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Our aim in this note is to make some conjectures about extremal densities of daisy-free families,
where a ‘daisy’ is a certain hypergraph. These questions turn out to be related to some Turán
problems in the hypercube, but they are also natural in their own right. We start by giving the
daisy conjectures, and some related problems, and shall then go on to describe the connection
with vertex-Turán problems in the hypercube.

This note is self-contained. Our notation is standard: in particular, we write [n] for {1, . . . , n},
and Qn for the n-dimensional hypercube (the set of all subsets of an n-point set). For a set X, we
write X(r) for the set of all r-element subsets of X. An r-graph (or r-uniform hypergraph) on X is
a subset of X(r). For background on hypergraphs see [2], and for background on Turán problems
in general see [10] and [8].

A daisy, or r-daisy, is a certain r-uniform hypergraph consisting of six sets: given an (r − 2)-
set P and a 4-set Q disjoint from P , the daisy on (P ,Q) consists of the r-sets A with P ⊂ A ⊂
P ∪ Q. We write this as D, or Dr. Our fundamental question is: How large can a family A of
r-sets from an n-set be if A does not contain a daisy?

As usual, if F is a family of r-sets, we write ex(n,F) for the maximum size of a family
of r-sets from an n-set that does not contain a copy of F , and π(F) or πr(F) for the limiting
density, namely the limit of ex(n,F)/

(
n
r

)
as n tends to infinity; a standard averaging

argument shows that this limit exists, and indeed that ex(n,F)/
(
n
r

)
is a decreasing function

of n.
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Conjecture 1. π(Dr) → 0 as r → ∞.

What is unusual here is that we are not so concerned with the actual values of πr(Dr) for
particular r: our main interest is in the limit of these values. We will see later why Conjecture 1
is related to Turán questions in the hypercube.

Since the hypergraph Dr is not r-partite, it follows that π(Dr) � r!/rr, as the complete r-partite
r-graph does not contain a daisy. For r = 2, a daisy is precisely a K4, and so Turán’s theorem
tells us that π(D2) = 2/3. Although, even for r = 3, we do not know what the limiting density
is, we believe we know what it should be.

Conjecture 2. π(D3) = 1/2.

To see where this conjecture comes from, note that the 3-graph on 7 vertices given by the
complement of the Fano plane does not contain a daisy. Here, as usual, the Fano plane is the
projective plane over the field of order 2; equivalently, it consists of the triples {a, a + 1, a + 3},
where the ground set is the integers mod 7. This gives ex(7,D3) � 28 = 4

5

(
7
3

)
. If we take a

blow-up of this, thus dividing [n] into 7 classes C0, . . . , C6 each of size �n/7� or 	n/7
 and
taking the 7-partite 3-graph consisting of all 3-sets whose 3 classes are not {Ca, Ca+1, Ca+3}
(with subscripts taken mod 7), we obtain ex(n,D3) � (1 + o(1)) 24

49

(
n
3

)
. But now we may iterate,

taking a similar construction inside each class, and so on. This gives a limiting density of 24/49

times 1 + 1/49 + 1/492 + · · · , which is exactly 1/2.
We do not even see any counter-example to a much stronger assertion, that this is the actual

best-possible example, at least if n is a power of 7. This reduces to the following conjecture.

Conjecture 3. Let n = 7k, and let A be a family of 3-sets of [n] not containing a daisy. Then
|A| � (1 − 1/49k) n3/12 = 1

2

(
n+1
3

)
.

This conjecture was independently made by Goldwasser [5], based on the same Fano plane
construction.

The above ‘daisy’ is actually part of a more general family. In general, an (s, t)-daisy D(s, t) =

Dr(s, t) consists of all of those r-sets A that contain a fixed (r − t)-set P and are contained in
P ∪ Q, where Q is a fixed s-set disjoint from P . Thus a (4, 2)-daisy is precisely a daisy in our
earlier sense.

Conjecture 4. Let s and t be fixed. Then π(Dr(s, t)) → 0 as r → ∞.

Perhaps the most natural case of this is when s = 2t: see later. In fact, in a sense this is the only
case: since Dr(s, t) is contained in Dr(s + 1, t) and also in Dr(s + 1, t + 1), to verify Conjecture 4
it would be enough to verify it for the case s = 2t.

Conjecture 4 certainly holds when t = s − 1, as then we are simply asking that our family
should contain no s r-sets from any (r + 1)-set. Averaging gives π(Dr(s, s − 1)) � s−1

r+1
, which

tends to zero as required. Conjecture 4 also holds if t = 1, as our condition is now that no (r − 1)-
set can be contained in s r-sets in our family. Hence our family has size at most

(
n

r−1

)
(s − 1)/r,
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whence π(Dr(s, 1)) = 0 for all r. (Alternatively, as Dr(s, 1) is r-partite, one may use the well-
known result of Erdős [4] that the limiting density for any r-partite r-graph is zero.) Thus our
starting case of the (4, 2)-daisy is in fact the first non-trivial case.

We digress briefly to point out that a related notion is far simpler to analyse. A daisy (a (4, 2)-
daisy) consists of 6 r-sets in a set of size r + 2. Suppose that, rather than forbidding an actual
daisy, we instead do not allow any (r + 2)-set to contain 6 (or more) r-sets. In this case it is easy
to see that we cannot have a constant proportion of the r-sets (as r → ∞), because averaging
gives that the proportion of r-sets in our family is at most 6/

(
r+2
2

)
.

The situation is the same if we replace our ‘6’ with any function that is o(r2). However, this
changes the moment we reach a constant times r2. Indeed, suppose that we wish to insist that
no (r + 2)-set contains cr2 r-sets, for a given constant c. Partition [n] into k sets of size n/k (for
some suitable constant k), and take the family A of all r-sets that have between (1 − δ)r/k and
(1 + δ)r/k points in each class (for some small constant δ) and have even-size intersection with
each class (or, if r is odd, one intersection size is odd). This is a positive proportion of all r-sets,
and yet no (r + 2)-set R can contain cr2 sets from A. Indeed, R would have to meet every class
of the partition in roughly between (1 − δ)r/k and (1 + δ)r/k points (or else it will contain no
sets from A). And now it is easy to check that if R meets all classes in an even number of points
then the number of sets of A contained in R is less than cr2 (if k is large enough), and similarly
if the intersection sizes of R with the classes have any given parities.

Let us remark that the notion of an (s, t)-daisy is only the ‘tip of the iceberg’. Indeed, more
generally we could combine any two hypergraphs, in the sense that we combined one (r − t)-set
and the family of all t-sets from an s-set to form the (s, t)-daisy. Thus, given hypergraphs F and
G, we define F ∗ G to be the hypergraph, on ground-set the disjoint union of the ground-sets of
F and G, whose edges are all sets of the form A ∪ B, where A ∈ F and B ∈ G. For example, if
both F and G are complete graphs, say on s and t points respectively, then F ∗ G is a 4-graph
consisting of all 4-sets on [s + t] that meet [s] in exactly 2 points.

A rather general question is as follows.

Problem 5. Let F be an r-graph and G be an s-graph. How does πr+s(F ∗ G) compare to πr(F)

and πs(G)?

One very interesting case of this is when F and G are the same hypergraph. More generally,
let us write Fd for the d-fold product F ∗ . . . ∗ F .

Problem 6. Let F be a fixed r-graph. As d varies, how does πdr(Fd) behave?

We do not even know what happens when F = [s](r), i.e., F consists of all r-sets of an s-set.
We now turn to the connection with Turán problems in the hypercube. Indeed, it was this link

that led us to define the notion of a daisy in the first place. The basic vertex-Turán problem in the
hypercube Qn is as follows: How many points do we need to meet all the d-cubes of an n-cube?
We are interested in the behaviour as n gets large, for fixed d. (We mention in passing that there
are also a host of edge-Turán problems in the hypercube: see [1] and the references therein.)

We clearly need at least a fraction 1/2d (of the total number of points, 2n), just to meet all
of the d-cubes in a given direction. From the other side, if we take every (d + 1)st layer of the
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n-cube (where a layer means [n](r) for some r) then we certainly meet every d-cube, and this
shows that we can take a fraction 1/(d + 1) of the n-cube.

Let us write td for the limiting density (which exists, by averaging). The behaviour of td was
investigated by Alon, Krech and Szabó [1], who showed that in a (d + 2)-cube we need at least
log d points to meet every d-cube (logs are to base 2). By averaging, this gives that td is at
least (log d)/2d+2. And, remarkably, these bounds of (log d)/2d+2 � td � 1/(d + 1) are all that
is known in general about the asymptotic behaviour of td. The only exact values that are known
are t1, which is trivially seen to be 1/2, and t2, which is 1/3, as shown by E. A. Kostochka [9]
and by Johnson and Entringer [7]. See also Johnson and Talbot [6] for related results.

We believe that td = 1/(d + 1), and, as we now explain, the problems on daisies relate to this.
Suppose we consider the case d = 4 (it turns out to be slightly simpler to consider d even), and

we look at just those 4-cubes that go from layer n
2

− 2 to layer n
2

+ 2 (assuming that n is even):
we call these the middle 4-cubes. And suppose further that we wish to meet all of these cubes
using only points in the middle layer of the cube. We conjecture that nearly all of the points of
the middle layer must be used.

Conjecture 7. Let n be even, and let A be a subset of [n](n/2) that meets every middle 4-cube.
Then |A| � (1 − o(1))

(
n

n/2

)
.

We think that Conjecture 7 might be the ‘right first step’ in showing that t4 = 1/5.
We claim that Conjecture 1 implies Conjecture 7. Indeed, suppose that (for n large) A is a

subset of [n](n/2) that meets every middle 4-cube. For a given value of r, consider those sets in A
that contain a fixed ( n

2
− r)-set R: this corresponds exactly to a family of r-sets (from a ground-

set of size n
2

+ r) that meets every daisy, and so by Conjecture 1 has size at least (1 − o(1))
( n

2 +r
r

)
.

Averaging over all such R, we obtain |A| � (1 − o(1))
(

n
n/2

)
, as required.

In fact, Conjecture 1 is actually equivalent to Conjecture 7. For Conjecture 7, in the language of
daisies, states precisely that ex(n,Dn/2)/

(
n
n/2

)
→ 0 as n → ∞, which implies that π(Dn/2) → 0.

Similarly, we make the following conjecture, which we hope would be a step towards showing
that td = 1/(d + 1).

Conjecture 8. Let d be fixed. Let n be even, and let A be a subset of [n](n/2) that meets every
middle 2d-cube. Then |A| � (1 − o(1))

(
n

n/2

)
.

Just as Conjecture 1 is equivalent to Conjecture 7, so Conjecture 4 for the parameters (2d, d)

is equivalent to Conjecture 8. This is why the case s = 2t seems the most interesting case of
Conjecture 4.

Finally, we mention briefly a beautiful conjecture of Johnson and Talbot [6], about meeting
d-cubes in several points, that is also closely tied to our daisy problems. They conjecture that if
we have a positive fraction of the vertices of the n-cube then (for n sufficiently large) there must
be some d-cube containing at least

(
d

�d/2�
)

points of our family. (This is the greatest number of
points of a d-cube that one could ask for, because of the family consisting of every (d + 1)st layer
of the n-cube.)

It is easy to see that Conjecture 4 is actually equivalent to this conjecture. Indeed, if A is a
subset of Qn of positive density then A must contain a positive proportion of a layer not far from
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the middle layer of the n-cube, and Conjecture 4 (plus averaging) now yields a Dr(d, �d/2�) for
suitable r just as above. In the other direction, if Conjecture 4 were false then, by putting together
suitable counter-examples on every (d + 1)st layer (for layers not far from the middle layer), we
could find a subset of the n-cube of positive density that did not contain

(
d

�d/2�
)

points of any
d-cube.

This connection with the Johnson–Talbot conjecture was independently observed by Bukh [3],
who also made Conjecture 4 independently.
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