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Abstract
In this paper, we analyze Boolean formulas in conjunctive normal form (CNF) from the perspective of
read-once resolution (ROR) refutation schemes. A read-once (resolution) refutation is one in which each
clause is used at most once. Derived clauses can be used as many times as they are deduced. However,
clauses in the original formula can only be used as part of one derivation. It is well known that ROR is
not complete; that is, there exist unsatisfiable formulas for which no ROR exists. Likewise, the problem
of checking if a 3CNF formula has a read-once refutation is NP-complete. This paper is concerned with
a variant of satisfiability called not-all-equal satisfiability (NAE-satisfiability). A CNF formula is NAE-
satisfiable if it has a satisfying assignment in which at least one literal in each clause is set to false. It
is well known that the problem of checking NAE-satisfiability is NP-complete. Clearly, the class of CNF
formulas which are NAE-satisfiable is a proper subset of satisfiable CNF formulas. It follows that traditional
resolution cannot always find a proof of NAE-unsatisfiability. Thus, traditional resolution is not a sound
procedure for checking NAE-satisfiability. In this paper, we introduce a variant of resolution called NAE-
resolution which is a sound and complete procedure for checking NAE-satisfiability in CNF formulas.
The focus of this paper is on a variant of NAE-resolution called read-once NAE-resolution in which each
clause (input or derived) can be part of at most one NAE-resolution step. Our principal result is that read-
once NAE-resolution is a sound and complete procedure for 2CNF formulas. Furthermore, we provide
an algorithm to determine the smallest such NAE-resolution in polynomial time. This is in stark contrast
to the corresponding problem concerning 2CNF formulas and ROR refutations. We also show that the
problem of checking whether a 3CNF formula has a read-once NAE-resolution is NP-complete.

Keywords: Read-once, NAE-SAT, refutation, optimal length refutation

1. Introduction
This paper is concerned with techniques for checking not-all-equal satisfiability (NAE-
satisfiability) for propositional formulas in conjunctive normal form (CNF). We refer to the
problem of checking NAE-satisfiability as the NAE-SAT problem. Briefly, the NAE-SAT problem
is concerned with checking if a CNF formula has a satisfying assignment in which each clause has
at least one literal set to false. It is well known that the NAE-SAT problem for 3CNF formulas (also
called NAE-3SAT) is NP-complete (Schaefer, 1978). Indeed, the problem remains NP-complete,
even when all the literals in each clause are positive. The problem can be solved in polynomial
time, when there are at most two literals per clause (Moore and Mertens, 2011; Papadimitriou,
1994).
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It is not hard to see that the class of CNF formulas which is NAE-satisfiable is a proper subset of
CNF formulas which are satisfiable in the ordinary sense. Therefore, proof systems for satisfiability
may not be sound for checking NAE-satisfiability. Indeed, this is the case with resolution refuta-
tion (Robinson, 1965), which is complete for NAE-satisfiability but not sound. In other words, if
a resolution refutation exists for a CNF formula, then the formula is definitely NAE-unsatisfiable
(since it is unsatisfiable). However, if a refutation does not exist for a formula, then it may still be
NAE-unsatisfiable. In this paper, we design a new resolution scheme called NAE-resolution which
is simultaneously sound and complete for the NAE-SAT problem in CNF formulas.

Propositional proof complexity is concerned with lengths of proofs (alternatively refutations)
in propositional logic (Beame and Pitassi, 1998). In order to discuss lengths of proofs, it is vital
that we have a concrete proof system in mind (Urquhart, 1995). Several proof systems have been
discussed in the literature including Frege Systems, Extended Frege Systems, Resolution, and so
on. The notion of proof length in various proof systems is discussed in Buss (1999). Observe
that if it can be established that the length of any proof (refutation) of a contradiction must be
exponential in the length of the input formula, then we have in fact separated the class NP from
the class coNP (Cook and Reckhow, 1974). By any proof, wemean a proof in any proof system. For
a comprehensive introduction to propositional proof complexity, we refer the interested reader to
Urquhart (1995).

Even if we focus on a particular proof system, there exist several variants with different com-
putational complexities. For instance, in case of resolution refutations, the commonly studied
variants are tree-like refutations, dag-like refutations, and read-once refutations (Harrison, 2009).
Read-once refutations are the simplest from the conceptual perspective, since each clause (original
or derived) can be used at most once.

One of the interesting avenues of research in proof theory is the investigation of incomplete
proof systems, i.e., proof systems which are not guaranteed to provide a refutation, even if the
given formula is unsatisfiable. The idea behind the investigation of such weak systems is the hope
that we can find proofs of unsatisfiability more efficiently (Iwama and Miyano, 1995). This paper
focuses on a weak proof system called read-once resolution (ROR). It is well known that ROR is
an incomplete proof system (Iwama and Miyano, 1995). Furthermore, even asking if an arbitrary
unsatisfiable CNF formula has a read-once refutation is NP-complete. As discussed before, read-
once refutation is not sound for the purpose of checking NAE-satisfiability. We design a variant
of ROR called read-once NAE-resolution which is sound but not complete.

The investigations of this paper are concerned with properties of read-once NAE-resolutions
when applied to the NAE-SAT problem in CNF formulas.

The principal contributions of this paper are as follows1:

1. A proof of existence of read-once NAE-resolution refutations for every NAE-unsatisfiable
2CNF formula. This result is particularly interesting since the problem of checking whether
a 2CNF formula has an ROR is NP-complete (Kleine Büning et al., 2018).

2. The design and analysis of a polynomial time algorithm for finding read-once NAE-
resolution refutations for NAE-unsatisfiable 2CNF formulas.

3. The design and analysis of a polynomial time algorithm for finding shortest read-once
NAE-resolution refutations for NAE-unsatisfiable 2CNF formulas.

4. A proof that the algorithm for shortest read-once NAE-resolution refutations also finds
shortest tree-like NAE-resolution refutations and shortest dag-like NAE-resolution refuta-
tions for NAE-unsatisfiable 2CNF formulas.

5. The design and analysis of a polynomial time algorithm for finding minimum weight read-
once NAE-resolution refutations for NAE-unsatisfiable 2CNF formulas.
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6. A proof that the problem of checking if a 2CNF formula is minimal with respect to read-
once NAE-resolution refutation can be solved in polynomial time.

7. A proof that the problem of checking if a 3CNF formula has a read-once NAE-resolution
refutation is NP-complete.

The rest of this paper proceeds as follows: In Section 2, we cover some of the basic con-
cepts necessary for our results. Section 3 formally defines the problems studied in this paper. In
Section 4, we discuss themotivation for our work and examine related approaches in the literature.
Sections 5 and 6 describe the results that we have obtained. Finally, in Section 7, we summarize
our results and describe avenues of future research.

2. Preliminaries
In this section, we cover the concepts and terminology of propositional logic.

A formulaΦ in CNF is a conjunction of clauses. Each clause inΦ is disjunction of literals writ-
ten as (L1, . . . , Lt). A literal is a propositional variable x or its negation, ¬x. Let φ = (L1, . . . , Lt)
be a clause, then φc is the clause (¬L1, . . . ,¬Lt). Throughout this paper, we use n to denote the
number of variables in Φ andm to denote the number of clauses in Φ .

We now recall some definitions with respect to NAE-satisfiability.

Definition 1. A clause is NAE-satisfied by a truth assignment v, if at least one literal in the clause
is assigned a value of false and at least one literal is assigned a value of true.

ACNF formula,Φ , isNAE-satisfiable if there exists a truth assignment, v, such that every clause
of Φ is NAE-satisfied. The class of NAE-satisfiable formulas is denoted as NAE-SAT. Note that, if
vNAE-satisfies a formula in CNF, then so does¬v. For a literal Li, we use v(Li) to denote the value
of Li under truth assignment v.

We now compare NAE-satisfiability to regular satisfiability.

Lemma 1. Let Φ be a formula in CNF. Φ ∈ NAE-SAT if and only if Φ ∪ Φc ∈ SAT, where Φc :=
{(¬L1, . . . ,¬Lt) : (L1, . . . , Lt) ∈ Φ}.
Proof. Let Φ be NAE-satisfied by the truth assignment, v. Thus, every clause φj of Φ contains a
literal Li and a literal Lk for which v(Li)= true and v(Lk)= false. Hence, v satisfies both φj and
φc
j . Thus, v satisfies every clause in Φ ∪ Φc.
Let Φ ∪ Φc be satisfied by the truth assignment, v. Thus, every clause φj ∈ Φ contains a

literal Li such that v(Li)= true. Similarly, φc
j contains a literal Lk such that v(Lk)= true. By

construction, φj contains the literal ¬Lk. Thus, under truth assignment v, φj contains both a true
literal and a false literal. This means that v NAE-satisfies the clause φj. Since φj is an arbitrary
clause of Φ , v NAE-satisfies Φ .

Lemma 1 immediately leads to the observation that deciding whether a formula Φ is in NAE-
SAT can be performed by means of resolution on Φ ∪ Φc. Instead of adding the complementary
clause φc

i in the beginning, we extend the resolution calculus with a new rule. This rule generates
complementary clauses on demand.

We now define the inference rules for NAE-resolution.

Definition 2. Let Li and Kj be literals, and let x be a variable. NAE-resolution uses the following
inference rules:

1. Resolution: (L1, . . . , Lt , x), (¬x,K1, . . . ,Kr) | 1
RES (L1, . . . , Lt ,K1, . . . ,Kr).

2. NAE-extension: (L1, . . . , Lt) |NAE-ext (¬L1, . . . ,¬Lt).
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Figure 1. NAE-resolution derivation of the empty clause �.

NAE-resolution is an extension of resolution. In resolution, the only inference rule is the reso-
lution rule. A sequence of resolutions that derives a clause φ from a CNF formula Φ is known as
a resolution derivation of φ. We denote this as Φ |RES φ. If φ is the empty clause �, then this is a
resolution refutation of Φ .

Note that the NAE-extension rule is what allows us to simultaneously negate all the literals of
a clause. If, given a CNF formula Φ , there is a sequence of resolutions and NAE-extensions that
results in the clause φ, then we say that Φ |NAE-Res φ. This sequence is called an NAE-resolution
derivation of φ.

Example 1. Consider the 2CNF Formula (1):
(x1, x2) (¬x1, x3) (¬x1, x4)

(¬x2, x3) (¬x2, x4) (x3, x4) (1)
This formula is satisfied by assigning x= (true, true, true, true). However, this formula is not

NAE-satisfiable. This can be seen in Figure 1.

It can easily be seen that NAE-resolution preserves NAE-satisfiability. That is, if the original
formula is NAE-satisfiable, then any formula we get by adding the clauses introduced by resolution
and the clauses introduced by the NAE-extension rule is NAE-satisfiable.

The following theorem summarizes the relationships between resolution and NAE-resolution.
Note that throughout this paper we assume that no CNF formula Φ is trivially unsatisfiable. That
is, we assume that � �∈ Φ .

Theorem 1. Let Φ be a formula in CNF. The following propositions are equivalent:

1. Φ �∈ NAE-SAT.
2. Φ ∪ Φc �∈ SAT.
3. Φ ∪ Φc |RES �.
4. There exists some literal L : Φ |NAE-Res (L).
5. Φ |NAE-Res �.
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Proof. The proof of this is broken up as follows:

1. Φ �∈ NAE-SAT if and only if Φ ∪ Φc �∈ SAT:
This was already proved in Lemma 1.

2. Φ ∪ Φc �∈ SAT if and only if Φ ∪ Φc |RES �:
Resolution is a sound and complete proof system (Tseitin, 1983). This result is an
immediate consequence.

3. Φ �∈ NAE-SAT if and only if there exists some literal L : Φ |NAE-Res (L):
See Theorem 2 for proof.

4. There exists some literal L : Φ |NAE-Res (L) if and only if Φ |NAE-Res �:
If Φ |NAE-Res (L), then Φ |NAE-Res (¬L) since (L) |NAE-ext (¬L). Thus, Φ |NAE-Res � since
(L), (¬L) | 1

RES �.
If Φ |NAE-Res �, then the final resolution step must be (L), (¬L) | 1

RES � for some literal L.
Thus, Φ |NAE-Res (L).

Theorem 2. A CNF formula Φ is not NAE-satisfiable if and only if for some variable xi,
Φ |NAE-Res (xi).

Proof. Assume that for some xi, Φ |NAE-Res (xi). We know that any assignment, v, that NAE-
satisfies Φ must NAE-satisfy (xi). However, the clause (xi) has only one literal. Thus, it cannot
be NAE-satisfied. This means that Φ is not NAE-satisfiable.

LetΦ be a CNF formula that is not NAE-satisfiable. We can construct the unsatisfiable formula
Φ ′ = Φ ∪ Φc of CNF clauses.

Since Φ ′ is unsatisfiable, we can derive the clauses (xi) and (¬xi) for some variable xi. Let D
be the read-once derivation Φ ′ |ROR (xi). Let φi ∈ Φc be a clause used in D. Since φi ∈ Φc, φc

i ∈ Φ .
Thus, φc can be derived from Φ by applying the NAE-extension rule to φc

i . This means that we
can construct the NAE-resolution derivation Φ |NAE-Res (xi) from D as follows:

1. LetΦD ⊆ Φ be the set of clauses inΦ used byD. Similarly, letΦc
D ⊆ Φc be the set of clauses

in Φc used by D.
2. For each clause φi ∈ Φc

D, φc
i ∈ ΦD. Thus, we can derive φi by adding the NAE-extension

step φc
i |NAE-ext φi to the NAE-resolution derivation of (xi).

3. We have now derived all of the clauses in Φ ′ used by D. Thus, we can complete the NAE-
resolution derivation of (xi) by adding the resolution steps in D to the NAE-resolution
derivation of (xi).

Every resolution step and NAE-extension used in this derivation is applied to either clauses in
Φ or to previously derived clauses. Thus, this is a valid NAE-resolution derivation of (xi).

From Theorem 2, for a CNF formula Φ , an NAE-resolution derivation Φ |NAE-Res (xi) is an
NAE-resolution refutation of Φ .

3. Statement of Problems
In this section, we define the problems examined by this paper.

Let Φ be a CNF formula and let φ be a clause. An ROR derivation of φ, Φ |ROR φ, is a
resolution derivation, such that in each resolution step we remove the parent clauses from the
current set of clauses and add the resolvent. A read-once refutation is a read-once derivation of
the empty clause �.
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Figure 2. Read-once refutation.

Let ROR be the set of CNF formulas for which an ROR refutation exists. It has been shown
(Iwama and Miyano, 1995) that ROR is NP-complete.

Example 2. We will generate an ROR refutation of the 2CNF formula specified by Formula (2):

(x1, x2) (¬x1, x3) (¬x1, x4)
(¬x2, x3) (¬x2, x4) (¬x3, x5) (2)
(¬x3, x6) (¬x4,¬x5) (¬x4,¬x6)

This can be seen in Figure 2.
Note that the clause (¬x3,¬x4) is used twice. However, this is still a read-once refutation since

each time the clause (¬x3,¬x4) is derived, different clauses from the original formula are used.

Definition 3. Let Φ be a CNF formula and let φ be a clause. A read-once NAE-resolution deriva-
tion of φ, Φ |RO-NAE-Res φ, is a derivation using the resolution rule and/or NAE-extension rule. In
the case of resolution, we delete the parent clauses from Φ and add the resolvent. In the case of the
extension rule, φ′ |NAE-ext φ′c, we remove the clause φ′ from Φ and add φ′c.

There are two ways to check for the existence of a read-once proof of NAE-unsatisfiability.
Given a CNF formula Φ , we can check ifΦ ∪ Φc has an ROR refutation. Alternatively, we can ask
whether Φ has a read-once NAE-resolution refutation (under the resolution and NAE-extension
rules).

These methods of checking for read-once refutations correspond to the following sets of CNF
formulas:

1. ROR-NAE := {Φ ∈ CNF | Φ ∪ Φc |ROR �}.
2. RO-NAE-RES := {Φ ∈ CNF | ∃L : Φ |RO-NAE-Res (L)}.
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In this paper, we study the problems of determining if certain forms of CNF formulas,
specifically 2CNF and 3CNF formulas, belong to these classes.

We now define the length of an NAE-resolution refutation.

Definition 4. The length of an NAE-resolution refutation is the number of resolution steps in the
refutation.

This allows us to define the problem of finding a shortest read-once NAE-resolution refutation.

4. Motivation and Related Work
In this section, we motivate our work and describe some related approaches in the literature. This
paper focuses on proving the NAE-unsatisfiability of 2CNF and 3CNF formulas. This is closely
related to the NAE-SAT problem which has many applications.

The NAE-SAT problem for monotone CNF is equivalent to the hypergraph bicolorability
problem and the set splitting problem (Garey and Johnson, 1979; Porschen et al., 2014; Rödl
and Siggers, 2006). Similarly, the NAE-SAT problem for monotone 2CNF is equivalent to the
graph bicolorability problem (Subramani and Gu, 2011). Thus, an NAE-resolution refutation of a
monotone 2CNF formula is a proof that the corresponding graph is not bipartite.

In addition to the focus on NAE-SAT, this paper also examines the problem of finding read-
once refutations. Resolution-based refutation is a sound and complete proof system, that is, a
formula has a resolution refutation if and only if it is infeasible (Tseitin, 1983). It is one of the
weaker proof systems (Beame and Pitassi, 1997). There exist formulas for which the shortest
resolution-based proofs are exponentially long. However, these same formulas can still have poly-
nomially sized refutations in stronger proof systems. Despite this, resolution-based refutation is
still widely used due to its relative simplicity (Beame and Pitassi, 1996).

Other more powerful refutation systems exist. These include Frege Proofs, Sequent Calculus,
the Davis–Putnam Procedure, and Extended Frege Proofs (Beame, 2004). However, it was still
difficult to derive an exponential lower bound on refutation length for resolution-based refuta-
tions. This lower bound on proof length was discovered when examining the pigeonhole principle.
Haken (1985) showed that any proof of the pigeonhole principle requires a number of resolution
steps exponential in the size of the input formula.

To the best of our knowledge, this is the first paper to examine the problem of finding read-once
refutations for NAE-SAT. However, the ROR problem for SAT has been extensively researched.
It was shown in Iwama and Miyano (1995) that for arbitrary CNF formulas, the problem of find-
ing read-once refutations is NP-complete. Later papers extended this result by placing additional
restrictions on the type of refutation.

One such restriction is the requirement that each resolution step in the read-once refutation
uses a unit clause. Such a refutation is known as a read-once unit resolution refutation. It was
shown in Kleine Büning and Zhao (2002) that the problem of identifying if a CNF formula has this
restricted form of read-once refutation is NP-complete. It is also possible to further restrict read-
once refutations by requiring that no literal is reused by the refutation. Such a refutation is called
literal-once. In Szeider (2001), it was shown that the problem of finding literal-once resolution
refutations for CNF formulas is NP-complete.

In addition to examining restricted forms of read-once refutations, the problem of finding
read-once refutations for restricted forms of CNF has also been examined. In Kleine Büning et al.
(2018), it was shown that the problem of finding read-once refutations remains NP-complete for
2CNF.

We focus on read-once refutations because, unlike unrestricted resolution refutations, a read-
once refutation is guaranteed to be short. This is useful since an important problem in proof
complexity is that of finding short refutations (Beame and Pitassi, 1998). Research into short
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refutations attempts to separate the classesNP and coNP by proving that no proof system is guar-
anteed to produce short refutations for every infeasible instance of anNP-complete problem. For
the SAT problem, this is done by looking at proof systems of different complexities and construct-
ing lower bounds on proof length in each system (Urquhart, 1995). Despite the fact that ROR is
an incomplete proof system, studying read-once refutations may give insights into what types of
CNF formulas are guaranteed to have short refutations.

The problem of finding short refutations has also been studied for unrestricted resolution.
Iwama (1997) examined the problem of finding the shortest resolution proofs of arbitrary 3CNF
formulas. It was shown, in that paper, that the problem isNP-complete. The problem of finding a
shortest resolution refutation was also examined for Horn formulas. In Alekhnovich et al. (1998),
it was shown that one cannot linearly approximate the length of the shortest resolution refutation
of a Horn formula, unless P=NP.

5. Read-Once NAE-Resolution Refutations for 2CNF Formulas
In this section, we examine the problem of finding read-once NAE-resolution refutations for
2CNF formulas.

For 2CNF formulas, it has been shown that the problem of checking whether the formula has
an ROR refutation is NP-complete (Kleine Büning et al., 2018). Now the question arises whether
that is still the case for read-once NAE-resolution refutations.

We first show that a 2CNF formula Φ has a read-once NAE-resolution refutation if and only if
Φ ∪ Φc has an ROR refutation.

Theorem 3. Let Φ be a 2CNF formula. Φ ∈ ROR-NAE if and only if Φ ∈ RO-NAE-RES.

Proof. Let Φ be in ROR-NAE. Thus, there exists an ROR refutation Φ ∪ Φc |ROR �. The final
step of this refutation must be resolving a pair of one literal clauses to derive the empty clause.
Thus, we must have that, for some literal L, Φ ∪ Φc |ROR (L). LetD be the shortest such resolution
derivation. Thus, there is no literal L′ which can be derived by a shorter ROR derivation.

By construction, every resolution step (except the last one) of D results in a two literal clause.
Thus, we can restructure D so that each resolution step is of the form

(L, xi), (¬xi, xj) | 1
RES (L, xj)

Let d1, . . . , dr be the resolution steps in D. Let φ be a clause such that both φ and φc are
used in D. Without loss of generality, we can assume that φ = (xi, xj), and that the restructured
derivation uses φ before it uses φc. There are four cases we need to consider:

1. The resolution step ds involving φ is (L,¬xi), φ | 1
RES (L, xj) and the resolution step

dt involving φc is (L, xi), φc | 1
RES (L,¬xj). Thus, the sequence ds, . . . , dt of resolu-

tion steps derives (L, xi) from (L,¬xi). For each resolution step dh of the form
(L, xk), (¬xk, xl) | 1

RES (L, xl), let d′
h be the resolution step (xi, xk), (¬xk, xl) | 1

RES (xi, xl). The
sequence of resolution steps d′

s+1, . . . , d
′
t derives (xi). This contradicts our construction of

D.
2. The resolution step involving φ is (L,¬xj), φ | 1

RES (L, xi) and the resolution step involv-
ing φc is (L, xj), φc | 1

RES (L,¬xi). Thus, there must be a sequence of resolution steps which
produced (L, xj) from (L,¬xj). As before, this means that the set of clauses used in these
resolution steps can derive xj. This contradicts our construction of D.

3. The resolution step involving φ is (L,¬xj), φ | 1
RES (L, xi) and the resolution step involving

φc is (L, xi), φc | 1
RES (L,¬xj). Thus, D derives (L, xi) twice. By removing the sequence of

resolution steps between these two derivations of (L, xi), we produce a shorter derivation
of (L). This contradicts our construction of D.
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4. The resolution step involving φ is (L,¬xi), φ | 1
RES (L, xj) and the resolution step involving

φc is (L, xj), φc | 1
RES (L,¬xi). Thus, D derives (L, xj) twice. By removing the sequence of

resolution steps between these two derivations of (L, xj), we produce a shorter derivation
of (L). This contradicts our construction of D.

Thus, φ and φc cannot be both used in D.
We now have Φ |NAE-Res (L) as follows:

1. Apply the NAE-extension rule to every clause φ ∈ Φ such that φc is used inD. Note, we are
guaranteed that φ is not used in D.

2. Derive (L) using the same resolution steps as D.

Now let Φ be in RO-NAE-RES. For some literal L, there exists a read-once NAE-resolution
derivation Φ |NAE-Res (L). Let φ1, . . . , φt be the set of clauses used in this read-once derivation.
We can use the dual clauses φc

1, . . . , φ
c
t to derive (¬L). Note that if the NAE-extension rule is

used in the original refutation, for example, as φi |NAE-ext φc
i , then we include φc

i in the read-once
derivation of (L) and φi in the read-once derivation of (¬L).

As a final step, we can use (L) and (¬L) to derive the empty clause. This forms an ROR
refutation of Φ ∪ Φc.

Theorem 4. Let Φ be a 2CNF formula. We have Φ �∈ NAE-SAT if and only if Φ ∈ ROR-NAE, and
a read-once NAE-resolution refutation can be found in quadratic time.

Proof. Let Φ be a 2CNF formula that is not in NAE-SAT. If Φ contains a unit clause, say (x), then
{(x), (¬x)} ⊆ Φ ∪ Φc. We have that (x), (¬x) | 1

RES �. This is clearly a read-once NAE-resolution
refutation. Thus, we assume that Φ contains no unit clauses.

From Φ ∪ Φc, we create the implication graph, G, as described in Aspvall et al. (1979). This
construction proceeds as follows:

1. For every variable xi, we create the vertices xi and ¬xi.
2. For every clause (L∨K), we create the edges ¬L→K and ¬K → L.

G contains a strongly connected component, say G1, with a pair of vertices corresponding
to complementary literals if and only if Φ ∪ Φc is unsatisfiable (Aspvall et al., 1979). From
Theorem 1, a formulaΦ is not in NAE-SAT if and only ifΦ ∪ Φc is unsatisfiable. Thus, there exists
a strongly connected component C in G that contains vertices corresponding to complementary
literals if and only if Φ �∈ NAE-SAT.

Let ¬L0 → L1 → L2 . . . Lk → L0 be a shortest path in C between vertices corresponding to a
complementary pair of literals.

If, for some 1≤ i< j≤ k, we have Li = Lj, then the path from ¬L0 to L0 could be shortened by
removing the sub-path from Li to Lj = Li. Similarly, if Li = ¬Lj, then the path from Li to Lj = ¬Li
would be a shorter path in C between vertices corresponding to a complimentary pair of literals.
Since¬L0 → L1 → L2 . . . Lk → L0 is a shortest path in C between such a pair of vertices, we know
that neither of these situations can occur.

Let R0 be the following resolution derivation:

(L0 ∨ L1), (¬L1 ∨ L2), . . . , (¬Lm ∨ L0) |ROR (L0)

We know that for every 1≤ i< j≤ k, Li �= Lj and Li �= ¬Lj. Thus, no clause is used multiple times
by R0. Consequently, R0 is a read-once derivation of (L0).
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Note that R0 is a resolution derivation of (L0) from Φ ∪ Φc. Thus, the clauses (¬L0 ∨ ¬L1),
(L1 ∨ ¬L2), . . . , (Lm ∨ ¬L0) are also in Φ ∪ Φc. These clauses form an ROR derivation Rc0 of
(¬L0). Recall that for every 1≤ i< j≤ k, Li �= Lj and Li �= ¬Lj. Thus, no clause is used in both
R0 and Rc0. This means that Φ ∪ Φc has the following ROR refutation:

1. Use R0 to derive the clause (L0).
2. Use Rc0 to derive the clause (¬L0).
3. Resolve (L0) and (¬L0) to get �.

By Theorem 3, this corresponds to a read-once NAE-resolution refutation of Φ .
The computation of the strongly connected components ofG includes deciding whether a path

exists between vertices corresponding to a complementary pair of literals. This costs linear time.
Finding the shortest path between the vertices corresponding to a pair of complimentary literals
takes linear time. Since we do this for each such pair in a strongly connected component of G, the
overall running time of the algorithm is quadratic.

Note that if we do not want the shortest path, then this procedure can be shortened to run in
near-linear time by using union-find data structures (Cormen et al., 2009). This new procedure is
described in the following:

1. From Φ ∪ Φc, construct the implication graph G.
2. Find the connected components of G.
3. Each time two vertices are determined to be in the same component of G, add them into a

union-find data structure. This can be done in O(m · α(n)) time where α(n) is the inverse
Ackermann function (Cormen et al., 2009).

4. For each variable xi in Φ check to see if xi and ¬xi belong to the same component of G.
Using the union-find data structure created before, this can be done in O(n · α(n)) time.

5. Find a path p from xi to ¬xi in G.
6. Find the shortest sub-path of p between a pair of vertices corresponding to complementary

literals. This can be done in O(n) time.

Overall, this procedure runs in time O((m+ n) · α(n)).

5.1 Finding shortest refutations
Earlier in Section 5, we described an implication graph for checking the satisfiability of 2CNF
formulas. We can construct a similar implication graph for checking the NAE-satisfiability of
2CNF formulas. We refer to this as the NAE-implication graph. The NAE-implication graph of a
formula Φ is equivalent to the implication graph of Φ ∪ Φc

Example 3. Consider the 2CNF formula:

(x1, x2) (x2, x3) (¬x3, x4)

From this formula, we can generate the NAE-implication graph in Figure 3.

We now show that, in the case of NAE-unsatisfiable 2CNF formulas, there always exists a read-
once NAE-resolution refutation.

Theorem 5. If a 2CNF formula,Φ, has an NAE-resolution derivation of (xi), then it has a read-once
NAE-resolution derivation of (xi).
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Figure 3. Example NAE-implication graph.

Figure 4. Example of path p.

Proof. Note that if Φ contains a unit clause (xi), then this unit clause by itself is a proof of NAE-
unsatisfiability. Thus, we can assume without loss of generality that Φ contains no unit clauses.

Let G be the NAE-implication graph corresponding to Φ . Note that G is also the implication
graph of Φ ∪ Φc. Thus, Φ ∪ Φc |RES (xi) if and only if there exists a path from x̄i to xi in G. From
Theorem 2, Φ |NAE-Res (xi) if and only if Φ ∪ Φc |RES (xi). Thus, Φ |NAE-Res (xi) if and only if there
exists a path from x̄i to xi in G. Note that the clauses used by the refutation correspond to the
clauses used to form the path in the implication graph. Let p denote this path.

Let xj be the first variable on the path p such that x̄j also appears on p. This xj is guaranteed to
exist since both xi and x̄i appear on p. We can assume without loss of generality that xj appears
before x̄j. Thus, we can break p up as follows:

1. a path, p1, from x̄i to xj,
2. a path, p2, from xj to x̄j,
2. and a path, p3, from x̄j to xi.

This can be seen in Figure 4.
By our choice of xj, we know that for k �= j, p1 and p2 together do not contain both xk and

x̄k. As a consequence of this, no two edges in p1 or p2 correspond to the same constraint.
Thus, p2 corresponds to a read-once NAE-resolution derivation of (¬xj). We also have that
p1 is a read-once NAE-resolution derivation of (xi, xj) which has no clauses in common with
the NAE-resolution derivation corresponding to p2. Combining these two yields a read-once
NAE-resolution derivation of (xi).

From this theorem, read-once NAE-resolution is a complete proof system for NAE-2SAT.
Note that, in this NAE-resolution derivation, the sub-path p2 from xj to x̄j is a proof of NAE-

unsatisfiability by itself since it derives (¬xj) which is already enough to force xj to be both true
and false.

This provides us with a polynomial time algorithm to find the smallest read-once NAE-
resolution refutation of a 2CNF formula.

Note that we do not need to consider the paths from xi to x̄i since the existence of such a path
means that there is a path of equal length from x̄i to xi.
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Algorithm 1 Algorithm for finding a minimum length read-once NAE-resolution refutation
Function FIND-MIN-READONCE-NAE-RESOLUTION-REFUTATION (Φ)
Input: Φ – An NAE-unsatisfiable formula withm clauses over n variables.
Output: pmin – A shortest read-once NAE-resolution refutation of Φ .
1: Use Φ to construct the NAE-implication graph G.
2: Let lmin denote the length of the shortest known refutation of Φ .
3: Initialize lmin to (m+ 1).
4:  No read-once NAE-resolution refutation is longer thanm.
5: Let pmin denote the shortest read-once NAE-resolution refutation of Φ .
6: Initialize pmin to ∅.
7: for (i= 1 to n) do
8: if (xi is reachable from x̄i in G) then
9: Let p be the refutation corresponding to a shortest path from x̄i to xi in G.
10:  There is a path of equal length from xi to x̄i.
11: Let l be the length of p.
12: if (l< lmin) then
13: lmin := l and pmin := p.
14: return (pmin).

This algorithm works when the length of a proof is determined solely by the number of resolu-
tion steps (see Definition 4) and does not depend on the number of NAE-extensions. If we include
the number of NAE-extensions in the length of the proof, then we need to weigh the edges in
the graph. Edges corresponding to clauses in Φ will have weight one and edges corresponding to
clauses inΦc will have weight 2 since these edges need to be derived using the NAE-extension rule.

Since every NAE-unsatisfiable system has a read-once refutation, Algorithm 1 also returns a
shortest tree-like and dag-like NAE-resolution refutations.

Theorem 6. Algorithm 1 returns a shortest tree-like NAE-resolution refutation and a shortest dag-
like NAE-resolution refutation of a system Φ.

Proof. We will prove this for tree-like NAE-resolution refutations since the proof in the case of
dag-like NAE-resolution refutations is analogous.

Let kROR be the length of the NAE-resolution refutation returned by Algorithm 1. Assume that
Φ has a tree-like NAE-resolution refutation of length (ktree < kROR). Let Φ ′ ⊆ Φ be the set of con-
straints used by this tree-like NAE-resolution refutation. From Theorem 5, Φ ′ has a read-once
NAE-resolution refutation. Let k′

ROR denote the length of this read-once NAE-resolution refuta-
tion. This refutation is also a read-once NAE-resolution refutation ofΦ . However, (k′

ROR ≤ ktree <

kROR). This contradicts the fact that Algorithm 1 returns a shortest read-once NAE-resolution
refutation. Thus, since the NAE-resolution refutation returned by Algorithm 1 is also a tree-like
NAE-resolution refutation, Algorithm 1 returns a shortest such refutation.

Example 4. Consider the following system of constraints:

(¬x1, x4) (x1, x2) (x2, x3) (x4, x1)

This set of constraints has a Dag-like NAE-resolution refutation as shown in Figure 5.
However, the shortest read-once NAE-resolution refutation of this system is

(¬x1, x4), (x4, x1) | 1
RES (x4). Since this is a Dag-like refutation, it is a shorter Dag-like refutation

than the one shown in Figure 5.

Algorithm 1 can be easily modified to solve the following problem.
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Figure 5. Dag-like NAE-resolution refutation.

Definition 5. In the minimum-weight read-once NAE-resolution refutation problem, each clause
of Φ is assigned a nonnegative weight. The goal is to find a read-once NAE-resolution refutation
with minimum total weight.

To find the minimum-weight read-once NAE-resolution refutation for a 2CNF formula, we
construct a weighted NAE-implication graph. In this graph, each edge is assigned the same weight
as the corresponding 2CNF clause. We then run a modified version of Algorithm 1 on this
weighted graph to find the minimum-weight path from x̄i to xi.

We now discuss the notion of minimal NAE-read-once in CNF formulas.

Definition 6. A CNF formula Φ isminimal NAE-read-once, if Φ has a read-once NAE-resolution
refutation, but no sub-formula of Φ has a read-once NAE-resolution refutation.

Definition 6 lets us define the following problem.

Definition 7. The Minimal NAE-resolution Refutability (MNRR) problem is the problem of
determining if a CNF formula Φ is minimal NAE-read-once.

The computational complexity of the MNRR problem for general CNF formulas is unknown.
However, Algorithm 1 can be used to solve the MNRR problem for 2CNF formulas in polynomial
time.

Theorem 7. MNRR for 2CNF formulas is in P.

Proof. Let Φ be an NAE-unsatisfiable 2CNF formula, and let p be the path returned by run-
ning Algorithm 1 on Φ . If Φ is minimally NAE-read-once, then any read-once NAE-resolution
refutation of Φ must use every clause in Φ . Thus pmust use every clause in Φ .

As described above, the path p produced by Algorithm 1 is the minimum read-once NAE-
resolution refutation ofΦ . Thus, if p uses all the clauses ofΦ , then any read-once NAE-resolution
refutation of Φ must use all the clauses of Φ . This means that Φ is minimally NAE-read-once.

Since Algorithm 1 runs in polynomial time, theMNRR problem for 2CNF formulas is in P.

6. Read-Once NAE-Resolution Refutations for 3CNF Formulas
In this section, we examine the problem of finding read-once NAE-resolution refutations for
3CNF formulas. We refer to this problem as ROR-NAE-3SAT.

Now we focus on applying NAE-resolution to formulas in 3CNF. We show that, given a
formula Φ , the problem of checking whether the formula Φ ∪ Φc has an ROR refutation is NP-
complete. Since ROR – the set of formulas in CNF for which an ROR exists – isNP-complete, we
see that ROR-NAE-3SAT is in NP. Therefore, we only have to show NP-hardness. This is done
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by a reduction to the problem of deciding whether a formula in 2CNF has an ROR refutation
(ROR-2CNF). This problem is known to be NP-complete (Kleine Büning et al., 2018).

Let Φ be a 2CNF formula. We construct the 3CNF formula Φ∗ as follows:

1. For each variable xi of Φ , create the variable xi for Φ∗.
2. Create the variable x0 for Φ∗.
3. For each clause φ ∈ Φ , create the clause (φ ∨ x0) ∈ Φ∗.

Example 5. Consider the following 2CNF formula Φ :

(x1, x2) (¬x2, x3)
(¬x1,¬x4) (x3,¬x4)

Applying this construction to Φ results in the following 3CNF formula:

(x1, x2, x0) (¬x2, x3, x0)
(¬x1,¬x4, x0) (x3,¬x4, x0)

This construction is used to prove the NP-completeness of ROR-NAE-3SAT.

Theorem 8. ROR-NAE-3SAT is NP-complete.
Proof. Let Φ be a 2CNF formula and let Φ∗ be the 3CNF formula made from Φ by the preceding
construction. We show that Φ ∈ ROR-2CNF if and only if Φ∗ ∈ ROR-NAE-3SAT.

Assume thatΦ ∈ ROR-2CNF. An ROR refutation Φ |ROR � can easily be extended to the read-
once NAE-resolution derivation Φ∗ |ROR x0. Thus, by Theorem 2, Φ∗ is in ROR-NAE-3SAT.

Now suppose thatΦ∗ is in ROR-NAE-3SAT.Wemust show thatΦ has an ROR refutation. We
do this by showing that every resolution step done on the 3CNF clauses corresponds to a valid
derivation on the 2CNF clauses.

We have the following cases:

1. (xi, xj, x0) |NAE-ext (¬xi,¬xj,¬x0): Both of these clauses correspond to the 2CNF clause
(xi, xj). If (xi, xj) is satisfied, then both (xi, xj, x0) and (¬xi,¬xj,¬x0) are NAE-satisfied by
setting x0 to false.

2. (xi, xj, x0), (¬xk,¬xl,¬x0) | 1
RES (xi, xj,¬xk,¬xl): This corresponds to the two CNF clauses

(xi, xj,¬xk,¬xl) and (¬xi,¬xj, xk, xl). However, these are made redundant by the 2CNF
clauses (xi, xj) and (xk, xl) which are already derivable from Φ . Thus, no NAE-resolution
refutation of Φ∗ performs a resolution step centered on x0.

3. (xi, xj, x0), (¬xj,¬xk, x0) | 1
RES (xi,¬xk, x0): This corresponds to the resolution step

(xi, xj), (¬xj,¬xk) | 1
RES (xi,¬xk). Since Φ |RES (xi, xj) and Φ |RES (¬xj,¬xk), this is a valid

derivation from Φ .

Thus, all steps in the NAE-resolution refutation of the 3CNF formula correspond to steps
used in the resolution refutation of the original 2CNF formula. Thus, Φ∗ has a read-once
NAE-resolution refutation if and only if Φ the has an ROR refutation.

The problem of finding read-one resolution refutations is NP-complete for 2CNF formulas
(Kleine Büning et al., 2018). Thus, the problem of finding read-once NAE-resolution refutation
for 3CNF formulas is NP-complete.

Since there exist 2CNF formulas without read-once refutations, there exist 3CNF formulas
instances without read-once NAE-resolution refutations.
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Example 6. The following 2CNF formula does not have a read-once refutation:
(x1, x2) (x3, x4)

(¬x1,¬x3) (¬x1,¬x4)
(¬x2,¬x3) (¬x2,¬x4)

Thus, by the preceding theorem, the following 3CNF formula does not have a read-once NAE-
resolution refutation.

(x1, x2, x0) (x3, x4, x0)
(¬x1,¬x3, x0) (¬x1,¬x4, x0)
(¬x2,¬x3, x0) (¬x2,¬x4, x0)

7. Conclusion
In this paper, we introduced the notion of NAE-resolutions and show how they can be applied
to the problem of checking NAE-satisfiability in CNF formulas. Prior to our work, the standard
approach in the literature was to convert the NAE-satisfiability problem to simple satisfiability.
Our principal contribution is showing that the problem of checking whether a 2CNF formula
has a read-once NAE-resolution is in P. Furthermore, we showed that the problem of finding the
optimal length read-once NAE-resolution is also in P. This is in stark contrast to the problem
of checking whether a 2CNF formula has a read-once refutation, which we have shown to be
NP-complete Kleine Büning et al. (2018).

From our perspective, the following problems are worth investigating:

1. We showed that the problem of checking whether a 3CNF formula has a read-once
NAE-resolution refutation is NP-complete. An interesting related problem is the fol-
lowing: Given an NAE-unsatisfiable 3CNF formula which has at least one read-once
NAE-resolution, what is the complexity of determining the optimal length read-once
NAE-resolution?

2. We examined the problem of finding read-once NAE-resolution refutations for both
2CNF formulas and 3CNF formulas. However, the same problem remains open for other
restricted CNF formulas including Horn formulas. It would be instructive to study the
complexity of finding read-once NAE-resolution refutations of these other restricted forms
of CNF formula.
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Note
1 This paper extends the work in Kleine Büning et al. (2017) with additional results.
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