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The ‘hanging flag’ problem: on the heaving
motion of a thin filament in the limit of small
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We investigate the fluid–structure interaction of a vertically hanging filament immersed
in uniform incompressible high Reynolds number flow. The filament is subject to
small-amplitude harmonic heaving at its upstream edge, and to a gravity-induced
(‘hanging chain’) tension force. We focus on the limit of small bending rigidity to
examine the differences between a highly elastic beam (where bending rigidity is
small but finite) and a membrane (where bending rigidity vanishes). The problem
is analysed by means of thin airfoil theory, in conjunction with a discrete vortex
model for the downstream wake. Denoting the filament non-dimensional rigidity
(normalized by the tension force) by ε̄, it is first verified that the beam deflection and
associated flow field converge to the membrane solution at ε̄→ 0. At low actuation
frequencies, the differences between the membrane and beam motions are small,
and both follow a nearly rigid-body motion parallel to the upstream-edge actuation.
With increasing frequency, the differences between the beam and membrane become
visible at increasingly lower values of ε̄, and the stabilizing effect of beam flexural
rigidity, resulting in reduced flapping amplitudes, is apparent. Examining the beam
motion near its edge points at non-small frequencies, semi-analytic approximations
for the associated time-periodic displacements are obtained. Close to the actuated end,
a layer of width ε̄1/2 is found, where the flexural rigidity term in the equation of
motion is balanced by the tension term. Here, the differences between the beam and
membrane deflections are attributed to the additional zero-slope condition satisfied by
the former. In the vicinity of the free end, a local Taylor expansion is carried out. A
balance between the bending and inertia terms results in a layer of width ∝ ε̄1/4/ω̄

1/2
h ,

where ω̄h denotes the scaled heaving frequency. The layer is therefore thicker than the
upstream layer for ω̄h ≈ 1, and becomes thinner with increasing ω̄h. Within the layer,
the beam deflects linearly with the distance from the edge, in marked difference from
a membrane and in accordance with the free-end conditions satisfied by the former.
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The ‘hanging flag’ problem 191

1. Introduction
The ‘hanging chain’ problem, considering the in vacuo motion of a string suspended

at its upper end, free at its lower end and subject to a downward gravity force, is
a classical problem in structural dynamics that has been studied extensively over the
years (Hagedorn & Dasgupta 2007). The problem was first considered by Daniel
Bernoulli during the 18th century, who used it as a model case for introducing the
Bessel eigenfunctions. Ever since, it has served as a useful set-up for analysing
the small- and large-amplitude vibrations developed in thin non-stiff bodies that are
subject to external forcing (e.g. Bailey 2000; Belmonte et al. 2001). In the original
formulation of the problem, the chain’s dynamic balance consists of body inertia
and gravity-driven tension, while the impact of structural bending rigidity is omitted.
Yet, this latter effect always exists, even if to a limited extent, and is known to
have crucial importance in various applications in civil and mechanical engineering
(Antman 2004; Hagedorn & Dasgupta 2007), including fatigue phenomena in cables,
development of bending stresses in pipe assemblies and pipeline laying operations.

From a mathematical point of view, inclusion of the bending rigidity effect, even
in a linearized formulation, fundamentally changes the problem type from second to
higher order in space, and imposes the satisfaction of additional end-point conditions.
In an effort to analyse the singular impact of this change, several works have
investigated the eigen- and external-force-induced motions of an elastic beam in
the limit of small bending stiffness (Lakin 1975; Schafer 1985; Denoel & Canor
2013), applying asymptotic and numerical methods. Notably, all of these studies
considered in vacuo set-ups, where no consideration has been taken of the coupling
with surrounding media. Even so, the problem in hand was found challenging enough
so that no complete analytical investigation could be carried out, and ‘patching’ of an
outer numerical solution with inner asymptotic approximations had to be employed
(Denoel & Canor 2013).

In parallel with the above investigations, a large number of works have recently
analysed a geometrically similar, yet fundamentally different, ‘flapping flag’ problem,
where the fluid–structure interaction of a thin filament with uniform incoming
flow is considered (see Alben & Shelley (2008), Shelley & Zhang (2011) and
references cited therein). This model problem has been shown to be relevant in a
variety of engineering applications, including the development of energy harvesting
methodologies (Allen & Smits 2001), optimization of propulsion performance in
single-body and group environments (Liao et al. 2003; Michelin & Llewellyn Smith
2009), the mechanical modelling of palatal snoring (Huang 1995) and the evaluation
of aerodynamic sound during flapping flight (Sarradj, Fritzsche & Geyer 2011; Manela
2012). In a typical set-up, no account is taken of gravity effects (unless a more
involved three-dimensional problem is considered, see Huang & Sung (2010)) and
the flag is modelled as an elastic fixed–free beam. When considering the linearized
problem, all tension forces are neglected, and the leading-order dynamic balance
consists of inertia, bending rigidity and fluid loading effects.

Inasmuch as structural rigidity is always present in a hanging chain set-up, it may
be argued that tension forces always exist in a flapping flag (commonly modelled
as an Euler–Bernoulli beam) configuration. Such forces may originate from either
structure-induced effects (to maintain filament inextensibility), viscous boundary-layer
loading or any other external forcing acting parallel to the unperturbed body state.
In the small-amplitude regime, it may be shown that the effect of structure-induced
tension is of higher order (Alben 2008) and may thus be neglected. Additionally,
the relatively small magnitude of drag-induced tension at high Reynolds number
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192 A. Manela and M. Weidenfeld

flows makes its impact minor (Manela & Howe 2009). To consider the third type of
externally induced tension, Datta & Gottenberg (1975) have studied the free vibrations
developed in an infinitely long elastic strip hanging vertically in a downward stream.
A simplified ‘slender-body’ description was applied to model the pressure loading
acting on the body. This model essentially neglects the effects of downstream wake
and filament end points on the developed motion. A similar theoretical approach was
applied later on, and validated experimentally, by Lemaitre, Hemon & de Langre
(2005), to analyse the flutter instability of a long ribbon hanging in axial air flow.
Following a different line of research, several works (Spriggs, Messiter & Anderson
1969; Dowell & Ventres 1970; Gibbs & Dowell 2014) have considered the ‘membrane
paradox’, referring to an apparent contradiction between the instability properties of
elastic panels and membranes in supersonic flows. Apart from considering supersonic
flow conditions, a simplified ‘piston-like’ aerodynamic model was assumed, and only
fixed–fixed (or clamped–clamped) configurations were analysed.

Given the above, the objective of the present work is to study the impact of small
structural bending rigidity on the forced motion of a tensioned filament subject to
low-speed flow. We investigate the fluid–structure interaction of a finite-chord flag
immersed in a uniform incompressible flow and subject to a gravity force in its axial
direction. Focusing on the limit of small body flexural stiffness, we seek to contrast
the dynamic response of a membrane (having no bending rigidity) with an elastic
beam. For an elastic ‘flag’, such an investigation is of particular interest, since the
typical rigidity involved (proportional to the third power of the filament thickness)
is arguably very small. In contrast with previous studies, the present analysis takes
account of the body-end effects and fully models the wake generated by the filament
interaction with the flow. This enables investigation of the impact of the difference in
boundary conditions between the membrane and the beam on the results and allows
quantitative discussion of the end-layer type of motion observed near the flag edges.
To the best of our knowledge, no such investigation has been carried out in previous
works.

The set-up considered in this work is of a two-dimensional hanging flag actuated
at its upstream end by harmonic small-amplitude heaving motion. This is different
from the free-vibration investigations that were carried out in the past. The reason
for considering this set-up is that it enables detailed analysis of the system response
at a specified frequency, which appears of particular interest in the present context.
Incompressible high Reynolds number flow conditions are assumed, supporting
application of thin airfoil potential flow theory for the analysis. In § 2, the general
problem is formulated. The problem scaling and details on the numerical scheme of
solution are given in § 3. The convergence of the beam to the membrane displacement
in the limit of small bending stiffness is discussed in § 4. The particular effect of flag
bending rigidity is analysed in § 5, where the cases of small and non-small actuation
frequencies are considered separately. Our conclusions are discussed and assessed in
§ 6.

2. Formulation of the problem
The problem set-up is described in figure 1. Consider a two-dimensional thin elastic

filament of length 2a, mass per unit area ρs and bending rigidity EI. The filament is
immersed in uniform flow of speed U in the x1-direction and is subject to a gravity
body force, g = gx̂1. At time t > 0, sinusoidal heaving actuation is applied at the
structure upstream end,

ξ(x1 =−a)= ξ̄ha sin(ωht). (2.1)
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The ‘hanging flag’ problem 193

FIGURE 1. (Colour online) Schematic of the hanging flag set-up: a flexible filament of
length 2a is hanging in uniform flow of speed U at zero incidence and actuated at its
upstream end with a small-amplitude heaving motion. A wake, composed of discrete point
vortices with positive (red) and negative (blue) circulations, is released from the filament
downstream end.

In (2.1), ξ(x1, t) marks the filament displacement in the x2-direction, ξ̄h� 1 (with an
overbar marking a non-dimensional quantity) is the scaled heaving amplitude and ωh

denotes the prescribed heaving frequency. In line with hanging chain theory (Hagedorn
& Dasgupta 2007), the gravity-driven tensile force acting on the filament per unit
length is independent of structure vibrations and is given by

T(x1)= ρsg(a− x1). (2.2)

The tension takes its maximal value (equal to the filament total mass per unit length)
at the actuated edge x1=−a, and vanishes at the free end x1= a. Based on the above
description, the filament displacement ξ(x1, t) is governed by the linearized equation
of motion (Antman 2004; Hagedorn & Dasgupta 2007)

ρs
∂2ξ

∂t2
+ EI

∂4ξ

∂x4
1
− ρsg

∂

∂x1

(
(a− x1)

∂ξ

∂x1

)
=1p(x1, t), (2.3)

balancing structural inertia, bending stiffness, tensile force and fluid loading terms.
On the right-hand side, 1p = p− − p+ denotes the fluid pressure jump between
the filament’s lower (p−) and upper (p+) surfaces. It is through this term, inevitably
missing in previous analyses of the in vacuo hanging chain problem, that the structure
motion and fluid dynamical problems are coupled.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.547


194 A. Manela and M. Weidenfeld

Assuming high Reynolds number conditions, we consider the flow field to be
inviscid. The small amplitude of filament deflections (see (2.1)) then allows the
application of thin airfoil theory to describe the fluid dynamical problem. In line
with the unsteady conditions considered and the Kelvin theorem, continuous vortex
shedding occurs at the structure ends. At the small angles of attack assumed, the flow
at the filament’s upstream end and along its chord is regarded as attached, and release
of vorticity is allowed only at the structure’s downstream edge. To describe the time
evolution of filament wake, we make use of a discrete vortex representation, where,
at each time step, a concentrated line vortex is released to the flow, with strength Γk
fixed by the Kelvin theorem and the instantaneous time change in filament circulation
(see figure 1). While discrete models are known to be sensitive to the initial locations
and core modelling of the nascent vortex (Saffman & Baker 1979; Sarpkaya 1989),
our results indicate, to the extent that the present small-amplitude set-up is considered,
that the chosen wake description is converged in both time and space. At each time
step 1t, the nascent point vortex is placed at a distance U1t in the mean flow
direction from the instantaneous position of the trailing edge. Once released, the
trajectory of each wake vortex follows from a potential flow calculation, as formulated
below (see (2.8)). Recalling the continuous semi-infinite sheet representation applied
by Theodorsen (1935), and the discrete Brown and Michael description used by
several authors (e.g. Michelin & Llewellyn Smith (2009), Manela & Huang (2013))
in similar set-ups, the present approach has the combined advantages of analysing
an initial value problem (where the nonlinear wake evolution is followed), and being
‘nearly continuous’, where a vortex is released at each time step. The latter simplifies
the complication of analysing the nascent vortex dynamics through the Brown and
Michael equation, which has been previously criticized (Peters & Hirschberg 1993;
Howe 1996).

Adopting the thin airfoil methodology, the filament is represented through its
circulation distribution per unit length, γ (x1, t). Using complex notation and denoting
the conjugate velocity of the potential flow field by W(z), the impermeability condition
takes the form

∂ξ

∂t
+U

∂ξ

∂x1
=−Im{W(z)|−a6x16a}, (2.4)

where

W(z)=U −
i

2π

(
N∑

k=1

Γk

z− zΓk

+

ˆ a

−a

γ (s, t) ds
z− s

)
. (2.5)

At the filament surface

W(z)|−a6x16a =U −
i

2π

(
N∑

k=1

Γk

x1 − zΓk

+

 a

−a

γ (s, t) ds
x1 − s

)
, (2.6)

where the barred integral sign denotes a Cauchy principal value integral. In (2.4)–(2.6),
z= x1 + ix2 marks the complex representation of a point in the plane of motion and
zΓk denotes the instantaneous location of the kth trailing-edge vortex. The pressure
jump 1p across the filament, appearing in the filament equation of motion (2.3), is
determined by the unsteady Bernoulli equation,

1p(x1, t)= ρ0Uγ (x1, t)+ ρ0
∂

∂t

ˆ x1

−a
γ (s, t) ds, (2.7)

where ρ0 denotes the mean fluid density.
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The ‘hanging flag’ problem 195

The wake vortices’ dynamics is coupled to the system through the right-hand side
of the impermeability condition (2.4). In line with potential flow theory, the motion
of each of these vortices is governed by

dzΓk

dt
=W∗Γk

(k= 1, 2, . . . ,N), (2.8)

where W∗Γk
marks the complex conjugate of the conjugate velocity induced at the

instantaneous location of the kth wake vortex. Removing the vortex self-singularity,
WΓk(z) is expressed by

WΓk(z)=U −
i

2π

 N∑
m=1
m6=k

Γm

zΓk − zΓm

+

ˆ a

−a

γ (x1, t) dx1

zΓk − x1

 . (2.9)

The total system circulation is conserved by applying Kelvin’s theorem,

ΓN =−

(
N−1∑
k=1

Γk +

ˆ a

−a
γ (x1, t) dx1

)
, (2.10)

which fixes the strength of the nascent vortex ΓN .
Formulation of the problem is completed by ensuring regularity of the flow field at

the filament’s free end through the unsteady Kutta condition,

γ (a, t)= 0. (2.11)

Additionally, in line with the filament equation of motion (2.3), initial and end
conditions are specified. Assuming no structure displacements at times t < 0, we
impose

ξ(x1, 0−)= 0,
(
∂ξ

∂t

)
(x1,0−)

= 0. (2.12a,b)

Considering the upstream-end actuation in (2.1) and free-end conditions at x1= a, the
boundary conditions are

ξ(−a, t)= ξ̄ha sin(ωht),
(
∂ξ

∂x1

)
(−a,t)

= 0,
(
∂2ξ

∂x2
1

)
(a,t)

= 0,
(
∂3ξ

∂x3
1

)
(a,t)

= 0.

(2.13a−d)
We assume that release of the first trailing-edge vortex occurs at t = 0. The system
evolution is then followed for t > 0 via numerical integration. Details regarding the
problem scaling and numerical procedure are given in § 3.

3. Scaling and numerical analysis
To obtain a numerical solution, the dimensional problem formulated in § 2 is

non-dimensionalized using the aerodynamic scales a, U, a/U, ρ0U2 and 2πaU
for the length, velocity, time, pressure and vortices circulations, respectively.
Omitting presentation of the full non-dimensional problem for brevity, the scaled
form of the filament equation of motion (2.3) is

µ̄ᾱ
∂2ξ̄

∂ t̄2
+ ε̄

∂4ξ̄

∂ x̄4
1
−

∂

∂ x̄1

(
(1− x̄1)

∂ξ̄

∂ x̄1

)
= ᾱ1p̄, (3.1)
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where non-dimensional quantities are marked by overbars. The equation is accompanied
by the scaled form of the boundary conditions (2.13),

ξ̄ (−1, t̄)= ξ̄h sin(ω̄h t̄),
(
∂ξ̄

∂ x̄1

)
(−1,t̄)

= 0,
(
∂2ξ̄

∂ x̄2
1

)
(1,t̄)

= 0,
(
∂3ξ̄

∂ x̄3
1

)
(1,t̄)

= 0.

(3.2a−d)
Equations (3.1) and (3.2) are governed by the non-dimensional parameters

µ̄=
ρs

ρ0a
, ᾱ =

ρ0U2

ρsg
, ε̄=

EI
ρsga3

, ξ̄h and ω̄h =
a
U
ωh, (3.3a−e)

denoting filament to fluid mass ratio, fluid dynamic pressure to gravity effects,
normalized filament rigidity and scaled heaving amplitude and frequency, respectively.
To illustrate our findings, we consider a case where ξ̄h= 0.01, in accordance with the
small-amplitude assumption set out in § 2, and focus on the limit of small bending
stiffness, ε̄� 1.

To satisfy the small-amplitude assumption, it is essential to consider parameter
combinations where the non-actuated hanging filament set-up is dynamically stable
– that is, (µ̄, ᾱ, ε̄) choices where the filament remains motionless in the absence
of upstream-end heaving. Our calculations indicate that, for a given choice of ε̄, µ̄
and ω̄h, there is a critical value ᾱ = ᾱcr, above which the amplitude of filament
displacement becomes large, thus violating the small deflection requirement. A
systematic study of the critical conditions for filament instability, yielding the
neutral surface ᾱcr = ᾱcr(ε̄, µ̄) for spontaneous filament motion, requires analysis
of the corresponding eigenvalue problem. While the instability of a hanging filament
has been studied previously using an approximate ‘slender-body’ model (Datta &
Gottenberg 1975; Lemaitre et al. 2005), no rigorous investigation of the coupled
fluid–structure interaction problem has been carried out hitherto. Lacking information
on the system instability properties, we consider only cases where small-amplitude
motions are obtained. In these cases, it has also been verified that once upstream-edge
actuations are terminated, the filament reacquires its initial unperturbed state. Our
following results are presented for a fixed choice of µ̄ = 5 and ᾱ = 0.2, and the
numerical calculations indicate that no qualitative differences are observed when
choosing other subcritical (µ̄, ᾱ) combinations. The remaining free parameters are
therefore ε̄ � 1 and ω̄h, which effects are investigated hereafter. In one case, the
value of ᾱ is also changed to ᾱ = 0.02 (see figure 11).

Numerical solution of the dynamical problem requires discretization of the system
of equations in space (along the filament chord) and time (starting at t̄ = 0 to some
final time). Space discretization was needed to express the vorticity distribution
γ̄ (x̄1, t̄) along the filament, as well as the x̄1-derivatives appearing in the structure
equation of motion. To approximate the different terms in the equation of motion,
∼O(103) grid points were taken along the chord. The numerical solution for γ̄ (x̄1, t̄)
was obtained, in each time step, via expansion of γ̄ in a Fourier-type series, which
identically satisfies the Kutta condition (2.11) (Manela & Huang 2013). The series
was truncated after 20 terms and the system of equations was integrated in time using
a fourth-order Runge–Kutta algorithm. The typical time step used for integration was
π/200ω̄h (but not smaller than π/200 for ω̄h < 1), which proved sufficient for
convergence of the results with error .0.5 %. While our scheme yields the entire
time history of the system starting at t̄ = 0, we focus on the final periodic state of
the structure deflection and flow field, and not on the initial transient response. Cases
where non-periodic large-amplitude motions were obtained are beyond the scope of
the present work and are not considered here (see § 6). The numerical scheme was
used to analyse both the elastic beam and membrane (see § 4.1) problems.
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4. Convergence of the solution at ε̄→ 0

4.1. The problem for an actuated membrane
Focusing on the filament dynamics in the limit of small bending rigidity, we start
by discussing the limit case set-up of an actuated membrane, where ε̄ ≡ 0. Here,
the bending rigidity term is missing from the dynamical balance (3.1), and the
small-amplitude membrane displacement ξ̄mem(x̄1, t̄) (associated with the pressure
jump 1p̄mem(x̄1, t̄)) is governed by

µ̄ᾱ
∂2ξ̄mem

∂ t̄2
−

∂

∂ x̄1

(
(1− x̄1)

∂ξ̄mem

∂ x̄1

)
= ᾱ1p̄mem. (4.1)

Having removed the fourth-order derivative term, only two end conditions may
accompany (4.1). Yet, while the imposition of the heaving displacement condition
at the upstream end x1 = −1 is obvious, the choice for an appropriate free-end
condition seems unclear in the absence of body structural stiffness. Notably, the
second derivative tension term in (4.1) vanishes at x̄1 = 1, modifying the type of the
equation near the edge. Our calculations then indicate that the application of only the
single heaving condition,

ξ̄mem(−1, t̄)= ξ̄h sin(ω̄h t̄), (4.2)

suffices to formulate a well-posed problem. Although this conclusion has been noted
in previous studies of the counterpart in vacuo problem, it is not a trivial consequence
in the present fluid–structure interaction problem. The purpose of this section is to
demonstrate how the elastic filament solution at non-zero ε̄ � 1 converges to the
membrane ε̄= 0 solution of the problem (4.1)–(4.2).

Before comparing between the membrane and elastic filament displacements and
flow fields, it is worthwhile noting that the membrane position is amenable to a Bessel
series representation. Based on hanging chain theory (Hagedorn & Dasgupta 2007),
ξ̄mem may be expanded in the form

ξ̄mem(x̄1, t̄)= ξ̄h sin(ω̄h t̄)+
∞∑

n=1

Ān(t̄)J0

(
2ω̄n

√
µ̄ᾱ(1− x̄1)

)
, (4.3)

where J0 marks the Bessel function of the first kind and zeroth order and ω̄n satisfies
the characteristic equation

J0

(
ω̄n

√
8µ̄ᾱ

)
= 0. (4.4)

Equation (4.4) ensures that the actuated-end condition (4.2) is identically satisfied
by (4.3). The time-dependent coefficients An(t) in (4.3) are determined via the
orthogonality properties of J0, yielding

Ān(t̄)=
1

4µ̄ᾱ(J1(ω̄n
√

8µ̄ᾱ))2

ˆ √8µ̄ᾱ

0
(ξ̄mem(s̄, t̄)− ξ̄h sin(ω̄h t̄))J0(ω̄ns̄)s̄ ds̄, (4.5)

where J1 denotes the Bessel function of the first kind and first order and the variable
of integration is s̄ = 2

√
µ̄ᾱ(1− x̄1). In a numerical calculation, the Bessel series is

truncated at some finite n=N and the accuracy of expressing the solution via a finite
series may be examined through comparison with the finite-difference solution (see
figure 4 et seq.).
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FIGURE 2. (Colour online) Numerical convergence of the filament displacement to the
membrane solution at ε̄→ 0: comparison between the membrane deflection (ε̄= 0, black
solid lines) and the elastic filament displacement for ε̄ = 10−6 (dashed blue lines), 10−4

(dash-dotted red lines) and 10−2 (dotted magenta lines), at (a) ω̄h = 0.5 and (b) ω̄h = 5.
The results are plotted at time t̄= T̄ = 2π/ω̄h.

4.2. Comparison between the membrane and filament motions
To examine the convergence of the elastic filament solution to the membrane
displacement, figure 2 presents a comparison between the membrane ε̄ = 0 and
filament deflections at decreasing values of ε̄ = 10−2, 10−4 and 10−6. The results
are plotted at time t̄ = T̄ = 2π/ω̄h for low (ω̄h = 0.5, figure 2a) and large (ω̄h = 5,
figure 2b) values of the actuation frequency.

Starting with the low ω̄h = 0.5 frequency case, we observe that the differences
between the filament and membrane solutions are small at the chosen values of ε̄.
These differences are mainly confined to the vicinity of the free end and decrease
with decreasing ε̄. This behaviour changes considerably when considering the large
frequency ω̄h= 5 response in figure 2(b). Here, the amplitude of structure deflection is
an order of magnitude larger than for ω̄h= 0.5. In addition, the ε̄= 10−2 displacement
is markedly different (and confined to a much smaller amplitude) from the membrane
deflection, from which even the ε̄ = 10−6 solution deviates considerably. While these
deviations vanish at lower values of ε̄ (not shown here), it is observed that the
convergence of the filament to the membrane solution requires lower values of ε̄ at
larger actuation frequencies. Notably, the differences between the solutions are not
confined to the vicinities of the structure end points, and are visible along the entire
−1 6 x̄1 6 1 filament chord.

To gain further insight into the convergence of the solution, figure 3(a–c) compares
between the membrane and filament deflections at a fixed location (x̄1 = 1 in
figure 3(a,c); x̄1 = 0.6 in figure 3b) and at the same values of ε̄ = 10−2, 10−4

and 10−6 as in figure 2. Additionally, figure 3(d,e) compares between the membrane-
and filament-body circulations, obtained by integration over the circulation per unit
length γ̄ (x̄1, t) over the structure chord,

Γ̄body(t̄)=
ˆ 1

−1
γ̄ (x̄1, t̄) dx̄1. (4.6)

In accordance with Kelvin’s theorem, Γ̄body(t̄) is fixed by the instantaneous sum of
circulations of all wake vortices (see (2.10)). The results are plotted over a period,
0 6 t̄ 6 T̄ , for low (ω̄h = 0.5, figure 3a,d) and large (ω̄h = 5, figure 3b,c,e) actuation
frequencies.
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FIGURE 3. (Colour online) Numerical convergence of the filament displacement and
circulation to the membrane solution at ε̄→ 0: (a–c) comparison between the membrane
deflection (ε̄ = 0, black solid lines) and counterpart filament displacement for ε̄ = 10−6

(dashed blue lines), 10−4 (dash-dotted red lines) and 10−2 (dotted magenta lines), at (a)
ω̄h= 0.5 and x̄1= 1; (b) ω̄h= 5 and x̄1= 0.6; and (c) ω̄h= 5 and x̄1= 1. (d–e) Comparison
between the membrane and filament circulations at the same values of ε̄ for (d) ω̄h= 0.5
and (e) ω̄h = 5. The results are plotted over a period.

Considering the body deflections, figure 3(a) reconfirms the results in figure 2(a),
indicating that the differences between the membrane and filament positions are
negligible at the low values of ε̄ and ω̄h considered. Figure 3(b,c) then demonstrates
the different behaviour at large frequencies, characterized by considerably larger
deflections, and marked differences between the membrane and various ε̄ 6= 0
displacements. These differences become larger with increasing distance from the
fixed end (cf. figure 3b,c), as the position of the structure at x̄1 =−1 is identical in
all configurations (cf. the displacement conditions in (3.2) and (4.2)). Similar trends
are observed when comparing the results for the body circulation in figure 3(d,e).
As in figure 3(a–c), the differences between the membrane and filament systems are
nearly indiscernible for ω̄h = 0.5, but are considerable for ω̄h = 5, even for ε̄ = 10−6.
Here, convergence of the filament to the membrane solution is obtained only at lower
values of ε̄.

A more detailed study on the effect of ω̄h on the differences between the membrane
and filament systems is presented in figure 4, where the structure’s deflections and
wake forms are compared for 1 6 ω̄h 6 4. The comparison of the body deflection,
shown in figure 4(a–d), indicates that the differences between the solutions increase
from ω̄h = 1 (where the displacements are nearly identical) to ω̄h = 4 (where
the differences are visible along the entire chord). The y-axis range between the
figures differs to better visualize the differences for each ω̄h. For ω̄h = 2, the close
similarity between the wake forms in figure 4(e, f ) demonstrates the convergence
of the filament- and membrane-induced flow fields. Notably, the membrane shapes
appearing in figure 4(a–d) are reminiscent of the first four Bessel eigenfunctions,
J0(2ω̄n

√
µ̄ᾱ(1− x̄1)) (n= 1, 2, 3, 4), introduced in § 4.1. While they are not identical,
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FIGURE 4. (Colour online) Numerical convergence of the filament deflection and wake
form to the membrane solution at ε̄ → 0: (a–d) comparison between the membrane
deflection (ε̄=0, black solid lines) and the filament displacement for ε̄=10−6 (dashed blue
lines) at (a) ω̄h= 1, (b) ω̄h= 2, (c) ω̄h= 3 and (d) ω̄h= 4. (e–f ) Comparison between the
wake forms of the (e) membrane and ( f ) ε̄= 10−6 filament for ω̄h= 2. The red and blue
dots indicate wake vortices with positive and negative circulations, respectively. All results
are plotted at period time, t̄= T̄ = 2π/ω̄h.

our calculations indicate that the periodic modes depicted in figure 4 are well
approximated by the first ten (and even less) terms in the Bessel series expansion (4.3).
Mathematically, this approximation cannot be applied to capture the filament motion
(even if it is nearly identical with the membrane displacement, as in figure 4a), since
the Bessel series terms do not satisfy the actuated-free boundary conditions (3.2). The
fundamental differences arising from the change in the boundary conditions, which
become significant at non-small actuation frequencies, are analysed in § 5.
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5. The effect of filament bending stiffness
In terms of problem formulation, the filament and membrane models differ in both

an additional fourth-order bending rigidity term in the filament equation of motion
(cf. (3.1) and (4.1)), and a change in the structure boundary conditions (cf. (3.2)
and (4.2)). Having described the numerical differences between the membrane and
filament motions in § 4.2, it also appears clear that the convergence of the latter to
the former in the limit ε̄ → 0 depends significantly on the value of the actuation
frequency ω̄h. In this section, we address the cases of relatively small (ω̄h . 1, § 5.1)
and non-small (ω̄h & 1, § 5.2) actuation frequencies separately, and focus in each case
on the particular effect of bending stiffness on the differences between the elastic
and non-elastic structure behaviours.

5.1. The case ω̄h . 1
To quantify the effect of structure bending stiffness on the filament deflection at low
actuation frequencies, we introduce

∆̄mem =
1
ξ̄hT̄

ˆ T̄

0
|ξ̄ (1, t̄)− ξ̄mem(1, t̄)| dt̄ and ∆̄act =

1
ξ̄hT̄

ˆ T̄

0
|ξ̄ (1, t̄)− ξ̄h sin(ω̄h t̄)| dt̄,

(5.1a,b)
denoting the period-integrated deviation of the filament free-end position from its
counterpart membrane location, and the integrated deviation of the filament’s free
end from the heaving actuation signal, respectively. The field ∆̄act is used to measure
the deviation of the filament position from a rigid-body displacement, where the
entire structure deflects in accordance with the actuating signal, ξ̄rigid = ξ̄h sin(ω̄h t̄).
Notably, when the actuation frequency is small, the forcing time scale (∼ω̄−1

h ) is
much larger than the convective time scale (∼1 in non-dimensional units). It is
therefore of interest to examine whether the structure, even if non-rigid, follows its
upstream-end actuation with no significant x̄1-variations of the displacement, ξ̄ ≈ ξ̄rigid.
In the present non-rigid set-up, such ‘rigid-body’ motion may hold only up to some
limited value of ω̄h, above which the combined effects of structure inertia and fluid
loading should cause visible x̄1-gradients along the structure chord.

To visualize the effect of bending stiffness on the low-frequency response of the
filament, figure 5 presents the ω̄h variations of ∆̄mem (figure 5a) and ∆̄act (figure 5b)
for different values of ε̄. Figure 5(c) shows the variation with ω̄h of the value of
ε̄ for which ∆̄mem = 0.05, as a measure of the level of stiffness required to achieve
certain convergence between the elastic beam and membrane motions. Focusing on
figure 5(a,b), it is observed that both ∆̄mem and ∆̄act increase with ω̄h, which indicates
that the filament motion becomes more distinct from both membrane and rigid-body
deflections with increasing actuation frequency. Yet, the effect of ε̄ on ∆̄mem and ∆̄act
at fixed ω̄h is opposite: while ∆̄mem increases with increasing ε̄, ∆̄act decreases with
ε̄. In terms of the structure’s motion, a stiffer filament vibrates in a nearly rigid-body
motion up to larger values of ω̄h; at the same time, the departure between the filament
and membrane displacements becomes more pronounced at larger ω̄h for higher ε̄.
These two trends reflect on the dampening effect of bending rigidity on filament
vibrations, whose amplitude decreases markedly with increasing ε̄, particularly in the
vicinity of the body free end. Figure 5(c) further emphasizes on the impact of ω̄h
on the deviation between the membrane and beam deflections, by quantifying the
decrease in filament rigidity required for convergence of the filament to the membrane
solution at increasing values of the actuation frequency.
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FIGURE 5. Variation with ω̄h of the (a) period-integrated difference between filament and
membrane free-end deflection, ∆̄mem; (b) period-integrated difference between filament free-
end and actuated-end deflection, ∆̄act; and (c) value of ε̄ for which ∆̄mem = 0.05. The
numbers in (a,b) indicate the values of ε̄ in each curve.

5.2. The case ω̄h & 1

When the forcing time scale ω̄−1
h becomes of the order of (or shorter than) the

convective time scale (∼1), the inertia term in the equation of motion (3.1) or
(4.1), being O(ω̄2

h) at the periodic state, becomes more pronounced. This, in turn, is
balanced by all other x̄1-derivative terms in the equation. It is therefore at non-small
actuation frequencies that considerable x̄1-gradients appear along the structure’s chord,
leading to higher-order mode-type deflections of the membrane (see figure 4). In the
context of the filament equation of motion (3.1), such gradients are also manifested
through the bending rigidity term (= ε̄ ∂4ξ̄ /∂ x̄4

1), which becomes non-negligible even
at ε̄� 1, as demonstrated below.

In this section, we analyse the filament motion at ω̄h & 1, and focus on the
structural dynamics near its edges, where the impact of structure boundary conditions
is expected to dominate. At each end, we identify the leading-order balance and aim
at approximating the motion observed. Lacking an analytic description for an ‘outer’
solution far from the edges, any matching between the end layers and bulk solution
is carried out numerically, based on the full numerical calculation described in §§ 2
and 3.

5.2.1. Actuated-end layer
Inspection of the numerical solution for the filament in the vicinity of the actuated

end x̄1 =−1 indicates that the equation of motion (3.1) is dominated by the bending
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stiffness and tension terms (see figure 7a). Seeking an inner-layer description that
corresponds to this observation, we introduce the inner coordinate

η̄= ε̄β(x̄1 + 1), (5.2)

and expand the inner solution in powers of ε̄,

ξ̄act(η̄, t̄)≈ ξ̄ (0)act (η̄, t̄)+ ε̄α ξ̄ (1)act (η̄, t̄)+ · · · . (5.3)

To fix β in (5.2) and obtain the leading-order problem, the stiffness and tension terms
in (3.1) are balanced. This yields β =−1/2 and determines the width δ̄act of the inner
layer,

δ̄act = ε̄
1/2. (5.4)

The O(ε̄−1) equation for ξ̄ (0)act (η̄, t̄) is then

d4ξ̄ (0)act

dη̄4
− 2

d2ξ̄ (0)act

dη̄2
= 0, (5.5)

where the non-constant coefficient 1− x̄1 of the second derivative tension term in (3.1)
has been approximated by ≈2. The general solution for (5.5) is

ξ̄ (0)act (η̄, t̄)= c̄1(t̄)η̄+ c̄2(t̄)+ c̄3(t̄) exp
[
−
√

2η̄
]
+ c̄4(t̄) exp

[√
2η̄
]
, (5.6)

subject to the actuated-end boundary conditions (see (3.2))

ξ̄ (0)act (0, t̄)= ξ̄h sin(ω̄h t̄) and
(

dξ̄ (0)act

dη̄

)
(0,t̄)

= 0, (5.7a,b)

used to fix the time-dependent coefficients c̄1(t), . . . , c̄4(t). Omitting the exponentially
diverging part of the solution (5.6) and applying (5.7), we find

ξ̄ (0)act (η̄, t̄)= ξ̄h sin(ω̄h t̄)+ c̄(t̄)
(
−1+

√
2η̄+ exp

[
−
√

2η̄
])
, (5.8)

which contains a single time-dependent coefficient c̄(t̄) that should be calculated. At
the system final periodic state, the harmonic time dependence of c̄(t̄) is known, and
only its amplitude should be determined.

To proceed with the calculation of c̄(t̄), the inner solution should be matched with
an appropriate outer description. A similar, yet simpler, problem has been considered
by Kevorkian & Cole (1981) (see § 2.8 therein), who examined the motion of an
elastic beam subject to external forcing that is independent of the structure deflection.
The tension along the beam was assumed constant, and a fixed end condition was
applied at both ends. After calculating the inner and outer solutions, asymptotic
matching was used to obtain a composite description. This led to a staggered scheme,
where the constants of integration at a given order were fixed through the solution of
the succeeding order. Unlike Kevorkian & Cole (1981), the present problem for the
‘outer’ region is not amenable to a closed-form solution. Fixing the composite solution
therefore requires numerical matching to obtain the constant of integration c̄(t̄). To
simplify this procedure and avoid the analysis of an inner–outer staggered scheme, we
compute c̄(t̄) by patching the full numerical solution for ξ̄ with ξ̄ (0)act at x̄1=−1+ ε̄1/2.
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This, as shown below, produces results that are in satisfactory agreement with the
full numerical calculation throughout the inner layer (see figure 6).

To complete the description of expansion (5.3) and fix α, we note that the problem
for the first-order correction ξ̄ (1)act (η̄, t̄) balances the correction terms of the bending and
tension terms with the leading-order pressure term (see (3.1)). The latter, containing
a characteristic square root (x̄1 + 1)−1/2 leading-edge singularity, is O(ε̄−1/4) in terms
of the inner-layer coordinate (see (5.2) with β = −1/2). Consequently, the value of
α= 3/4 in (5.3) is fixed. We omit pertinent presentation of the problem for ξ̄ (1)act (η̄, t̄),
as our analysis is confined to matching the leading-order solution ξ̄ (0)act with the full
numerical calculation. It is nevertheless important to note that the fluid loading term
does not dominate the actuated-layer dynamics and is not included in the leading-order
balance, despite its inherent upstream-end singularity.

To examine the accuracy of the inner-layer description ξ̄ (0)act (x̄1, t̄), we introduce

1ξ̄ (0)act (x̄1, t̄)= ξ̄ (0)act (x̄1, t̄)− ξ̄h sin(ω̄h t̄) and 1ξ̄(x̄1, t̄)= ξ̄ (x̄1, t̄)− ξ̄h sin(ω̄h t̄), (5.9a,b)

and compare between 1ξ̄ (0)act and 1ξ̄ in the vicinity of the actuated end. These
fields mark the local deviations of the inner-layer approximation and full numerical
solution from the actuated-end displacement, ξ̄h sin(ω̄h t̄), respectively. For reference,
the counterpart deviation for a membrane,

1ξ̄mem(x̄1, t̄)= ξ̄mem(x̄1, t̄)− ξ̄h sin(ω̄h t̄), (5.10)

is also introduced.
The comparison is presented in figure 6, showing x̄1-distributions and time variations

of 1ξ̄(x̄1, t̄), 1ξ̄ (0)act (x̄1, t̄) and 1ξ̄mem(x̄1, t̄) for ω̄h = 4 in the vicinity of the actuated
end. Having removed the upstream-end actuation component of the deflection, the
fields show the part of structural motion caused by structure dynamical response and
associated fluid–structure interaction. For the chosen parameters, it is observed that
this part of the motion is smaller in amplitude compared with the actuation signal
(ξ̄h = 10−2). This is since, for low ε̄, the actuated layer is confined to the filament
upstream end, where the motion amplitude is imposed by the actuation boundary
condition.

At the chosen values of ε̄= 10−4 and ε̄= 10−2, the layer widths are δ̄act= 10−2 and
δ̄act=10−1, respectively, as marked by the dashed vertical lines in figure 6(a,c). Within
these layers, the results show close agreement between the exact solution (black
solid lines) and actuated-layer approximation (dashed blue lines). As expected, the
agreement between the curves becomes less satisfactory outside the layer, particularly
for the higher ε̄ = 10−2 case presented (see the deviation between the dashed and
solid curves in figure 6(c) for x̄1 > −0.9). For the chosen value of ω̄h = 4, the
amplitudes of the patching variable c̄(t) in ξ̄ (0)act (see (5.8) et seq.) are 3.57 × 10−4

for ε̄ = 10−4 and 1.37 × 10−3 for ε̄ = 10−2, reflecting the differences in filament
displacement amplitudes between the two ε̄ cases. Notably, the membrane deflections
presented in figure 6 are considerably different from both numerical and approximate
displacements (cf. the dash-dotted curves in figure 6), even at the low values of
ε̄ considered. These differences are mainly attributed to the additional zero-slope
boundary condition satisfied by the elastic filament, not imposed on the membrane.
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FIGURE 6. (Colour online) Comparison between 1ξ̄(x̄1, t̄) (black solid lines), 1ξ̄ (0)act (x̄1, t̄)
(dashed blue lines) and 1ξ̄mem(x̄1, t̄) (dash-dotted red curves), in the vicinity of the actuated
end x̄1 =−1 for ω̄h = 4. Panels (a,c) present x̄1-distributions of the fields at the indicated
times (t̄ = 3T̄/4 and t̄ = T̄) for ε̄ = 10−4 (a) and ε̄ = 10−2 (c). The vertical dashed lines
mark the downstream end of the actuated-end layer, x̄1=−1+ δ̄act. Panels (b,d) show the
counterpart time variations of the fields over a period at the layer’s middle point, x̄1 =

−1+ δ̄act/2, for ε̄= 10−4 (b) and ε̄= 10−2 (d).

5.2.2. Free-end approximation
Traversing to the filament’s free-end motion, we note that, in contrast with the

actuated-end problem, no boundary conditions are imposed on ξ̄mem(x̄1, t̄) at x̄1 = 1.
Thus, having two additional moment- and force-free conditions on the filament free
end (cf. (3.2) and (4.2)) is expected to affect the structure dynamics considerably.
This should be followed by a consequent increase in the bending rigidity term in the
filament equation of motion near the free end.

Remarkably, our results indicate that only a minor increase in the bending rigidity
term occurs near x̄1 = 1. As a result, all terms in the equation, including the inertia,
pressure jump, tension and bending, are of similar magnitude. This is in contrast
with the actuated-layer behaviour discussed in § 5.2.1, where a leading-order equation,
balancing an O(ε̄−1) bending rigidity term with the tension (see (5.5)), was identified.
To characterize the difference in end dynamics, and compare the orders of magnitude
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FIGURE 7. (Colour online) x̄1-variations of the amplitudes of the various terms in the
equation of motion (3.1) (see (5.11)) for ω̄h=4 and ε̄=10−4 in the vicinity of the actuated
end (a) and free end (b). The vertical dashed lines mark the edges of the actuated- and
free-end layers.

of the various terms in the filament equation of motion, figure 7 presents the x̄1-
variations of the amplitudes of

M =
∣∣∣∣µ̄ᾱ ∂2ξ̄

∂ t̄2

∣∣∣∣ , B=
∣∣∣∣ε̄ ∂4ξ̄

∂ x̄4
1

∣∣∣∣ , T1 =

∣∣∣∣ ∂ξ̄∂ x̄1

∣∣∣∣ , T2 =

∣∣∣∣(1− x̄1)
∂2ξ̄

∂ x̄2
1

∣∣∣∣ , Π = |ᾱ1p̄|,

(5.11a−e)
for ω̄h = 4 and ε̄ = 10−4 in the vicinity of the actuated end (figure 7a) and free
end (figure 7b). The results are based on the full numerical calculation. Figure 7(a)
clearly shows that the bending stiffness term is balanced by the second-order tension
term near the actuated end, while all other contributions are relatively negligible. In
contrast, no counterpart boundary-layer-type behaviour is observed near the free end.
This hinders direct analysis, in terms of conventional asymptotic matching, of the
downstream-end dynamics.

Despite the above observation, some insight into the free-end motion may be
obtained by expanding the filament displacement near x̄1 = 1 via a Taylor series,

ξ̄ (x̄1, t̄)≈ ξ̄FE(t̄)+
∂ξ

∂ x̄1

∣∣∣∣
FE

(x̄1 − 1)+
1
4!
∂4ξ

∂ x̄4
1

∣∣∣∣
FE

(x̄1 − 1)4 + · · · , (5.12)

where the subscript FE denotes the value of the function at the structure free end
x̄1= 1. Expansion (5.12) identically satisfies the free-end conditions in (3.2), since the
second and third derivative terms are missing, in marked difference from a membrane.
A similar expansion is carried out for the pressure jump acting on the body,

1p̄(x̄1, t̄)≈1p̄FE(t̄)+
∂1p̄
∂ x̄1

∣∣∣∣
FE

(x̄1 − 1)+ · · · . (5.13)

Introducing the free-end layer coordinate

η̄= ε̄β1(µ̄ᾱω̄2
h)
β2(1− x̄1), (5.14)
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substituting into (5.12), (5.13) and (3.1), and assuming harmonic time dependence of
the solution, we obtain the equation

−µ̄ᾱω̄2
h

[
ξ̄FE +

∂ξ̄

∂η̄

∣∣∣∣
FE

η̄+O(η̄2)

]
+ ε̄1+4β1(µ̄ᾱω̄2

h)
4β2

[
∂4ξ̄

∂η̄4

∣∣∣∣
FE

+
∂5ξ̄

∂η̄5

∣∣∣∣
FE

η̄+O(η̄2)

]
− ε̄β1(µ̄ᾱω̄2

h)
β2

[
∂ξ̄

∂η̄

∣∣∣∣
FE

+O(η̄2)

]
= ᾱ

[
1p̄FE +

∂1p̄
∂η̄

∣∣∣∣
FE

η̄+O(η̄2)

]
. (5.15)

The orders of magnitude of the inertia, bending and tension terms are found

µ̄ᾱω̄2
h, ε̄1+4β1(µ̄ᾱω̄2

h)
4β2 and ε̄β1(µ̄ᾱω̄2

h)
β2, (5.16a−c)

respectively. Note that the order of magnitude of the pressure jump term expectedly
equals the inertia term for µ̄ ∼ O(1), since 1p̄ contains a second time derivative
component, reflecting the ‘added mass’ of a vibrating body (Datta & Gottenberg 1975;
Lemaitre et al. 2005).

At this point, the values of β1 and β2 should be fixed. Remarkably, our results
indicate that, with increasing ε̄, a wider portion of the beam deflects linearly with
the distance from the free end. A similar trend is observed when ε̄ is fixed and ω̄h is
decreased. These observations are supported by numerical data collected for ε̄& 10−6,
and may not be valid in the entire ε̄→ 0 limit (see the discussion following (5.18)).
Yet, in view of the nearly indistinguishable differences between the membrane and
beam displacements at lower values of ε̄, the analysis presented below may be of
practical significance for studying the effect of small (yet finite) flexural stiffness.
Obtaining near-edge numerical data at lower values of ε̄ is exceedingly demanding,
and the consideration of this limit is not followed here.

Supported by the above, we balance the inertia and bending terms in (5.16) to fix
β1 =−1/4 and β2 = 1/4. Hence, the predicted width of the free-end layer is

δ̄free = ε̄
1/4/(µ̄ᾱω̄2

h)
1/4. (5.17)

By considering the ‘effective width’ of the layer, we refer to the x̄1-interval, x̄1 ∈ [1−
δ̄free, 1], through which the linear representation

ξ̄free(x̄1, t̄)= ξ̄FE(t̄)+
∂ξ

∂ x̄1

∣∣∣∣
FE

(x̄1 − 1) (5.18)

matches with the full numerical solution ξ̄ (x̄1, t̄). In the absence of a closed-form
description for the free-end motion, the actual values of ξ̄FE(t̄) and (∂ξ/∂ x̄1)FE (or, in
practice, their amplitudes, as their harmonic time dependence is known) are calculated
using the numerical solution. It is nevertheless of interest to examine to what extent
does the linear approximation hold away from the free end, and whether prediction
(5.17) is valid. According to (5.17), the layer indeed thickens with increasing body
stiffness (∝ε̄1/4) and decreasing inertia (∝(µ̄ᾱω̄2

h)
−1/4). At the same time, however, this

scaling results in an O(ε̄−1/4(µ̄ᾱω̄2
h)

1/4) tension term, which becomes exceedingly large
(even if at a relatively slow O(ε̄−1/4) rate) for ε̄→ 0. Excluding this limit from the
present discussion, as acknowledged above, we find that, for the range of parameters
considered here (ε̄ & 10−6 and ω̄h & 1), the amplitudes of the different terms in the
equation of motion appear of similar order (see figure 7b).
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FIGURE 8. (Colour online) Effect of ε̄ on the free-end layer: comparison between ξ̄ (x̄1, t̄)
(black solid lines), ξ̄mem(x̄1, t̄) (dash-dotted red lines) and ξ̄free(x̄1, t̄) (dashed blue lines), in
the vicinity of the free end x̄1= 1 for ω̄h= 2. Panels (a,c,e) present x̄1-distributions of the
fields at time t̄= T̄ for ε̄ = 10−4 (a), ε̄ = 10−3 (c) and ε̄ = 10−1 (e). The vertical dashed
lines mark the upstream ends of the free-end layers, x̄1 = 1 − δ̄free. Panels (b,d, f ) show
counterpart time variations over a period at x̄1 = 1 − δ̄free for ε̄ = 10−4 (b), ε̄ = 10−3 (d)
and ε̄= 10−1 ( f ).

To examine the validity of the free-end approximation, figures 8–11 present
comparison between the full numerical solution ξ̄ (x̄1, t̄) and approximate ξ̄free(x̄1, t̄)
prediction in the vicinity of x̄1 = 1. The results are presented for ω̄h = 2 (figure 8),
ω̄h = 4 (figure 9) and ω̄h = 8 (figure 11), with varying values of ε̄ and ᾱ, and for a
fixed value of ε̄ = 0.1 and varying ω̄h (figure 10). Each figure shows x̄1-distributions
of the fields at fixed times, and time variations of the solutions along a period at
the upstream edge of the layer, x̄1 = 1− δ̄free. In the former, the dashed vertical lines
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FIGURE 9. (Colour online) Effect of ε̄ on the free-end layer: comparison between ξ̄ (x̄1, t̄)
(black solid lines), ξ̄mem(x̄1, t̄) (dash-dotted red lines) and ξ̄free(x̄1, t̄) (dashed blue lines), in
the vicinity of the free end x̄1 = 1 for ω̄h = 4. Panels (a,c,e) present x̄1-distributions of
the fields at the indicated times (t̄= 3T̄/4 and t̄= T̄) for ε̄ = 10−4 (a), ε̄ = 10−3 (c) and
ε̄ = 10−1 (e). The vertical dashed lines mark the upstream ends of the free-end layers,
x̄1= 1− δ̄free. Panels (b,d, f ) show counterpart time variations over a period at x̄1= 1− δ̄free
for ε̄= 10−4 (b), ε̄= 10−3 (d) and ε̄= 10−1 ( f ).

mark the upstream edges of the layer. Figures 8–10 also present counterpart results
for a membrane. Figure 11 does not contain ξ̄mem(x̄1, t̄), as the membrane deflection
becomes large and non-harmonic at the (ω̄h, ᾱ) combination considered.

Starting with figure 8, we observe the effect of ε̄, which extends the layer width
at increasing values. This effect appears well captured by the dashed vertical lines,
and visible deviations between the numerical solution and linear approximation are
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FIGURE 10. (Colour online) Effect of ω̄h on the free-end layer: comparison between
ξ̄ (x̄1, t̄) (black solid lines), ξ̄mem(x̄1, t̄) (dash-dotted red lines) and ξ̄free(x̄1, t̄) (dashed
blue lines), in the vicinity of the free end x̄1 = 1 for ε̄ = 10−1. The panels present
x̄1-distributions of the fields at the times of maximum free-end displacement of the beam
along a period, for ω̄h = 1 (a), ω̄h = 2 (b) and ω̄h = 3 (c). The vertical dashed lines mark
the upstream ends of the free-end layers, x̄1 = 1− δ̄free.

observed only for x̄1 < 1− δ̄free. While the linear approximation is valid in a relatively
narrow layer of δ̄free ≈ 0.071 for ε̄ = 10−4, it extends to nearly one fifth of the
filament chord, δ̄free ≈ 0.398, for ε̄ = 10−1. In line with the discussion in § 4, the
differences between the filament and the membrane displacements increase with ε̄.
These differences do not vanish outside the layer, indicating the non-negligible effects
of bending rigidity and free-end conditions along the entire filament for ω̄h & 1.

Comparing between the results in figures 8 and 9, we observe that the increased
value of ω̄h in figure 9 results in a thinner layer. This can be viewed by examining
the differences between each of the plots in figure 8(a,c,e), and their counterparts in
figure 9(a,c,e), respectively. To further demonstrate this trend, figure 10 shows the
layer thinning with increasing ω̄h at constant ε̄ = 0.1, starting with δ̄free ≈ 0.562 at
ω̄h = 1, and decreasing to δ̄free ≈ 0.325 at ω̄h = 3. Physically, the increased inertial
effects occurring at higher ω̄h result in increased x̄1-gradients along the filament chord,
which, in turn, confine the linear approximation to a narrower layer. Inspecting the
differences between the beam and membrane deflections, we find, as in previous
figures, that they are larger for ω̄h = 4 in figure 9 compared with ω̄h = 2 in figure 8,
reflecting the slower ε̄ convergence between the solutions at increasing actuation
frequencies. The presentation of results is concluded with figure 11, showing the
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FIGURE 11. (Colour online) Effect of ᾱ on the free-end layer: comparison between
ξ̄ (x̄1, t̄) (black solid lines) and ξ̄free(x̄1, t̄) (dashed blue lines) in the vicinity of the free
end x̄1 = 1 for ω̄h = 8, ε̄ = 10−4 and ᾱ = 0.02. Panel (a) presents x̄1-distributions of the
fields at t̄ = T̄ , with the vertical dashed line marking the upstream end of the free-end
layer, x̄1 = 1 − δ̄free. Panel (b) shows the counterpart time variations along a period at
x̄1 = 1− δ̄free.

effect of decreasing ᾱ from its ᾱ = 0.2 value to ᾱ = 0.02. For a given filament, a
decrease in ᾱ is equivalent to reducing the incoming flow speed (see (3.3)), which,
in turn, diminishes the amplitudes of both inertia and pressure loading terms in the
equation of motion (3.1). This stabilizing effect is reflected by an ᾱ−1/4 thickening
of the free-end layer (see (5.17)), as confirmed by the results in the figure.

The free-end approximation (5.18) depends on numerical evaluation of ξ̄FE and
(∂ξ/∂ x̄1)FE, yet its main significance is in correctly predicting the extent to which
the linear description holds. A similar argument is in place in the context of the
actuated-layer analysis in § 5.2.1, where numerical patching has been applied. In
view of the complex nonlinear fluid–structure interaction involved, we consider these
estimates for the body motion, as well as the leading-order balances identified near
the edges, valuable.

6. Conclusion
We studied the fluid–structure interaction of a ‘hanging flag’, a vertically hanging

filament immersed in uniform incompressible flow, subject to small-amplitude
harmonic heaving at its upstream end. Focusing on the limit of small flexural
rigidity, we examined the differences between a highly elastic beam (where bending
rigidity is small but finite) and a membrane (where bending rigidity vanishes). The
problem was analysed by means of potential thin airfoil theory in conjunction with
a discrete vortex model for the downstream wake. Initially, it was verified that the
beam deflection and associated flow field converge to the membrane solution at small
bending rigidities, ε̄→ 0. At low actuation frequencies, the differences between the
membrane and beam motions were found small, as both are displaced in a nearly
rigid-body motion parallel to the upstream-edge actuation. With increasing frequency,
the differences between the beam and the membrane systems become visible at
increasingly lower values of ε̄, and the stabilizing effect of beam flexural rigidity,
resulting in reduced flapping amplitudes, was observed. Examining the beam motion
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near its edge points at non-small frequencies, semi-analytic approximations for the
associated time-periodic displacements were obtained. Close to the actuated end, a
layer of width ε̄1/2 was identified, where the flexural rigidity and tension terms in
the equation of motion were balanced. Here, the differences between the beam and
membrane deflections were attributed to the additional zero-slope condition satisfied
by the beam. In the vicinity of the free end, a local Taylor expansion was carried
out. A balance between the bending and inertia terms resulted in a layer of width
∝ ε̄1/4/ω̄

1/2
h . The free-end layer is thus thicker than the upstream-end layer for ω̄h≈ 1,

and becomes thinner with increasing ω̄h. Within the layer, the beam deflects linearly
with the distance from the edge, in marked difference from a membrane.

A main objective of the present work was to examine the effect of small structural
bending stiffness, in the presence of a non-small tension force, on the dynamical
behaviour of the system. In this respect, the inspection of the convergence of the
beam deflection and resulting flow field to the membrane solution, together with
the approximate analysis of the beam edges motion, complies with the research
goal. While the nonlinear fluid–structure interaction problem involved has obviated
closed-form matching of ‘inner layer’ to ‘outer’ descriptions, we consider the
numerical patching, as a means for validating the approximate description, valuable.
Importantly, the matching of the layers was made with the full numerical solution for
a beam and not for a membrane. This is since, for ω̄h & 1, non-small x̄1-gradients of
the displacement (driven by growing inertial effects) occur along the entire filament,
causing the bending rigidity term, and associated deviations between the membrane
and beam motions, to occupy the entire body chord (see, e.g. figures 2b and 4d).

The set-up considered in this work, of a hanging flag actuated at its upstream
end by harmonic heaving motion, has allowed for a detailed analysis of the system
response at specified frequencies. While this has assisted in rationalizing our findings,
the analysis is limited to choices of ω̄h where the system acquires a final periodic
state. Additional results, not presented here, indicate that, for a given combination of
the problem parameters µ̄, ᾱ and ε̄, there exists a critical value of ω̄h above which the
system response becomes non-periodic, and the body displacement is non-small. The
mapping of these states, as well as the analysis of the associated system dynamics,
are not in the scope of the present work. Noting this limitation, the current scheme
may be readily applied to analyse the system response to any subcritical (periodic or
non-periodic) forcing, characterized by long enough time scales. Further study on the
counterpart hanging flag eigenvalue problem, as well as investigation of the effect
of varying the actuated-free edge conditions conditions on the results, are topics for
future work.
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