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SUMMARY

The implementation of an international programme
for reducing carbon emissions from deforestation
and degradation (REDD) can help to mitigate
climate change and bring numerous benefits to
environmental conservation. Information on land
change modelling and carbon mapping can contribute
to quantify future carbon emissions from deforest-
ation. However limitations in data availability and
technical capabilities may constitute an obstacle for
countries interested in participating in the REDD
programme. This paper evaluates the influence of
quantity and allocation of mapped carbon stocks and
expected deforestation on the prediction of carbon
emissions from deforestation. The paper introduces
the conceptual space where quantity and allocation
are involved in predicting carbon emissions, and
then uses the concepts to predict carbon emissions
in the Brazilian Amazon, using previously published
information about carbon mapping and deforestation
modelling. Results showed that variation in quantity
of carbon among carbon maps was the most influential
component of uncertainty, followed by quantity of
predicted deforestation. Spatial allocation of carbon
within carbon maps was less influential than quantity
of carbon in the maps. For most of the carbon maps,
spatial allocation of deforestation had a minor but
variable effect on the prediction of carbon emissions
relative to the other components. The influence of
spatial carbon allocation reaches its maximum when
50% of the initial forest area is deforested. The method
can be applied to other case studies to evaluate the
interacting effects of quantity and allocation of carbon
with future deforestation on the prediction of carbon
emissions from deforestation.
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INTRODUCTION

The implementation of a mechanism for reducing carbon
emissions from deforestation and forest degradation in
developing countries (REDD) can constitute a competitive
and cost-effective alternative to mitigate climate change
and bring numerous benefits for environmental conservation
(Kindermann et al. 2008; Ebeling & Yasué 2008; Venter et al.
2009; Sangermano et al. 2012). The estimation of reference
emissions levels is one of the most challenging issues for
REDD in developing countries (Verchot & Petkova 2010;
Scheyvens 2010; Sloan & Pelletier 2012). Reference emissions
levels refer to the amount of emissions from deforestation
against which any country’s verified reduction will be credited
(Busch et al. 2011).

The United Nations Framework Convention on Climate
Change (UNFCCC 2009) requests that countries should
establish reference levels ‘transparently taking into account
historic data, and adjust [them] for national circumstances’.
This decision allows great flexibility on the approaches used
for setting reference levels, which might be based on either
historical or projected deforestation rates (Griscom et al. 2009;
Verbist et al. 2011; Scheyvens 2010). Although reference
emissions levels should consider historic data, decisions have
not been made about the approaches countries should take
to build reference levels (Verchot & Petkova 2010; Cerbu
et al. 2011). The development of methods to integrate historic
data with information about drivers of deforestation for
building scenarios can improve the estimation of reference
emissions levels and is a key research area for supporting the
implementation of a REDD programme (Verchot & Petkova
2010; GOFC-GOLD [Global Observation of Forest and Land
Cover Dynamics] 2010; Corbera et al. 2010; Alexandrov 2011).

The use of land change models to set reference emissions
levels allows the incorporation of a variety of driving factors
to predict deforestation, thus models can project scenarios of
deforestation and carbon emissions based on possible changes
of input variables as a consequence of changes in national
circumstances and not just historic trends (Soares-Filho et al.
2006; Parker & Mitchel 2009; Umemiya et al. 2010). This
is particularly important for countries with historically low
deforestation rates and a high proportion of forests remaining,
which might be left out from any possibility of obtaining
carbon credits if reference emissions levels are set based on
only historic deforestation data (daFonseca et al. 2007; Cerbu
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Table 1 Components of uncertainty used to predict carbon emissions from deforestation.

Components of uncertainty Deforestation Carbon
Quantity (non spatial) How much area is deforested? How much carbon is in the study area?
Allocation (spatial) Where does deforestation happen? How is carbon distributed among pixels?

et al. 2011). Umemiya et al. (2010) found modelling land
changes to be superior to using only historic data to develop
REDD national reference levels since modelling can better
reflect the national circumstances related to deforestation
and the effect of policy efforts to reduce deforestation. Land
change modelling has also proved useful in estimating REDD
carbon benefits in project-level studies (Harris et al. 2008;
GOFC-GOLD 2010; Kim 2010) and is recommended as best
practice for the implementation of REDD projects by well-
established international methodological standards (Estrada
2011).

Land change modelling has typically been used to predict
future carbon emissions from deforestation by projecting how
much and where deforestation will happen and then estimating
emissions based on the carbon values assigned to the areas
where deforestation is predicted (de Jong et al. 2005; Soares-
Filho et al. 2006; Brown et al. 2007; Harris et al. 2008). In these
applications, land change modellers face the need to evaluate
the accuracy of their models. Accuracy for land change models
has been traditionally assessed based on the ability of a model
to predict deforestation in terms of quantity (how much area
will be deforested) and allocation (where deforestation will
occur) (Pontius et al. 2008a). However, if the purpose of using
land change models is to estimate carbon emissions, then it
makes more sense to evaluate a model based on its ability to
estimate carbon emissions. This evaluation depends not only
on the accuracy of the model to predict quantity and allocation
of deforestation, but also on the information available about
carbon, expressed similarly in terms of quantity (how much
carbon is in the landscape) and allocation (how it is distributed
in space) (Table 1).

In this paper, we analyse the influence of quantity and
allocation of both carbon stocks and future deforestation on
the prediction of carbon emissions from deforestation. For
this purpose, we first introduce our conceptual framework by
illustrating the analytical space where quantity and allocation
come into play when predicting carbon emissions, and the
degree to which the variation of each component influences
the relative role of the others in the estimation of carbon
emissions. Then we apply these concepts to a real case,
based on published information about carbon mapping and
deforestation modelling in the Brazilian Amazon. This paper
does not intend to analyse all factors affecting uncertainty
in the prediction of carbon emissions from deforestation.
We argue that if the influence of factors can be quantified,
then those factors can be expressed in the input carbon and
land change maps as data ranges or predicted scenarios. Our
method analyses available maps to express those data ranges
or prediction scenarios in terms of quantity and allocation,

and then evaluates their influence in the prediction of carbon
emissions from deforestation. Our work, although potentially
applicable, does not consider carbon removals or other REDD
activities than deforestation.

Quantity and allocation of carbon and deforestation

To illustrate our conceptual framework, we assume that
modellers have two maps. The first map shows the carbon
density in every pixel in the study area at an initial year,
typically expressed in Mg ha−1. The second map shows the
pixels where deforestation is predicted cumulatively every
year since the initial year of prediction. The information
contained in both the carbon and the deforestation maps can
be described in terms of quantity and allocation. From the
carbon map, the sum of the carbon stocks in all pixels in
the study area is the carbon quantity (CQ). Carbon allocation
(CA) concerns the carbon density assigned to each pixel in the
landscape. From the deforestation map, deforestation quantity
(DQ) is the total cumulative proportion of the initial forest
cover that a model predicts to be deforested at a specific year.
Deforestation allocation (DA) refers to the spatial distribution
of pixels where deforestation is predicted. Both CQ and
DQ are non-spatial components of uncertainty since they
can be represented numerically, regardless of how carbon or
deforestation are distributed spatially. CA and DA are spatial
components because they are best represented as a map.

To facilitate the description of our conceptual framework,
we assume that once deforestation is predicted in a particular
pixel, all carbon in that pixel is emitted. This is not the
case in reality (Fearnside 2000; Houghton 2005; Ramankutty
et al. 2007). However, carbon emissions are usually predicted
proportional or equal to the carbon density in pixels where
deforestation is modelled (Soares-Filho et al. 2006; Brown
et al. 2007; Castillo-Santiago et al. 2007; Harris et al. 2008).
Pontius et al. (2008b) and Pontius and Millones (2011)
introduced the concepts of quantity and allocation, and
demonstrated their value for comparing both continuous and
categorical maps.

Carbon predicting space

The maximum amount of emissions that can be predicted for
a given quantity of deforestation occurs when deforestation is
allocated systematically in the pixels with the highest carbon
values in the carbon map. Conversely, the minimum amount of
emissions that can be predicted happens when deforestation is
allocated in the pixels with the lowest carbon values. We refer
to these two cases as the maximum and minimum emission
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Figure 1 Components of uncertainty on the prediction of carbon
emissions from deforestation. The horizontal axis is the quantity of
cumulative deforestation (DQ) expressed as a percentage of initial
forest cover. The vertical axis is the predicted carbon emissions
expressed in units of mass of carbon. CQ is the total amount of
carbon in the initial landscape represented by a particular carbon
map. (a) Graphical representation of the maximum (MaxE),
minimum (MinE), and mean (MeanE) scenarios and the carbon
predicting space. (b) Influence of each component of carbon
emissions. The influence of CQ (denoted by CQI) is measured as
the total amount of carbon in the landscape and is independent of
DQ. The influence of CA (denoted by CAI) is the difference
between the maximum and minimum scenarios at a particular value
of DQ. The influence of DQ (denoted by DQI) is measured as the
carbon emissions under the mean scenario at a particular value of
DQ. The influence of DA (denoted by DAI) is the modelled
emissions minus the mean emissions at a particular value of DQ.

scenarios (MaxE and MinE, respectively). The mean scenario
(MeanE) corresponds to a case where carbon emissions are
estimated as the mean carbon density in the study area
multiplied by the total quantity of deforestation. Under the
mean scenario, only information about quantity is considered.
The mean scenario implicitly assumes a uniform distribution
of carbon in the landscape, in which case MaxE and MinE
would both be equal to MeanE.

Cumulative carbon emissions under the maximum,
minimum and mean scenarios graphically resemble the shape
of a leaf when deforestation quantity ranges from 0 to 100%
(Fig. 1a). The upper and lower borders of the leaf represent
the maximum and minimum emission scenarios for a given
quantity of deforestation. The area bounded by these two
scenarios is defined as the carbon predicting space, since any
prediction of carbon emissions must fall on or between these

two dashed boundaries. The central vein of the leaf is the mean
scenario. The carbon map alone determines the predicting
space, namely the edges and stem of the leaf. Larger spatial
variation in the carbon map produces a wider leaf, while a
more uniform spatial distribution produces a narrower leaf.

Influence of quantity and allocation of carbon and
deforestation on predicted carbon emissions

We examine the relative influence of DQ, DA, CQ and
CA on the prediction of carbon emissions and identify
the maximum and minimum carbon emissions that can be
predicted theoretically based on variations of these four
components. We use the notation DQ, DA, CQ and DA to
refer to concepts and we refer to their influence on carbon
emissions by appending the letter I at the end of each two-
letter abbreviation (for example DQI).

The influence of DQ on carbon emissions, DQI,
corresponds to the estimation of carbon emissions using
information about quantity only, namely the emissions
calculated under the mean scenario for a particular value
of DQ: DQI = DQ × CQ. This approach assumes that, in
absence of spatial information about deforestation, carbon
emissions are estimated by multiplying the total amount of
deforestation by the mean carbon values in the study area, as
has been suggested elsewhere (Gibbs et al. 2007; Olander et al.
2008). When quantity of deforestation is zero, emissions are
zero. No other components of uncertainty influence the result
since there is no deforestation to allocate. When quantity of
deforestation is equal to 100%, then all the area is deforested,
so carbon emissions depend uniquely on and are equal to
the total quantity of carbon in the carbon map (CQ). At this
extreme, allocation of carbon and deforestation are irrelevant
because deforestation occurs in the entire area and the amount
of predicted emissions is the same regardless of how carbon is
allocated.

The influence of DA on carbon emissions, DAI, is visually
represented by any curve that falls inside the carbon predicting
space (Fig. 1b), where the curve is produced by a particular run
of a model that predicts deforestation. DAI measures the effect
of using spatial information about projected deforestation on
predicting carbon emissions compared to not using spatial
information at all, and therefore is measured as the emissions
predicted by the modelled scenario minus the emissions
represented by the mean scenario at any particular value
of DQ (Fig. 1b). The magnitude of DAI depends on how
the model allocates deforestation. If deforestation is allocated
systematically in the pixels with the highest carbon values,
then DAI is at its maximum possible value for a specific value
of DQ and is positive. Similarly, if deforestation is allocated
systematically in the pixels with the lowest carbon values, then
DAI is at its minimum possible value for a specific value of
DQ and is negative. If deforestation is allocated randomly,
then carbon emissions will tend to be near the values obtained
under the mean scenario, in which case DAI is near zero.
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Figure 2 Illustration of the theoretical influence of carbon quantity
and allocation on the prediction of carbon emissions from
deforestation. CQmax in the vertical axis in (a) expresses the total
amount of carbon represented by the map with the highest quantity
of carbon among a particular set of carbon maps. Axes in (b) and (c)
are as given in Figure 1.

The influence of CQ on carbon emission, CQI, is
represented in the leaf graph as the emissions when
deforestation quantity is equal to 100% (Fig. 1b). Therefore
CQI is measured as the total amount of carbon in the study
area, thus CQI equals CQ. When CQ is zero, none of the other
components of uncertainty matter in the estimation of carbon
emissions. No carbon means that emissions are always zero,
regardless of how much or where deforestation is predicted.
As quantity of carbon is higher, the slope of the stem is steeper;
meaning the marginal increment of emissions by an increase

in one unit of quantity of deforestation tends to be higher since
CQ determines the slope of the stem of the leaf. (Fig. 2a).

The influence of CA on carbon emissions, CAI, is measured
as the distance between MaxE and MinE at any value of DQ
(Fig. 1b). Larger differences between MaxE and MinE imply
greater values for CAI. The absolute maximum range of values
that CAI can adopt is illustrated by two extreme possibilities in
which carbon distribution can be represented in the landscape.
The one extreme is when the amount of carbon in each pixel
is the same, meaning a uniform distribution of carbon. In
this case, deforestation allocation is unimportant since carbon
emissions correspond to the mean scenario regardless of where
deforestation is simulated (Fig. 2b). The other extreme is when
all carbon is allocated in one pixel. In this case the leaf becomes
nearly a rectangle (Fig. 2c). In the maximum scenario, the
sequence of predicted deforestation is allocated first to the
pixel that holds all carbon, emitting it immediately. In the
minimum scenario, the sequence of predicted deforestation is
allocated last to the pixel that holds all carbon; therefore all
emissions occur when the last pixel is deforested. Under these
circumstances, deforestation allocation has the most influence
on carbon emissions since carbon emissions will be predicted
only when deforestation is allocated in the pixel that holds all
the carbon.

The previous analysis illustrates the relative influence of
each component on carbon emissions at the extremes of the
theoretical range of values that each component can adopt,
however it does not represent the manner in which land change
models and carbon maps interact in actual applications. We
applied the concepts elaborated above to the particular case of
the Brazilian Amazon.

METHODS

Quantity and spatial allocation of carbon (CQ and CA)

We calculated the influence of quantity and spatial allocation
of carbon on the estimation of carbon emissions from
deforestation using five of the seven carbon maps reported
by Houghton et al. (2001) and the biomass map by Saatchi
et al. (2007) (Fig. 3). All the carbon maps reported by
Houghton have been used to compare different estimates and
spatial distributions of forest carbon in the Brazilian Amazon
(Houghton et al. 2001). We did not consider the map of Potter
(1999) since it was unavailable, or the map of Olson et al. (1983)
since it assigned a zero carbon density to large extensions that
appeared as forest before 2000 (INPE [Instituto Nacional de
Pesquisas Espaciais] 2009). Other carbon maps developed for
the Amazon (Malhi et al. 2006; Nogueira et al. 2008) were not
used here since they were not accessible. It is not our purpose
to do an exhaustive analysis of the different carbon products
published in the literature, but rather to use some examples
to illustrate how the components of uncertainty influence the
prediction of carbon emissions from deforestation.

We used six carbon maps in the analysis (Table 2). The
Brown map (Houghton et al. 2001) was created by modelling
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Table 2 Description of the carbon maps used in the analysis (modified from Houghton et al. 2001).

Map name Original source Method Original pixel
resolution (km)

Biomass representation

Brown Houghton et al. 2001 Modelling based on environmental
gradients

5 Potential

Houghton Houghton et al. 2001 Interpolation of 44 independent
measurements of carbon

5 Potential

Brown & Lugo Brown & Lugo 1992 Conversion of wood inventory data
to carbon using expansion factors

1 Potential

Fearnside Fearnside 1997 Conversion of wood inventory data
to carbon using expansion factors

1 Potential

DeFries DeFries et al. 2000 Derived from remote sensing 1 Observed in 1992
Saatchi High and Saatchi Low Saatchi et al. 2007 Derived from remote sensing 1 Observed in 2000–2004

Figure 3 Carbon input maps
expressing carbon density as total
carbon in vegetation (Mg ha−1).
See Table 2 for a full description of
maps. Carbon densities are
represented in categories to
facilitate visualization. The
category labelled as ‘Excluded’ in
the key corresponds to areas not
considered in the analysis (as
described in Methods).

the relationship between biomass and environmental
variables. Biomass information for calibration was obtained by
applying expansion factors to stemwood volume data acquired
from field measurements. The Houghton et al. (2001) map was
based on the spatial interpolation of biomass data from 44 plots
obtained from the literature. The Brown and Lugo (1992)
and Fearnside (1997) maps were produced by assigning the
average biomass of the volume plots used for the Brown map
to different forest classes. Fearnside’s aboveground biomass
estimates were 60% higher than Brown and Lugo’s estimates
because Fearnside accounted for other biomass components.
The DeFries et al. (2000) map was constructed by calibrating
satellite-based tree cover data with biomass from the same
44 sites used in the Houghton map. The Saatchi et al. (2007)
map was developed by classifying pixels in different biomass

categories based on the calibration of biomass data from more
than 500 plot measurements with forest structural parameters
and environmental variables obtained from both active and
passive remote sensing data. All maps except the DeFries
et al. and Saatchi et al. maps represent potential biomass,
meaning the expected biomass in each pixel assuming it is
occupied by primary undisturbed forests. Conversely, the
DeFries et al. and Saatchi et al. maps represent observed
biomass because they used satellite data as inputs for biomass
calibration (Houghton et al. 2001; Saatchi et al. 2007).

The Saatchi et al. (2007) map provided information about
aboveground live biomass while Houghton et al. (2001)
reported values on carbon in vegetation (Table 2). We
multiplied the Saatchi et al. map by 1.3 to account for dead and
belowground biomass, following the approach of Houghton
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et al. (2001). We subsequently multiplied the resulting map
by 0.5 to convert biomass to carbon. We performed these
calculations on the Saatchi et al. map to ensure that all our
maps expressed carbon in the same manner. The Saatchi
et al. map assigned to each pixel a class that was described
as a range of biomass values. Therefore, for our analysis,
we included two biomass maps, Saatchi Low and Saatchi
High, corresponding to the lower and upper limit of the
biomass ranges, respectively, as defined by Saatchi et al.
(2007). We calculated scenarios for only the pixels that had
biomass information in all maps. Any pixels without biomass
information in any single map were discarded in all maps in
order to establish a single definition of the study area.

Variation among carbon maps used here are mainly related
to the representation of potential versus observed carbon.
Secondary forests are not represented in the maps by Brown
and Houghton (Houghton et al. 2001) because they used
biomass calibration data from mature and primary forests
only. Data used for calibrating the Brown and Lugo and
Fearnside maps might have included some secondary forests,
but because they were built using average data for different
forest types, spatial variations in biomass due to the presence of
secondary forests were not explicitly represented. Conversely,
the DeFries et al. and Saatchi et al. maps explicitly represented
secondary and degraded forests since they used remote sensing
data for calibration. The DeFries et al. map might not
appropriately represent variations in biomass in areas with
high or low percentage of tree cover since it incorporated data
from optical satellites only (Houghton et al. 2001). Sources of
possible error in the Saatchi et al. maps are mainly associated
with the use of discrete classes to represent biomass (Saatchi
et al. 2007). Other sources of error associated with the use of
remote sensing for biomass mapping include the overlap of the
spectral characteristics of pixels in different biomass categories
and inconsistencies between vegetation characteristics and
map resolution (Saatchi et al. 2007). In addition, biomass
interpolation in the Brown and Lugo and Houghton
maps (Table 2) might introduce additional errors, because
interpolation implicitly assumes that biomass gradients
between interpolated plots are not affected by variations in
forest degradation or the existence of secondary forests. Errors
associated with the use of field biomass data for calibration
might be due to tree measurements, the selection of allometric
models and the size of the measured plots (Chave et al. 2004).

Quantity and spatial allocation of deforestation (DQ
and DA)

In order to identify the carbon emissions space for each carbon
map, we simulated quantities of deforestation, representing
0%, 20%, 40%, 60%, 80% and 100% of the study area
under the minimum, mean and maximum scenarios described
before. These scenarios were compared with a fourth one
called the modelled scenario, which corresponded to the
carbon emissions that are predicted based on the outputs of
an actual land change model. The modelled scenario serves

Figure 4 Projected deforestation for 2010, 2020, 2030, 2040 and
2050 by Soares-Filho et al. (2006), starting in 2002. The category
labelled as ‘No deforestation’ corresponds to either areas excluded
from the analysis, areas that were non-forest in the initial year, or
areas simulated as forest persistence during 2002–2050. (See
Table 2 for a full description of maps).

to illustrate the influence of DQ and DA on carbon emissions
under plausible ranges. For this, we used the deforestation in
the study area between 2002 and 2050 projected by Soares-
Filho et al. (2006) (Fig. 4). Deforestation by Soares-Filho et al.
was predicted spatially based on the probability of a pixel to
be deforested given the influence of input variables on the
allocation of deforestation. The effect of future road expansion
on deforestation was included using ‘a road constructor
model’. Deforestation quantities used here were predicted on
a business-as-usual scenario based on historic deforestation
rates. For the modelled scenario, we represented annual
cumulative emissions during the modelled period using the
DQ associated with each year. Predicted carbon emissions
from deforestation for all scenarios are expressed in Pg C
(1Pg = 109 t = 1015 g).

RESULTS

The influence of carbon quantity fluctuates between 38.4
(Saatchi Low) and 64.6 Pg C (Fearnside). DeFries has the
second largest CQI (51.9 Pg C), followed by Saatchi High
(47.1 Pg C). Most maps have CQI fluctuating between 38.4
Pg C (Saatchi Low) and 40.7 Pg C (Houghton) (Fig. 5).

The narrow predicting space in carbon emissions denotes
the relatively low influence of CA on carbon emissions in
most maps (Figs 5 and 6). The Saatchi High and Low maps
represent the largest influence of CA on emissions (Fig. 6),
with a maximum CAI equal to 12.1 Pg C and 11.7 Pg C,
respectively, which is attained when DQ = 50%. The smallest
CAI occurs in Brown (1.7 Pg C) followed by Houghton (3.0
Pg C).

The influence of DQ on carbon emissions follows a trend
similar to CQI, since DQI is proportional to CQI. The largest
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Figure 5 Carbon emissions
predicted under the mean,
minimum and maximum scenarios
when deforestation fluctuates
between 0 and 100% of the study
areas for the seven carbon maps
used in the analysis (see Table 2
for a full description of maps.).
The vertical axis for all seven plots
is predicted emissions (Pg of
carbon); the horizontal axis for all
seven plots is deforested quantity
(% of initial forest area).

Figure 6 Influence of carbon allocation (CAI) on the prediction of
carbon emissions from deforestation based on the carbon input
maps (see Table 2 for a full description of maps). CAI is measured
as the difference between the maximum and minimum scenarios.

DQI occurs in 2050, which is the end of the prediction interval.
At this point, DQ constitutes 48% of the study area, so DQI
at the year 2050 is 0.48 × CQI. Among the various maps,
DQI in 2050 is largest in the Fearnside map with 30.9 Pg
C, followed by DeFries (24.9 Pg C). Saatchi High has an
intermediate value (22.6 Pg C) (Fig. 7). The other maps
represent a relatively low and very similar DQI on carbon
emissions, fluctuating between 18.4 Pg C (Saatchi Low) and
19.5 Pg C (Houghton).

With the exception of the Saatchi maps, DAI is marginal
in most maps, to the point where the modelled and mean

scenarios are visually indiscernible (Fig. 7a–e). Most DAI
values are negative (Fig. 8), meaning that the simulation
model of Soares-Filho et al. (2006) allocated the predicted
deforestation at places that have a lower carbon density than
the average in the study area. The Saatchi maps showed DAI
of approximately –1.2 Pg C at their minimum, reached at
year 2043 (Fig. 8). For the other maps, the minimum DAI
fluctuated between –0.1 Pg C (Houghton and Brown & Lugo)
and –0.3 Pg C (DeFries).

We analysed the relative influence of deforestation
allocation on carbon emissions among the different carbon
maps (Fig. 8). For instance, DAI was similar for both the
Brown and Fearnside maps until around 2020. After 2040,
the DAI based on the Brown map was similar to that of
the DeFries map (Fig. 8). Similarly, the Fearnside map and
Brown and Lugo map become more alike after approximately
2038. DAI = 0 for the Houghton map at approximately 2025
and was trivial for the Brown and Lugo and Fearnside
maps after approximately 2040. A zero DAI indicates that
emissions predicted using only average carbon values are
identical to emissions predicted using the projected allocation
of deforestation predicted by a land change model.

DISCUSSION

Influence of quantity and allocation on the prediction
of carbon emissions from deforestation

Variation in carbon quantity among carbon maps was the
component with the largest influence on carbon emissions
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Figure 7 Carbon emissions
predicted under the mean
(MeanE), minimum (MinE)
maximum (MaxE), and modelled
(ModE) scenarios for the seven
carbon maps used in the analysis
(see Table 2 for a full description
of maps). Vertical axis is predicted
emissions (Pg of carbon) at the year
represented in the horizontal axis
for all seven plots. Deforestation
quantity and allocation are based
on the deforestation predicted by
Soares-Filho et al. (2006) between
2002 and 2050.

Figure 8 Influence of deforestation allocation (DAI) on the
prediction of carbon emissions from deforestation based on the
input carbon maps (see Table 2 for a full description of maps). DAI
is calculated as carbon emissions in the modelled scenario minus the
mean scenario. Negative values occur when carbon emissions in the
modelled scenario are less than in the mean scenario.

from deforestation. A larger quantity of total carbon stored in
a study area represented by a particular map, implies larger
predicted carbon emissions given an increase in deforestation
quantity because DQI = CQ × DQ. The influence of carbon
allocation on predicted emissions depends on the proportion of
a study area projected as deforestation, being the largest when
DQ is equal to 50% and zero when DQ is equal to 0% or 100%

(Fig. 6). Carbon allocation can also be potentially influenced
by CQ, since the total amount of carbon represented in a
landscape determines the maximum amount of carbon that
can potentially be assigned to a pixel (Fig. 2c). However, we
did not find a direct relationship between CQ and CA.

The way the other three components control the influence
of deforestation allocation on the prediction of carbon
emissions is not conspicuous. The narrower the carbon
predicting space, the more limited the range of values that
DAI can adopt (Fig. 1). Based on this logic, carbon allocation
might be expected to influence DAI. This seems to be the case
with the Saatchi maps, which represent the largest CAI and
DAI (Figs 5 and 6). Yet, the results with other carbon maps
are not conclusive in this respect. Higher variability in carbon
allocation does not necessarily mean a larger DAI (Figs 6 and
8), because the allocation of deforestation is not necessarily
determined by the variability in carbon allocation but by the
performance of the land change model.

The role of deforestation allocation on carbon emissions can
be better understood by further evaluating the degree to which
spatial clustering or dispersion of deforestation influences
the estimation of carbon emissions. Deforestation frequently
tends to occur near already deforested areas (Kirby et al. 2006).
Therefore, it is possible that a land change model will not
predict the exact allocation of deforestation accurately but
will predict deforestation in the vicinity where carbon values
will likely be similar to areas where actual deforestation occurs.
Techniques such as spatial point pattern analysis (Baddeley
& Turner 2005) can be useful to assess the influence of
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patterns of deforestation allocation on the prediction of carbon
emissions.

The narrow predicting space in most carbon maps (Fig. 5)
denotes a low influence of carbon allocation on the prediction
of carbon emissions from deforestation (see Fig. 7a–e, where
the modelled scenario is nearly indistinguishable from the
mean scenario, except for Saatchi maps). A larger variability
in carbon allocation makes the prediction of carbon emissions
more sensitive to the way deforestation is allocated. The
Saatchi maps have a wider spatial variation in carbon (Figs
5 and 6) and therefore are the only ones where allocation
might play a considerable role in the prediction of carbon
emissions. This higher spatial variation in the Saatchi map
is likely due to the representation of observed rather than
potential carbon and the incorporation of additional data such
as radar. The representation of observed carbon includes areas
covered by secondary or degraded forests, which usually have
lower carbon than the potential mature forests represented
by most of the other maps. Representing lower carbon in
secondary and degraded forests translates into greater spatial
carbon heterogeneity compared to representing carbon in the
potential vegetation. Similarly, the use of radar data improves
accuracy in biomass mapping, especially in areas with low
biomass densities (Gibbs et al. 2007; Sanchez-Azofeifa et al.
2009), translating into greater spatial variability represented
in the carbon maps.

Since carbon emissions are modelled as a function of
deforestation area and carbon density, components associated
with quantity should play the most relevant role in carbon
emissions. However, carbon density can vary spatially and
the amount of emissions depends also on the allocation of
deforestation. Our results indicate the influence of allocation
depends on the characteristics of the data and the procedures
used for carbon mapping and the allocation of deforestation
with respect to carbon. Recent advances in carbon mapping
reveal important variations in carbon allocation in tropical
forests that were not previously identified (Asner et al.
2010). Progress in this direction will likely increase the
relevance of incorporating spatial information about carbon
and deforestation on the prediction of carbon emissions.

Other components influencing the prediction of
carbon emissions from deforestation

We assumed that all carbon contained in a pixel was released
once deforestation was predicted. However, the story may
differ when predicting net rather than potential carbon
emissions. A complete estimation of net carbon emissions
should consider information on not only deforestation rates
and carbon stocks, but also such factors as land cover dynamics
following deforestation, the mode of clearing, fate of cleared
carbon, historical land cover changes, and the response of soil
carbon to deforestation (Houghton 2005; Ramankutty et al.
2007). Considering all these elements, the prediction of the
spatial allocation of deforestation may play a more important
role in the estimation of the timing and amount of emissions

than this paper portrays, since this involves the prediction of
not only allocation of deforestation, but also land conversion
processes and land cover trajectories before and after clearing.

Potential applications of the method for REDD and
for predicting other environmental changes

One of the main obstacles to using land change modelling
to establish reference levels operationally is that it requires
additional information and technical expertise, not available
for all developing countries interested in REDD (Parker
& Mitchell 2009; GOFC-GOLD 2010). The results of
this paper are specifically appropriate in assessing the
potential uncertainty of developing reference levels based
on the application of different tiers, meaning levels of data
requirements or analytical complexity for predicting reference
carbon emissions, analogous to the approach recommended by
IPCC to estimate emissions or removals of greenhouse gases
(Penman et al. 2006; Huettner et al. 2009). Carbon stocks
could be represented based on (1) default values for large
geographic units (GOFC-GOLD 2010), (2) the compilation
of plot data for more localized areas (for example Castillo-
Santiago et al. 2007), or (3) through carbon mapping (Gibbs
et al. 2007; Olander et al. 2008). Similarly, deforestation
could be predicted by (1) considering average data on historic
deforestation rates in a non spatially explicit fashion, (2)
applying econometric models to predict deforestation for
aggregated geographic units (for example Chomitz & Thomas
2003) or (3) through spatially explicit land change modelling
(see for example Soares-Filho et al. 2006).

Developing tiers for predicting emissions from defor-
estation would provide a useful means for countries to
adjust their estimation of reference emissions levels to
national circumstances, considering their data availability or
technical capacity. Countries therefore could comply with the
mandate by UNFCCC on establishing reference emissions
levels without exclusion of any country because of data
constraints or technical limitations. Countries could also
opt for different tiers considering the costs associated with
their implementation versus the potential benefits they could
obtain from REDD, bearing in mind the uncertainty in the
estimation of reference emissions levels associated with each
tier. For project developers, this approach could help to bound
the uncertainty of carbon emissions to areas susceptible to
high deforestation (Harris et al. 2008) or to improve their
perceived accuracy in land change modelling by predicting the
proportion of deforestation in aggregated areas with similar
carbon densities.

Our approach could help to evaluate the influence
of quantity and allocation on the prediction of other
environmental changes. Our method may be applied to any
quantitative changes that can be represented spatially and
whose value is a function of deforestation or other type of
spatial disturbance. The method can be used to evaluate
the influence of climate change scenarios on the viability of
plant populations (Miles et al. 2004) and/or fauna turnover

https://doi.org/10.1017/S0376892912000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0376892912000173


334 V.H. Gutierrez-Velez and R.G. Pontius Jr

(Peterson 2002), or to analyse the sensitivity of predicted
nitrogen retention and deposition on the quantity and spatial
distribution of climate, forest types and anthropogenic land
changes (Pan et al. 2004; Fedorko et al. 2005).

CONCLUSIONS

The prediction of carbon emissions from deforestation
should consider the interacting effects of quantity and
allocation in deforestation and carbon maps. We examined
case studies where the components associated with quantity
of existing carbon and quantity of future deforestation are
more influential than the spatial allocation of those quantities.

This paper offers a novel approach to assessing the
influence of spatial and non-spatial components of uncertainty
associated with carbon mapping and land change modelling
on the prediction of carbon emissions from deforestation.
Our method is particularly suitable for the establishment of
reference emission levels for REDD or other carbon mitigation
projects based on different tiers (levels) of data input, and
may also be applied to predict other environmental changes
affected by spatial disturbances.
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