equations may be plotted while monitoring (3.13) to
determine which reactant is completely consumed. The results are qualitatively similar
to the findings of Bechtold & Matalon (1999) for counterflow flames.

Figures 5 and 6 show the flame speed as a function of stretch for unconfined, near-
stoichiometric mixtures with various Lewis numbers. In figure 5(a) it is seen that, for
LeD > 1 mixtures, the flame behaves differently for near-stoichiometric mixtures than
it does for off-stoichiometric mixtures. In the case of unconfined off-stoichiometric
mixtures, the flame speed is less than unity. For near-stoichiometric mixtures with
small values of LeE, it is seen that the flame speed is no longer monotonic and can
indeed be greater than unity. In this case, YE,1(0+) > ϕ. This occurs due to the higher
mass diffusion rate of species ME relative to that of MD resulting in an increased
concentration of ME at the flame. This increase in the concentration of ME causes an
increase in the reaction rate and thus the flame speed which results in a flame speed
greater than unity at low stretch rates. However, the flame temperature perturbation
T1(0+) is typically negative for LeD > 1. Therefore, at higher stretch rates, the flame
speed is less than unity.

Figure 5(b) demonstrates that the deficient reactant can be locally in excess when
LeE > LeD. As MD is the more mobile reactant in this case, its concentration can
exceed that required for stoichiometric combustion and therefore the initially excess
reactant ME is completely consumed and is locally deficient.

Figure 6 shows the flame speed as a function of stretch for the LeD < 1 case.
Again, the excess reactant can be locally deficient when LeE > LeD. For the
case where LeE > 1 > LeD, it is seen that the flame qualitatively changes at the
location where the excess reactant becomes locally deficient. This results from the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

43
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.439


Premixed flame propagation in a confining vessel with weak pressure rise 43

0 2 4 6 8

0.5

1.0

1.5

2.0(a)

(b)

su

su

0.6

0.8

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.4 1.21.6

LeE =  0.4

LeE =  1.0

2.0

FIGURE 5. Separatrix solutions of (3.14) and (3.16) for various values of LeE with
(a) LeE 6 1; (b) LeE > 1. LeD = 1.2, λ = T , Tad = 5, a = b = 1, ϕ = 0.1. Circles denote
the switching between the excess and deficient reactants being locally deficient.

excess reactant’s Lewis number dominating when the excess is locally deficient.
Consequently the flame speed tends to be lower than unity, although the increased
concentration of MD has a positive influence on the flame speed at low stretch
rates.

For near-stoichiometric mixtures, the flame initially propagates similarly to the
unconfined case just presented. However, at large radii, the influence of confinement
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FIGURE 6. Separatrix solutions of (3.14) and (3.16) for various values of LeE with
(a) LeE 6 1; (b) LeE > 1. LeD = 0.8, λ = T , Tad = 5, a = b = 1, ϕ = 0.1. Circles denote
the switching between the excess and deficient reactants being locally deficient.

causes an increase in the flame speed, as was seen in the confined, off-stoichiometric
case. In the interest of space, the results of these calculations are not shown.

4. Extrapolation of laminar flame speeds
The extrapolation of the laminar flame speed has historically assumed a linear

relationship between stretch and flame speed as was determined asymptotically by
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Matalon & Matkowsky (1982) and applied to experiments by Wu & Law (1984). For
the outwardly propagating flame, the linear relationship between stretch and flame
speed takes the form

su

(
1+ 1

Rf

)
= 1. (4.1)

This equation has been used by numerous authors (e.g. Dowdy et al. 1990; Bradley
et al. 1998; Jerzembeck et al. 2009) to extrapolate experimental measurements and
determine the unstretched laminar flame speed. Equation (4.1) was derived from the
assumption that the Lewis number of the mixture is near unity and that the flame
speed is the unstretched value to leading order. The present derivation removes these
restrictions and is therefore a more general result which may be applied either to
mixtures with large Lewis numbers or to flames that are highly stretched. For an
off-stoichiometric, unconfined mixture, the present analysis suggests the following
relationship between the flame speed and the flame radius:

s2
u ln s2

u =
dsu

dRf
− 2

Rf
su. (4.2)

This equation has been derived previously by Matalon & Bechtold (1987) and
later by Ronney & Sivashinsky (1989). Ideally, this equation could be used for
extrapolating experimental measurements to determine the unstretched laminar flame
speed. However, it is numerically unstable, as demonstrated earlier, and presents
difficulty in experimental implementation due to the derivative term. Therefore, it
was suggested (Kelley & Law 2009) that a nonlinear relationship between stretch and
flame speed should be used for the extrapolation of the laminar flame speed from
experimental data. The extrapolation proposed was based on a quasi-steady version
of (4.2),

s2
u ln s2

u =−
2
Rf

su. (4.3)

The use of the quasi-steady approximation is prevalent in several derivations (e.g.
Frankel & Sivashinsky 1984; Chen & Ju 2007) and (4.3) has subsequently been used
by many authors (e.g. Halter, Tahtouh & Mounaı̈m-Rousselle 2010; Singh, Nishiie &
Qiao 2011) for the extrapolation of laminar flame speeds. However, as seen in figure 2,
the acceleration term is only negligible when the flame is reasonably large and this
was noted in Kelley & Law (2009).

A recent publication by Chen (2011) confirmed that (4.3) improves upon the use
of (4.1) in the extrapolation of laminar flame speeds. This was demonstrated by
numerically simulating methane flames and using various extrapolation equations to
determine the unstretched flame speed. Chen noted, however, that the use of an
alternative extrapolation equation,

su = 1− 1
Rf
, (4.4)

appeared to give even better results than (4.3) for LeD > 1. However, (4.4) was found
to be less accurate than (4.3) for LeD < 1. The difference in the extrapolated flame
speeds for (4.3) and (4.4) was very small and both were shown to be significant
improvements over (4.1).
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It is noted that (4.4) was first proposed by Markstein (1951) and was originally
an empirical assumption. Chen (2011) noted that (4.1), (4.3) and (4.4) are all
identical when expanded in powers of R−1

f to first order, although no mathematical
explanation was given for the apparent improved accuracy of (4.4) over (4.3). It is now
demonstrated that the present analysis gives a rigorous mathematical explanation for
the findings of Chen. Expanding (4.2), (4.3), and (4.4) in inverse powers of Rf , the
following relationships are obtained.

Expansion of (4.2), the present asymptotic result:

su

[
1+ 1

Rf
+ 1

R2
f

+ 2
3

1
R3

f

+ O

(
1
R4

f

)]
= 1. (4.5)

Expansion of (4.3), the quasi-steady approximation:

su

[
1+ 1

Rf
+ 3

2
1
R2

f

+ 8
3

1
R3

f

+ O

(
1
R4

f

)]
= 1. (4.6)

Expansion of (4.4), Markstein’s empirical equation:

su

[
1+ 1

Rf
+ 1

R2
f

+ 1
R3

f

+ O

(
1
R4

f

)]
= 1. (4.7)

Comparing (4.5), (4.6) and (4.7), the mathematical explanation for the findings of
Chen become clear. To first order in inverse powers of Rf , all of these equations
are identical to the linear extrapolation, (4.1), which has been used historically. The
equations, however, differ at second order. Markstein’s empirical equation, (4.4), is
identical to the present asymptotic equation, (4.2), up to second order while the
quasi-steady approximation, (4.3), differs at second order.

Chen (2011) found that Markstein’s equation provided a slight improvement over the
use of (4.3) for LeD > 1 mixtures. It is expected, based on the above analysis, that this
equation would be found to be an improvement for all mixtures, not just LeD > 1. The
fact that Chen found an improvement when using Markstein’s equation implies that
the acceleration term present in (4.2) is important at small radii, as was discussed in
§ 3.1. It also suggests that the use of the quasi-steady approximation in any derivation
restricts the qualitative and quantitative analysis to flames of large radii.

At the third order in inverse powers of Rf , Markstein’s equation begins to
differ from the present asymptotic result. It is therefore proposed that a third-order
expansion such as that of (4.5) would provide improved accuracy over Markstein’s
in the extrapolation of laminar flame speeds from experimental measurements as
this more closely approximates (4.2). Figure 7 compares the present asymptotic
equation, (4.2), the quasi-steady approximation, equation (4.3), the presently proposed
extrapolation equation, (4.5), Markstein’s equation, (4.4), and the historical linear
extrapolation, (4.1). It is seen that the present asymptotic result, shown as the
bold line, is closely approximated by (4.5) for all LeD. Interestingly, (4.5) closely
approximates (4.2) for small Rf when LeD > 1. Markstein’s equation (4.4) closely
approximates (4.2) for LeD < 1 but is seen to deviate for LeD > 1. Equation (4.3) is
seen to deviate even further from (4.2).
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FIGURE 7. Comparison of extrapolation equations in the literature: the present asymptotic
equation, (4.2), the quasi-steady approximation, (4.3), the presently proposed extrapolation
equation, (4.5), Markstein’s equation, (4.4) and the linear equation, (4.1): (a) LeD < 1;
(b) LeD > 1.

Figure 7 therefore clearly demonstrates the merit of using (4.5) in extrapolations
as it is a very close approximation to (4.2) and is therefore the most accurate
of the extrapolation equations proposed. In order to use (4.5) in the experimental
extrapolation of laminar flame speeds, it is useful to integrate the equation to yield
the relationship between the flame radius and time, which are the two experimentally
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measured quantities,

s̃0
b t̃ + c̃= r̃f + 2L̃b ln r̃f − 4

L̃2
b

r̃f
− 8

3
L̃3

b

r̃2
f

. (4.8)

Here, the extrapolation equation is expressed in dimensional form, as this is the
most useful form for experimental data analysis. A downstream Markstein length
has been defined as L̃b = ˜̀ẼaID/2T̃adR̃0. The variable c̃ is an integration constant.
The parameters, c̃, L̃b, and s̃0

b may be obtained by fitting (4.8) to experimental
measurements of the radius of a flame as a function of time, thus yielding a
measurement of the downstream Markstein length and the unstretched laminar flame
speed.

It is important to note that the use of (4.8) will provide only a slight improvement
over the integrated form of (4.3) found in Kelley & Law (2009). However, (4.8)
is much easier to use in a numerical regression. To compare the differences in
experimental extrapolations, the experimental data presented in Kelley et al. (2011)
have been re-analysed. In that publication, the extrapolation of atmospheric pressure
data were shown to have the strongest influence from stretch and therefore the highest
sensitivity to the extrapolation equation employed. Therefore, the atmospheric pressure
measurements for n-pentane will be used as an example case. The integrated forms
of (4.1), (4.3), (4.4) and (4.5) are used to extrapolate the experimental measurements
of the radius of the flame as a function of time to determine the unstretched
laminar flame speed and the Markstein length. The results of these extrapolations
are shown in figure 8. The use of the integration of (4.1) clearly results in a higher
extrapolation of the laminar flame speed than the other extrapolation equations for
lean and rich mixtures although the difference is negligible around φ = 1.3. The other
three extrapolation equations are nearly identical in the extrapolation of laminar flame
speeds seen in figure 8(a). Therefore, the use of the extrapolation procedure presented
in Kelley & Law (2009) or the proposed improvement of (4.8) provide nearly identical
flame speed measurements which are well within typical experimental uncertainty.
However, the experimental measurement of the Markstein length, shown in figure 8(b),
does depend more sensitively on the extrapolation equation employed. Specifically,
while the present extrapolation equation (4.8) is seen to yield similar results to an
extrapolation using Markstein’s equation, the use of the quasi-steady extrapolation
proposed in Kelley & Law (2009) results in larger magnitude Markstein lengths for
rich mixtures.

5. Concluding remarks
Using large-activation-energy asymptotics, confined premixed flames were analysed

and their evolution was determined. The present derivation describes the evolution of
a premixed flame with general Lewis number, general equivalence ratio, temperature-
dependent transport coefficients, general reaction orders, and weak pressure rise. Under
the assumption of weak pressure rise, the primary influence of confinement was to
adiabatically compress the unburned gas which resulted in a positive perturbation to
the downstream flame temperature and an order-one response of the flame propagation
speed.

The specific case of a spherical flame propagating in a spherical chamber was
analysed to determine the influence of confinement. Mixtures with widely varying
Lewis numbers were found to have a similar response to confinement on a normalized
flame radius length scale, Rf . The radius at which confinement begins to influence
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FIGURE 8. (a) Laminar flame speeds and (b) Markstein lengths extrapolated using various
extrapolation equations from experimental data for atmospheric pressure n-pentane/air
outwardly propagating flames originally published in Kelley et al. (2011).

flame propagation was determined and was found to be linearly proportional to the
radius of the confining vessel.

For near-stoichiometric mixtures, the initially deficient reactant was found to be
locally in excess when the flame was at small radii for mixtures with LeE > LeD.
This was attributed to the high mobility of the deficient reactant. Near-stoichiometric
mixtures with LeD > 1 > LeE were found to have flame speeds which could exceed
the unstretched laminar flame speed at certain flame radii. This was attributed to the
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increased concentration of the excess reactant at the flame front which results in an
increased reaction rate.

The extrapolation of the laminar flame speed from experimental measurements
of the flame radius as a function of time is dependent on the equation used
for extrapolation. An improved extrapolation equation, (4.8), was presented. It was
found to provide nearly identical extrapolations of the laminar flame speed as the
extrapolation equation presented in Kelley & Law (2009); however the extrapolated
Markstein lengths were found to differ.

Acknowledgements

This research was supported by the Air Force Office of Scientific Research under
the technical monitoring of Dr Julian M. Tishkoff and by the National Science
Foundation under grant number DMS-0807340.

R E F E R E N C E S

BECHTOLD, J. K. & MATALON, M. 1999 Effects of stoichiometry on stretched premixed flames.
Combust. Flame 119, 217–232.

BECHTOLD, J. K. & MATALON, M. 2000 Some new results on Markstein number predictions. 38th
Aerospace Sciences Meeting & Exhibit, AIAA Paper 2000-0575.
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HALTER, F., TAHTOUH, T. & MOUNAÏM-ROUSSELLE, C. 2010 Nonlinear effects of stretch on the
flame front propagation. Combust. Flame 157, 1825–1832.

JERZEMBECK, S., PETERS, N., PEPIOT-DESJARDINS, P. & PITSCH, H. 2009 Laminar burning
velocities at high pressure for primary reference fuels and gasoline: experimental and
numerical investigation. Combust. Flame 156, 292–301.

JOMAAS, G., LAW, C. K. & BECHTOLD, J. K. 2007 On transition to cellularity in expanding
spherical flames. J. Fluid Mech. 583, 1–26.

KELLER, D. & PETERS, N. 1994 Transient pressure effects in the evolution equation for premixed
flame fronts. Theor. Comput. Fluid Dyn. 6, 141–159.

KELLEY, A. P. & LAW, C. K. 2009 Nonlinear effects in the extraction of laminar flame speeds
from expanding spherical flames. Combust. Flame 156, 1844–1851.

KELLEY, A. P., SMALLBONE, A. J., ZHU, D. L. & LAW, C. K. 2011 Laminar flame speeds of C5
to C8 n-alkanes at elevated pressures: experimental determination, fuel similarity, and stretch
sensitivity. Proc. Combust. Inst. 33, 963–970.

LEWIS, B. & VON ELBE, G. 1961 Combustion, Flames, and Explosions of Gases, 2nd edn.
Academic.

MARKSTEIN, G. H. 1951 Experimental and theoretical studies of flame-front stability. J. Aeronaut.
Sci. 18, 199–209.

MATALON, M. & BECHTOLD, J. K. 1987 Spherically expanding flames. Proc. 1987 ASME/JSME
Thermal Engineering Joint Conference, vol. 1, pp. 95–101.

MATALON, M., CUI, C. & BECHTOLD, J. K. 2003 Hydrodynamic theory of premixed flames:
effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. J. Fluid
Mech. 487, 179–210.

MATALON, M. & MATKOWSKY, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech.
124, 239–259.

PELCE, P. & CLAVIN, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of
laminar premixed flames. J. Fluid Mech. 124, 219–237.

PETERS, N. & LUDFORD, G. S. S. 1983 The effect of pressure variations on premixed flames.
Combust. Sci. Technol. 34, 331–344.

RAEZER, S. D. 1961 The relationship between burning velocity and space velocity of a spherical
combustion wave in a closed spherical chamber. Combust. Flame 5, 77–80.

RONNEY, P. D. & SIVASHINSKY, G. I. 1989 A theoretical study of propagation and extinction of
nonsteady spherical flame fronts. SIAM J. Appl. Maths 49 (4), 1029–1046.

SINGH, D., NISHIIE, T. & QIAO, L. 2011 Experimental and kinetic modeling study of the
combustion of n-decane, Jet-A, and S-8 in laminar premixed flames. Combusti. Sci. Technol.
183 (10).

SIVASHINSKY, G. I. 1976 On a distorted flame front as a hydrodynamic discontinuity.
Acta Astronaut. 3, 889–918.

SIVASHINSKY, G. I. 1979 Hydrodynamic theory of flame propagation in an enclosed volume.
Acta Astronaut. 6, 631–645.
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